432
Views
3
CrossRef citations to date
0
Altmetric
Reviews

Metabolic and safety issues for multiple sclerosis pharmacotherapy – opportunities for personalised medicine

, PhD (Senior Lecturer) , , PhD (Lecturer) & , PhD (Senior Lecturer)

Bibliography

  • Koch-Henriksen N, Sorensen PS. The changing demographic pattern of multiple sclerosis epidemiology. Lancet Neurol 2011;9:520-32
  • O’Gorman C, Lucas R, Taylor B. Environmental risk factors for multiple sclerosis: a review with a focus on molecular mechanisms. Int J Mol Sci 2012;13(9):11718-52
  • International Multiple Sclerosis Genetics Consortium. Beecham AH, Patsopoulos NA, Xifara DK, et al. Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nat Genet 2013;45(11):1353-60
  • Sawcer S, Hellenthal G, Pirinen M, et al. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 2011;476(7359):214
  • Eikelenboom MJ, Killestein J, Izeboud T, et al. Expression of adhesion molecules on peripheral lymphocytes predicts future lesion development in MS. J Neuroimmunol 2005;158(1–2):222-30
  • Comabella M, Khoury SJ. Immunopathogenesis of multiple sclerosis. Clin Immunol 2012;142(1):2-8
  • Rudick RA, Stuart WH, Calabresi PA, et al. Natalizumab plus interferon beta-1a for relapsing multiple sclerosis. N Engl J Med 2006;354(9):911-23
  • Ford C, Goodman AD, Johnson K, et al. Continuous long-term immunomodulatory therapy in relapsing multiple sclerosis: results from the 15-year analysis of the US prospective open-label study of glatiramer acetate. Mult Scler 2010;16(3):342-50
  • Cook SD, Dowling PC. Multiple sclerosis and viruses: an overview. Neurology 1980;30(7 Pt 2):80-91
  • Markowitz CE. Interferon-beta - mechanism of action and dosing issues. Neurology 2007;68:S8-S11
  • Interferon beta-1b is effective in relapsing-remitting multiple sclerosis. I. Clinical results of a multicenter, randomized, double-blind, placebo-controlled trial. The IFNB Multiple Sclerosis Study Group. Neurology 1993;43(4):655-61
  • Randomised double-blind placebo-controlled study of interferon beta-1a in relapsing/remitting multiple sclerosis. PRISMS (Prevention of Relapses and Disability by Interferon beta-1a Subcutaneously in Multiple Sclerosis) Study Group. Lancet 1998;352(9139):1498-504
  • Rudick RA, Goodkin DE, Jacobs LD, et al. Impact of interferon beta-1a on neurologic disability in relapsing multiple sclerosis. Neurology 1997;49(2):358-63
  • Calabresi P, Kieseier B, Arnold D, et al. ADVANCE phase 3 study of PEGylated interferon beta-1a for relapsing multiple sclerosis: patient baseline characteristics (abstract). Neurology 2012;78:P01.133
  • Idec B. New data analyses show significant clinical and MRI improvements with PLEGRIDY™ (peginterferon beta-1a) [press release]. 2013. Available from: http://www.biogenidec.com/press_release_details.aspx?ID=14712&Action=1&NewsId=2267&M=NewsV2&PID=61997 [Cited 26 March 2014]
  • Rio J, Nos C, Marzo ME, et al. Low-dose steroids reduce flu-like symptoms at the initiation of IFNbeta-1b in relapsing-remitting MS. Neurology 1998;50(6):1910-12
  • Giovannoni G, Southam E, Waubant E. Systematic review of disease-modifying therapies to assess unmet needs in multiple sclerosis: tolerability and adherence. Mult Scler 2012;18(7):932-46
  • Nikfar S, Rahimi R, Abdollahi M. A meta-analysis of the efficacy and tolerability of interferon-beta in multiple sclerosis, overall and by drug and disease type. Clin Ther 2010;32(11):1871-88
  • Kreisler A, de Seze J, Stojkovic T, et al. Multiple sclerosis, interferon beta and clinical thyroid dysfunction. Acta Neurol Scand 2003;107(2):154-7
  • Niederwieser G, Buchinger W, Bonelli RM, et al. Prevalence of autoimmune thyroiditis and non-immune thyroid disease in multiple sclerosis. J Neurol 2003;250(6):672-5
  • Edwards LJ, Constantinescu CS. A prospective study of conditions associated with multiple sclerosis in a cohort of 658 consecutive outpatients attending a multiple sclerosis clinic. Mult Scler 2004;10(5):575-81
  • Kado S, Miyamoto J, Komatsu N, et al. Type 1 diabetes mellitus caused by treatment with interferon-beta. Intern Med 2000;39(2):146-9
  • Uonaga T, Yoshida K, Harada T, et al. Case of type 1 diabetes mellitus following interferon beta-1a treatment for multiple sclerosis. Intern Med 2012;51(14):1875-7
  • Mahurkar S, Suppiah V, O’Doherty C. Pharmacogenomics of interferon beta and glatiramer acetate response: a review of the literature. Autoimmun Rev 2014;13(2):178-86
  • Hesse D, Sorensen PS. Using measurements of neutralizing antibodies: the challenge of IFN-beta therapy. Eur J Neurol 2007;14(8):850-9
  • Sbardella E, Tomassini V, Gasperini C, et al. Neutralizing antibodies explain the poor clinical response to Interferon beta in a small proportion of patients with multiple sclerosis: a retrospective study. BMC Neurol 2009;9:54-4
  • Racke MK, Lovett-Racke AE, Karandikar NJ. The mechanism of action of glatiramer acetate treatment in multiple sclerosis. Neurology 2010;74(Suppl 1):S25-30
  • Johnson KP, Brooks BR, Cohen JA, et al. Extended use of glatiramer acetate (Copaxone) is well tolerated and maintains its clinical effect on multiple sclerosis relapse rate and degree of disability. Copolymer 1 Multiple Sclerosis Study Group. Neurology 1998;50(3):701-8
  • Comi G, Filippi M, Wolinsky JS. European/Canadian multicenter, double-blind, randomized, placebo-controlled study of the effects of glatiramer acetate on magnetic resonance imaging – measured disease activity and burden in patients with relapsing multiple sclerosis. European/Canadian Glatiramer Acetate Study Group. Ann Neurol 2001;49(3):290-7
  • Bornstein MB, Miller A, Slagle S, et al. A pilot trial of Cop 1 in exacerbating-remitting multiple sclerosis. N Engl J Med 1987;317(7):408-14
  • Grossman I, Avidan N, Singer C, et al. Pharmacogenetics of glatiramer acetate therapy for multiple sclerosis reveals drug-response markers. Pharmacogenet Genomics 2007;17(8):657-66
  • Khan O, Rieckmann P, Boyko A, et al. Three times weekly glatiramer acetate in relapsing-remitting multiple sclerosis. Ann Neurol 2013;73(6):705-13
  • Rudick RA, Sandrock A. Natalizumab: alpha4-integrin antagonist selective adhesion molecule inhibitors for MS. Expert Rev Neurother 2004;4(4):571-80
  • Guan J-L, Hynes RO. Lymphoid cells recognize an alternatively spliced segment of fibronectin via the integrin receptor alpha4beta1. Cell 1990;60(1):53-61
  • Bayless KJ, Meininger GA, Scholtz JM, Davis GE. Osteopontin is a ligand for the alpha4beta1 integrin. J Cell Sci 1998;111(9):1165-74
  • Polman CH, O’Connor PW, Havrdova E, et al. A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med 2006;354(9):899-910
  • Schmedt N, Andersohn F, Garbe E. Signals of progressive multifocal leukoencephalopathy for immunosuppressants: a disproportionality analysis of spontaneous reports within the US Adverse Event Reporting System (AERS). Pharmacoepidemiol Drug Saf 2012;21(11):1216-20
  • Bloomgren G, Richman S, Hotermans C, et al. Risk of natalizumab-associated progressive multifocal leukoencephalopathy. N Engl J Med 2012;366(20):1870-80
  • Tan IL, McArthur JC, Clifford DB, et al. Immune reconstitution inflammatory syndrome in natalizumab-associated PML. Neurology 2011;77(11):1061-7
  • Calabresi PA, Giovannoni G, Confavreux C, et al. The incidence and significance of anti-natalizumab antibodies results from AFFIRM and SENTINEL. Neurology 2007;69(14):1391-403
  • Holmén C, Piehl F, Hillert J, et al. A Swedish national post-marketing surveillance study of natalizumab treatment in multiple sclerosis. Mult Scler 2011;17(6):708-19
  • Jensen PEH, Koch-Henriksen N, Sellebjerg F, Sørensen PS. Prediction of antibody persistency from antibody titres to natalizumab. Mult Scler 2012;18(10):1493-9
  • Oliver B, Fernández Ó, Órpez T, et al. Kinetics and incidence of anti-natalizumab antibodies in multiple sclerosis patients on treatment for 18 months. Mult Scler 2011;17(3):368-71
  • Piehl F, Holmén C, Hillert J, Olsson T. Swedish natalizumab (Tysabri) multiple sclerosis surveillance study. Neurol Sci 2011;31(3):289-93
  • Sørensen PS, Jensen PEH, Haghikia A, et al. Occurrence of antibodies against natalizumab in relapsing multiple sclerosis patients treated with natalizumab. Mult Scler 2011;17(9):1074-8
  • Lundkvist M, Engdahl E, Holmen C, et al. Characterization of anti-natalizumab antibodies in multiple sclerosis patients. Mult Scler 2013;19(6):757-64
  • Vennegoor A, Rispens T, Strijbis EMM, et al. Clinical relevance of serum natalizumab concentration and anti-natalizumab antibodies in multiple sclerosis. Mult Scler 2013;19(5):593-600
  • Bezabeh S, Flowers CM, Kortepeter C, Avigan M. Clinically significant liver injury in patients treated with natalizumab. Aliment Pharmacol Ther 2010;31(9):1028-35
  • Chalkley JJ, Berger JR. Progressive multifocal leukoencephalopathy in multiple sclerosis. Curr Neurol Neurosci Rep 2013;13(12):1-7
  • Schwab N, Schneider-Hohendorf T, Posevitz V, et al. L-selectin is a possible biomarker for individual PML risk in natalizumab-treated MS patients. Neurology 2013;81(10):865-71
  • Crowe JS, Hall VS, Smith MA, et al. Humanized monoclonal antibody CAMPATH-1H: myeloma cell expression of genomic constructs, nucleotide sequence of cDNA constructs and comparison of effector mechanisms of myeloma and Chinese hamster ovary cell-derived material. Clin Exp Immunol 1992;87(1):105-10
  • Cox AL, Thompson SAJ, Jones JL, et al. Lymphocyte homeostasis following therapeutic lymphocyte depletion in multiple sclerosis. Eur J Immunol 2005;35(11):3332-42
  • Jones JL, Phuah CL, Cox AL, et al. IL-21 drives secondary autoimmunity in patients with multiple sclerosis, following therapeutic lymphocyte depletion with alemtuzumab (Campath-1H). J Clin Invest 2009;119(7):2052-61
  • Hill-Cawthorne GA, Button T, Tuohy O, et al. Long term lymphocyte reconstitution after alemtuzumab treatment of multiple sclerosis. J Neurol Neurosurg Psychiatry 2012;83(3):298-304
  • Gilleece MH, Dexter TM. Effect of Campath-1H antibody on human hematopoietic progenitors in vitro. Blood 1993;82(3):807-12
  • Perumal JS, Foo F, Cook P, Khan O. Subcutaneous administration of alemtuzumab in patients with highly active multiple sclerosis. Mult Scler 2012;18(8):1197-9
  • Cohen JA, Coles AJ, Arnold DL, et al. Alemtuzumab versus interferon beta 1a as first-line treatment for patients with relapsing-remitting multiple sclerosis: a randomised controlled phase 3 trial. Lancet 2012;380(9856):1819-28
  • Coles AJ, Twyman CL, Arnold DL, et al. Alemtuzumab for patients with relapsing multiple sclerosis after disease-modifying therapy: a randomised controlled phase 3 trial. Lancet 2012;380(9856):1829-39
  • Investigators CT, Coles AJ, Compston DA, et al. Alemtuzumab vs. interferon beta-1a in early multiple sclerosis. N Engl J Med 2008;359(17):1786-801
  • Lundin J, Kimby E, Bjorkholm M, et al. Phase II trial of subcutaneous anti-CD52 monoclonal antibody alemtuzumab (Campath-1H) as first-line treatment for patients with B-cell chronic lymphocytic leukemia (B-CLL). Blood 2002;100(3):768-73
  • Crossburn M, Baker KE, Ingram G, et al. Serum IL-21 as biomarker in multiple sclerosis. J Neurol Neurosurg Psychiatry 2012;83:e1
  • Bielekova B, Catalfamo M, Reichert-Scrivner S, et al. Regulatory CD56bright natural killer cells mediate immunomodulatory effects of IL-2Rα-targeted therapy (daclizumab) in multiple sclerosis. Proc Natl Acad Sci USA 2006;103(15):5941-6
  • Bielekova B, Howard T, Packer AN, et al. Effect of anti-CD25 antibody daclizumab in the inhibition of inflammation and stabilization of disease progression in multiple sclerosis. Arch Neurol 2009;66(4):483-9
  • Wuest SC, Edwan JH, Martin JF, et al. A role for interleukin-2 trans-presentation in dendritic cell-mediated T cell activation in humans, as revealed by daclizumab therapy. Nat Med 2011;17(5):604-9
  • Gold R, Giovannoni G, Selmaj K, et al. Daclizumab high-yield process in relapsing-remitting multiple sclerosis (SELECT): a randomised, double-blind, placebo-controlled trial. Lancet 2013;381(9884):2167-75
  • Giovannoni G, Gold R, Selmaj K, et al. Primary results of the SELECTION trial of daclizumab HYP in relapsing multiple sclerosis. European Committee for Treatment and Research in Multiple Sclerosis. Lyon, France; 2012
  • Oh J, Saidha S, Cortese I, et al. Daclizumab-induced adverse events in multiple organ systems in multiple sclerosis. Neurology 2014;82(11):984-8
  • Duddy M, Bar-Or A. B-cells in multiple sclerosis. Int MS J 2006;13(3):84-90
  • Boster A, Ankeny DP, Racke MK. The potential role of B cell-targeted therapies in multiple sclerosis. Drugs 2010;70(18):2343-56
  • Reff ME, Carner K, Chambers KS, et al. Depletion of B cells in vivo by a chimeric mouse human monoclonal antibody to CD20. Blood 1994;83(2):435-45
  • Hauser SL, Waubant E, Arnold DL, et al. B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N Engl J Med 2008;358(7):676-88
  • Hawker K, O’Connor P, Freedman MS, et al. Rituximab in patients with primary progressive multiple sclerosis: results of a randomized double-blind placebo-controlled multicenter trial. Ann Neurol 2009;66(4):460-71
  • Oh J, Calabresi PA. Emerging injectable therapies for multiple sclerosis. Lancet Neurol 2013;12(11):1115-26
  • Genovese MC, Kaine JL, Lowenstein MB, et al. Ocrelizumab, a humanized anti-CD20 monoclonal antibody, in the treatment of patients with rheumatoid arthritis: a phase I/II randomized, blinded, placebo-controlled, dose-ranging study. Arthritis Rheum 2008;58(9):2652-61
  • Kappos L, Li D, Calabresi PA, et al. Ocrelizumab in relapsing-remitting multiple sclerosis: a phase 2, randomised, placebo-controlled, multicentre trial. Lancet 2011;378(9805):1779-87
  • Emery P, Rigby W, Tak PP, et al. Safety with ocrelizumab in rheumatoid arthritis: results from the ocrelizumab phase III program. PLoS One 2014;9(2):e87379
  • Zhang B. Ofatumumab. MAbs 2009;1(4):326-31
  • Sorensen PS, Lisby S, Grove R, et al. Safety and efficacy of ofatumumab in relapsing-remitting multiple sclerosis: a phase 2 study. Neurology 2014;82(7):573-81
  • Taylor PC, Quattrocchi E, Mallett S, et al. Ofatumumab, a fully human anti-CD20 monoclonal antibody, in biological-naive, rheumatoid arthritis patients with an inadequate response to methotrexate: a randomised, double-blind, placebo-controlled clinical trial. Ann Rheum Dis 2011;70(12):2119-25
  • Ofatumumab (Arzerra). Full prescribing information. US FDA, Silver Spring, MD, USA; 2009
  • Owczarczyk K, Lal P, Abbas AR, et al. A plasmablast biomarker for nonresponse to antibody therapy to CD20 in rheumatoid arthritis. Sci Transl Med 2011;3(101):101ra92
  • Chiba K, Kataoka H, Seki N, et al. Fingolimod (FTY720), the sphingosine 1-phosphate receptor modulator, as a new therapeutic drug in multiple sclerosis. Inflamm Regen 2011;31(2):167-74
  • Groves A, Kihara Y, Chun J. Fingolimod: direct CNS effects of sphingosine 1-phosphate (S1P) receptor modulation and implications in multiple sclerosis therapy. J Neurol Sci 2013;328(1-2):9-18
  • David OJ, Kovarik JM, Schmouder RL. Clinical pharmacokinetics of fingolimod. Clin Pharmacokinet 2012;51(1):15-28
  • Kappos L, Radue E-W, O’Connor P, et al. A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N Engl J Med 2010;362(5):387-401
  • Cohen JA, Barkhof F, Comi G, et al. Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N Engl J Med 2010;362(5):402-15
  • Laroni A, Brogi D, Morra VB, et al. Safety of the first dose of fingolimod for multiple sclerosis: results of an open-label clinical trial. BMC Neurol 2014;14(1):65
  • Rolf L, Muris AH, Damoiseaux J, et al. Paroxysmal atrial fibrillation after initiation of fingolimod for multiple sclerosis treatment. Neurology 2014;82(11):1008-9
  • Linker RA, Gold R. Dimethyl fumarate for treatment of multiple sclerosis: mechanism of action, effectiveness, and side effects. Curr Neurol Neurosci Rep 2013;13(11):1-7
  • Gold R, Kappos L, Arnold DL, et al. Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis. N Engl J Med 2012;367(12):1098-107
  • Fox RJ, Miller DH, Phillips JT, et al. Placebo-controlled phase 3 study of oral BG-12 or glatiramer in multiple sclerosis. N Engl J Med 2012;367(12):1087-97
  • Sheikh SI, Nestorov I, Russell H, et al. Tolerability and pharmacokinetics of delayed-release dimethyl fumarate administered with and without aspirin in healthy volunteers. Clin Ther 2013;35(10):1582-94; e9
  • Ermis U, Weis J, Schulz JB. PML in a patient treated with fumaric acid. N Engl J Med 2013;368(17):1657-8
  • van Oosten BW, Killestein J, Barkhof F, et al. PML in a patient treated with dimethyl fumarate from a compounding pharmacy. N Engl J Med 2013;368(17):1658-9
  • Mrowietz U, Reich K. Case reports of PML in patients treated for psoriasis. N Engl J Med 2013;369(11):1080-1
  • Palmer AM. Teriflunomide, an inhibitor of dihydroorotate dehydrogenase for the potential oral treatment of multiple sclerosis. Curr Opin Investig Drugs 2010;11(11):1313-23
  • Wiese MD, Rowland A, Polasek TM, et al. Pharmacokinetic evaluation of teriflunomide for the treatment of multiple sclerosis. Expert Opin Drug Metab Toxicol 2013;9(8):1025-35
  • Rakhila H, Rozek T, Hopkins A, et al. Quantitation of total and free teriflunomide (A77 1726) in human plasma by LC-MS/MS. J Pharm Biomed Anal 2011;55(2):325-31
  • Rozman B. Clinical pharmacokinetics of leflunomide. Clin Pharmacokinet 2002;41(6):421-30
  • Confavreux C, O’Connor P, Comi G, et al. Oral teriflunomide for patients with relapsing multiple sclerosis (TOWER): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Neurol 2014;13(3):247-56
  • O’Connor P, Wolinsky JS, Confavreux C, et al. Randomized trial of oral teriflunomide for relapsing multiple sclerosis. N Engl J Med 2011;365(14):1293-303
  • Vermersch P, Czlonkowska A, Grimaldi LM, et al. Teriflunomide versus subcutaneous interferon beta-1a in patients with relapsing multiple sclerosis: a randomised, controlled phase 3 trial. Mult Scler 2014;20(6):705-16
  • Confavreux C, Li DK, Freedman MS, et al. Long-term follow-up of a phase 2 study of oral teriflunomide in relapsing multiple sclerosis: safety and efficacy results up to 8.5 years. Mult Scler 2012;18(9):1278-89
  • Perez-Ruiz F, Nolla JM. Influence of leflunomide on renal handling of urate and phosphate in patients with rheumatoid arthritis. J Clin Rheumatol 2003;9(4):215-18
  • TGA. AusPAR attachment 2 - extract from the clinical evaluation report for teriflunomide. Therapeutic Goods Administration; Woden ACT: 2012
  • Aubagio (teriflunomide). Full prescribing information. US FDA, Silver Spring, MD, USA; 2012. p. 1-27
  • Drug Approval Package Aubagio (Teriflunomide) tablets. Clinical Pharmacology and Biopharmaceutics Review(s): NDA992; 2011
  • Kim KA, Joo HJ, Park JY. Effect of ABCG2 genotypes on the pharmacokinetics of A771726, an active metabolite of prodrug leflunomide, and association of A771726 exposure with serum uric acid level. Eur J Clin Pharmacol 2011;67(2):129-34
  • Wiese MD, Schnabl M, O’Doherty C, et al. Polymorphisms in cytochrome P450 2C19 enzyme and cessation of leflunomide in patients with rheumatoid arthritis. Arthritis Res Ther 2012;14(4):R163
  • Pawlik A, Herczynska M, Kurzawski M, et al. The effect of exon (19C>A) dihydroorotate dehydrogenase gene polymorphism on rheumatoid arthritis treatment with leflunomide. Pharmacogenomics 2009;10(2):303-9
  • Grabar PB, Rozman B, Logar D, et al. Dihydroorotate dehydrogenase polymorphism influences the toxicity of leflunomide treatment in patients with rheumatoid arthritis. Ann Rheum Dis 2009;68(8):1367-8
  • O’Doherty C, Schnabl M, Spargo L, et al. Association of DHODH haplotype variants and response to leflunomide treatment in rheumatoid arthritis. Pharmacogenomics 2012;13(12):1427-34
  • Bohanec Grabar P, Rozman B, Tomsic M, et al. Genetic polymorphism of CYP1A2 and the toxicity of leflunomide treatment in rheumatoid arthritis patients. Eur J Clin Pharmacol 2008;64(9):871-6
  • Lesko LJ, Schmidt S. Clinical implementation of genetic testing in medicine: a US regulatory science perspective. Br J Clin Pharmacol 2014;77(4):606-11
  • Sorich MJ, Rowland A, Wiese MD. Pharmacogenomic substudies of randomized controlled trials: consideration of safety outcomes. Ther Adv Drug Saf 2014;5(2):62-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.