454
Views
72
CrossRef citations to date
0
Altmetric
Reviews

Drug–target interaction prediction via chemogenomic space: learning-based methods

& , PhD

Bibliography

  • Wang Y, Xiao J, Suzek TO, et al. PubChem: a public information system for analyzing bioactivities of small molecules. Nucleic Acids Res 2009;37(Suppl 2):W623-33
  • Gaulton A, Bellis LJ, Bento AP, et al. ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res 2012;40(D1):D1100-7
  • Kuhn M, Szklarczyk D, Franceschini A, et al. STITCH 3: zooming in on protein–chemical interactions. Nucleic Acids Res 2012;40(D1):D876-80
  • Wishart DS, Knox C, Guo AC, et al. DrugBank: a knowledgebase for drugs, drug. actions and drug targets. Nucleic Acids Res 2008;36(Suppl 1):D901-6
  • Masoudi-Nejad A, Mousavian Z, Bozorgmehr JH. Drug-target and disease networks: polypharmacology in the post-genomic era. In Silico Pharmacol 2013;1(1):1-4
  • Butina D, Segall MD, Frankcombe K. Predicting ADME properties in silico: methods and models. Drug Discov Today 2002;7(11):S83-8
  • Byvatov E, Fechner U, Sadowski J, et al. Comparison of support vector machine and artificial neural network systems for drug/nondrug classification. J Chem Inf Comput Sci 2003;43(6):1882-9
  • Cheng AC, Coleman RG, Smyth KT, et al. Structure-based maximal affinity model predicts small-molecule druggability. Nat Biotechnol 2007;25(1):71-5
  • Donald BR. Algorithms in structural molecular biology. The MIT Press, Boston; 2011
  • Morris GM, Huey R, Lindstrom W, et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 2009;30(16):2785-91
  • Rognan D. Chemogenomic approaches to rational drug design. Br J Pharmacol 2007;152(1):38-52
  • Ekins S, Mestres J, Testa B. In silico pharmacology for drug discovery: applications to targets and beyond. Br J Pharmacol 2007;152(1):21-37
  • Ekins S, Mestres J, Testa B. In silico pharmacology for drug discovery: methods for virtual ligand screening and profiling. Br J Pharmacol 2007;152(1):9-20
  • Keiser MJ, Roth BL, Armbruster BN, et al. Relating protein pharmacology by ligand chemistry. Nat Biotechnol 2007;25(2):197-206
  • Keiser MJ, Setola V, Irwin JJ, et al. Predicting new molecular targets for known drugs. Nature 2009;462(7270):175-81
  • Lounkine E, Keiser MJ, Whitebread S, et al. Large-scale prediction and testing of drug activity on side-effect targets. Nature 2012;486(7403):361-7
  • Yamanishi Y, Araki M, Gutteridge A, et al. Prediction of drug–target interaction networks from the integration of chemical and genomic spaces. Bioinformatics 2008;24(13):i232-40
  • Bleakley K, Yamanishi Y. Supervised prediction of drug–target interactions using bipartite local models. Bioinformatics 2009;25(18):2397-403
  • Chen X, Liu M-X, Yan G-Y. Drug–target interaction prediction by random walk on the heterogeneous network. Mol Biosyst 2012;8(7):1970-8
  • Wang W, Yang S, Li J. Drug target predictions based on heterogeneous graph inference. In Pacific Symposium on Biocomputing; 2013; World Scientific
  • Alaimo S, Pulvirenti A, Giugno R, et al. Drug–target interaction prediction through domain-tuned network-based inference. Bioinformatics 2013;29(16):2004-8
  • Cheng F, Liu C, Jiang J, et al. Prediction of drug-target interactions and drug repositioning via network-based inference. PLoS Comput Biol 2012;8(5):e1002503
  • Kuhn M, Campillos M, González P, et al. Large-scale prediction of drug–target relationships. FEBS Lett 2008;582(8):1283-90
  • Iskar M, Zeller G, Zhao XM, et al. Drug discovery in the age of systems biology: the rise of computational approaches for data integration. Curr Opin Biotechnol 2012;23(4):609-16
  • Koutsoukas A, Simms B, Kirchmair J, et al. From in silico target prediction to multi-target drug design: current databases, methods and applications. J Proteomics 2011;74(12):2554-74
  • Yamanishi Y. Chemogenomic approaches to infer drug–target interaction networks. In: Mamitsuka H, DeLisi C, Kanehisa M, editors. Data mining for systems biology. Springer, New York; 2013. p. 97-113
  • Ding H, Takigawa I, Mamitsuka H, et al. Similarity-based machine learning methods for predicting drug–target interactions: a brief review. Brief Bioinform 2013. [ Epub ahead of print]
  • Yamanishi Y. Inferring chemogenomic features from drug-target interaction networks. Mol Inform 2013;32(11-12):991-9
  • Yıldırım MA, Goh KI, Cusick ME, et al. Drug – target network. Nat Biotechnol 2007;25(10):1119-26
  • Hattori M, Okuno Y, Goto S, et al. Development of a chemical structure comparison method for integrated analysis of chemical and genomic information in the metabolic pathways. J Am Chem Soc 2003;125(39):11853-65
  • Mahé P, Ueda N, Akutsu T, et al. Graph kernels for molecular structure-activity relationship analysis with support vector machines. J Chem Inf Model 2005;45(4):939-51
  • Yamanishi Y, Kotera M, Kanehisa M, et al. Drug-target interaction prediction from chemical, genomic and pharmacological data in an integrated framework. Bioinformatics 2010;26(12):i246-54
  • Kim S, Jin D, Lee H. Predicting drug-target interactions using drug-drug interactions. PLoS One 2013;8(11):e80129
  • Skrbo A, Begović B, Skrbo S. [Classification of drugs using the ATC system (Anatomic, Therapeutic, Chemical Classification) and the latest changes]. Med Arh 2003;58(1 Suppl 2):138-41
  • Resnik P. Semantic similarity in a taxonomy: an information-based measure and its application to problems of ambiguity in natural language. JAIR 1999;11:95-130
  • Lin D. An information-theoretic definition of similarity. In ICML; 1998
  • Smith TF, Waterman MS. Identification of common molecular subsequences. J Mol Biol 1981;147(1):195-7
  • Saigo H, Vert JP, Ueda N, et al. Protein homology detection using string alignment kernels. Bioinformatics 2004;20(11):1682-9
  • Ashburner M, Ball CA, Blake JA, et al. Gene Ontology: tool for the unification of biology.The gene oncology consortium. Nat Genet 2000;25(1):25-9
  • Zheng X, Ding H, Mamitsuka H, et al. Collaborative matrix factorization with multiple similarities for predicting drug-target interactions. In Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining; 2013; ACM
  • Jacob L, Vert J-P. Protein-ligand interaction prediction: an improved chemogenomics approach. Bioinformatics 2008;24(19):2149-56
  • Nagamine N, Sakakibara Y. Statistical prediction of protein–chemical interactions based on chemical structure and mass spectrometry data. Bioinformatics 2007;23(15):2004-12
  • Mordelet F, Vert JP. SIRENE: supervised inference of regulatory networks. Bioinformatics 2008;24(16):i76-82
  • Zhao X-M, Wang Y, Chen L, et al. Gene function prediction using labeled and unlabeled data. BMC Bioinformatics 2008;9(1):57
  • Mei J-P, Kwoh CK, Yang P, et al. Drug–target interaction prediction by learning from local information and neighbors. Bioinformatics 2013;29(2):238-45
  • Wang Y-C, Zhang CH, Deng NY, et al. Kernel-based data fusion improves the drug–protein interaction prediction. Comput Biol Chem 2011;35(6):353-62
  • van Laarhoven T, Nabuurs SB, Marchiori E. Gaussian interaction profile kernels for predicting drug–target interaction. Bioinformatics 2011;27(21):3036-43
  • van Laarhoven T, Marchiori E. Predicting drug-target interactions for new drug compounds using a weighted nearest neighbor profile. PLoS One 2013;8(6):e66952
  • Yang F, Xu J, Zeng J. Drug-target interaction prediction by integrating chemical, genomic, functional and pharmacological data. In Pacific Symposium on Biocomputing; 2013; World Scientific
  • Koller D, Friedman N. Probabilistic graphical models: principles and techniques. MIT press, Cambridge, Massachusetts; 2009
  • Hinton GE. Training products of experts by minimizing contrastive divergence. Neural Comput 2002;14(8):1771-800
  • Gönen M. Predicting drug–target interactions from chemical and genomic kernels using Bayesian matrix factorization. Bioinformatics 2012;28(18):2304-10
  • Takarabe M, Kotera M, Yamanishi Y. Drug target prediction using adverse event report systems: a pharmacogenomic approach. Bioinformatics 2012;28(18):i611-18
  • Wang Y-C, Yang z-x, Wang y, et al. Computationally probing drug-protein interactions via support vector machine. Lett Drug Des Discov 2010;7:5.370-378
  • He Z, Zhang J, Shi XH, et al. Predicting drug-target interaction networks based on functional groups and biological features. PLoS One 2010;5(3):e9603
  • Yamanishi Y, Pauwels E, Saigo H, Stoven V. Extracting sets of chemical substructures and protein domains governing drug-target interactions. J Chem Inf Model 2011;51(5):1183-94
  • Chen B, Wild D, Guha R. PubChem as a source of polypharmacology. J Chem Inf Model 2009;49(9):2044-55
  • Bateman A, Coin L, Durbin R, et al. The Pfam protein families database. Nucleic acids Res 2004;32(suppl 1):D138-41
  • Tabei Y, Pauwels E, Stoven V, et al. Identification of chemogenomic features from drug–target interaction networks using interpretable classifiers. Bioinformatics 2012;28(18):i487-94
  • Perlman L, Gottlieb A, Atias N, et al. Combining drug and gene similarity measures for drug-target elucidation. J Comput Biol 2011;18(2):133-45
  • Yu H, Chen J, Xu X, et al. A systematic prediction of multiple drug-target interactions from chemical, genomic, and pharmacological data. PLoS One 2012;7(5):e37608
  • Tabei Y, Yamanishi Y. Scalable prediction of compound-protein interactions using minwise hashing. BMC Syst Biol 2013;7(Suppl 6):S3
  • Cao D-S, Liu S, Xu QS, et al. Large-scale prediction of drug–target interactions using protein sequences and drug topological structures. Anal Chim Acta 2012;752:1-10
  • Cobanoglu MC, Liu C, Hu F, et al. Predicting Drug–Target Interactions Using Probabilistic Matrix Factorization. J Chem Inf Model 2013;53(12):3399-409
  • Nanni L, Lumini A, Brahnam S. A set of descriptors for identifying the protein–drug interaction in cellular networking. J Theor Biol 2014. [Epub ahead of print]
  • Gribskov M, McLachlan AD, Eisenberg D. Profile analysis: detection of distantly related proteins. Proc Natl Acad Sci USA 1987;84(13):4355-8
  • Yu X, Zheng X, Liu T, et al. Predicting subcellular location of apoptosis proteins with pseudo amino acid composition: approach from amino acid substitution matrix and auto covariance transformation. Amino Acids 2012;42(5):1619-25
  • Eckert H, Bajorath J. Molecular similarity analysis in virtual screening: foundations, limitations and novel approaches. Drug discov Today 2007;12(5):225-33
  • Xia Z, Wu LY, Zhou X, Wong ST. Semi-supervised drug-protein interaction prediction from heterogeneous biological spaces. BMC Syst Biol 2010;4(Suppl 2):S6
  • Chen H, Zhang Z. A semi-supervised method for drug-target interaction prediction with consistency in networks. PLoS One 2013;8(5):e62975
  • Yu W, Yan Y, Liu Q, et al. Predicting drug-target interaction networks of human diseases based on multiple feature information. Pharmacogenomics 2013;14(14):1701-7
  • Wang Y, Zeng J. Predicting drug-target interactions using restricted Boltzmann machines. Bioinformatics 2013;29(13):i126-34
  • Meslamani J, Rognan D. Enhancing the accuracy of chemogenomic models with a three-dimensional binding site kernel. J Chem Inf Model 2011;51(7):1593-603
  • Akbani R, Kwek S, Japkowicz N. Applying support vector machines to imbalanced datasets, in Machine Learning: ECML 2004. Springer, New York; 2004. p. 39-50
  • He H, Garcia EA. Learning from imbalanced data. Knowledge Data Eng. IEEE Trans 2009;21(9):1263-84
  • Kotsiantis S, Kanellopoulos D, Pintelas P. Handling imbalanced datasets: a review. GESTS Int Trans Comput Sci Eng 2006;30(1):25-36
  • Pahikkala T, Airola A, Pietilä S, et al. Toward more realistic drug–target interaction predictions. Brief Bioinform 2014. [Epub ahead of print]
  • Nickel J, Gohlke BO, Erehman J, et al. SuperPred: update on drug classification and target prediction. Nucleic Acids Res 2014;42(Web Server issue):W26-31
  • Yamanishi Y, Kotera M, Moriya Y, et al. DINIES: drug–target interaction network inference engine based on supervised analysis. Nucleic acids Res 2014;42(Web Server issue):W39-45

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.