853
Views
26
CrossRef citations to date
0
Altmetric
Review

Dosing algorithms for initiation of immunosuppressive drugs in solid organ transplant recipients

, MSc Pharm D, , MSc, , PhD, , MD PhD, , MD PhD, , MD PhD & , MD PhD show all

Bibliography

  • Elens L, Bouamar R, Shuker N, et al. Clinical implementation of pharmacogenetics in kidney transplantation: calcineurin inhibitors in the starting blocks. Br J Clin Pharmacol 2014;77(4):715-28
  • Tonshoff B, Hocker B. Treatment strategies in pediatric solid organ transplant recipients with calcineurin inhibitor-induced nephrotoxicity. Pediatr Transplant 2006;10(6):721-9
  • Ekberg H, Bernasconi C, Tedesco-Silva H, et al. Calcineurin inhibitor minimization in the symphony study: observational results 3 years after transplantation. Am J Transplant 2009;9(8):1876-85
  • Kho M, Cransberg K, Weimar W, van Gelder T. Current immunosuppressive treatment after kidney transplantation. Expert Opin Pharmacother 2011;12(8):1217-31
  • Jonge HD, Naesens M, Kuypers DRJ. New insights into the pharmacokinetics and pharmacodynamics of the calcineurin inhibitors and mycophenolic acid: possible consequences for therapeutic drug monitoring in solid organ transplantation. Ther Drug Monit 2009;31(4):416-35
  • Hardinger KL, Bohl DL, Schnitzler MA, et al. A randomized, prospective, pharmacoeconomic trial of tacrolimus versus cyclosporine in combination with thymoglobulin in renal transplant recipients. Transplantation 2005;80(1):41-6
  • A comparison of tacrolimus (FK 506) and cyclosporine for immunosuppression in liver transplantation. The U.S. Multicenter FK506 Liver Study Group. N Engl J Med 1994;331(17):1110-15
  • De Winter BCM, Mathot RAA, Sombogaard F, et al. Nonlinear relationship between mycophenolate mofetil dose and mycophenolic acid exposure: implications for therapeutic drug monitoring. Clin J Am Soc Nephrol 2011;6(3):656-63
  • van Gelder T. Drug interactions with tacrolimus. Drug Saf 2002;25(10):707-12
  • Hesselink DA, Ngyuen H, Wabbijn M, et al. Tacrolimus dose requirement in renal transplant recipients is significantly higher when used in combination with corticosteroids. Br J Clin Pharmacol 2003;56(3):327-30
  • van Hest RM, Mathot RA, Pescovitz MD, et al. Explaining variability in mycophenolic acid exposure to optimize mycophenolate mofetil dosing: a population pharmacokinetic meta-analysis of mycophenolic acid in renal transplant recipients. J Am Soc Nephrol 2006;17(3):871-80
  • Touw DJ, Neef C, Thomson AH, Vinks AA; Cost-Effectiveness of Therapeutic Drug Monitoring Committee of the International Association for Therapeutic Drug M, Clinical T. Cost-effectiveness of therapeutic drug monitoring: a systematic review. THER DRUG MONIT 2005;27(1):10-17
  • Staatz C, Taylor P, Tett S. Low tacrolimus concentrations and increased risk of early acute rejection in adult renal transplantation. Nephrol Dial Transplant 2001;16(9):1905-9
  • Borobia AM, Romero I, Jimenez C, et al. Trough tacrolimus concentrations in the first week after kidney transplantation are related to acute rejection. Ther Drug Monit 2009;31(4):436-42
  • Israni AK, Riad SM, Leduc R, et al. Tacrolimus trough levels after month 3 as a predictor of acute rejection following kidney transplantation: a lesson learned from DeKAF Genomics. Transpl Int 2013;26(10):982-9
  • Daher Abdi Z, Premaud A, Essig M, et al. Exposure to mycophenolic acid better predicts immunosuppressive efficacy than exposure to calcineurin inhibitors in renal transplant patients. Clin Pharmacol Ther 2014;96(4):508-15
  • Bouamar R, Shuker N, Hesselink DA, et al. Tacrolimus predose concentrations do not predict the risk of acute rejection after renal transplantation: a pooled analysis from three randomized-controlled clinical trials(dagger). Am J Transplant 2013;13(5):1253-61
  • Sanchez MJG, Manzanares C, Santos-Buelga D, et al. Covariate effects on the apparent clearance of tacrolimus in paediatric liver transplant patients undergoing conversion therapy. Clin Pharmacokinet 2001;40(1):63-71
  • van Gelder T, Silva HT, De Fijter JW, et al. Comparing mycophenolate mofetil regimens for de novo renal transplant recipients: the fixed-dose concentration-controlled trial. Transplantation 2008;86(8):1043-51
  • van Gelder T. Therapeutic drug monitoring for mycophenolic acid is value for (Little) money. Clin Pharmacol Ther 2011;90(2):203-4
  • Kiberd BA, Lawen J, Fraser AD, et al. Early adequate mycophenolic acid exposure is associated with less rejection in kidney transplantation. Am J Transplant 2004;4(7):1079-83
  • van Gelder T, Tedesco Silva H, De Fijter JW, et al. Renal transplant patients at high risk of acute rejection benefit from adequate exposure to mycophenolic acid. Transplantation 2010;89(5):595-9
  • Le Meur Y, Buchler M, Thierry A, et al. Individualized mycophenolate mofetil dosing based on drug exposure significantly improves patient outcomes after renal transplantation. Am J Transplant 2007;7(11):2496-503
  • Gaston RS, Kaplan B, Shah T, et al. Fixed- or controlled-dose mycophenolate mofetil with standard- or reduced-dose calcineurin inhibitors: the opticept trial. Am J Transplant 2009;9(7):1607-19
  • de Winter BC, van Gelder T, Mathot RA, et al. Limited sampling strategies drawn within 3 hours postdose poorly predict mycophenolic acid area-under-the-curve after enteric-coated mycophenolate sodium. Ther Drug Monit 2009;31(5):585-91
  • Hesselink DA, Bouamar R, Elens L, et al. The role of pharmacogenetics in the disposition of and response to tacrolimus in solid organ transplantation. Clin Pharmacokinet 2014;53(2):123-39
  • Ekberg H, Mamelok RD, Pearson TC, et al. The challenge of achieving target drug concentrations in clinical trials: experience from the symphony study. Transplantation 2009;87(9):1360-6
  • Group CSC. Haynes R, Harden P, Judge P, et al. Alemtuzumab-based induction treatment versus basiliximab-based induction treatment in kidney transplantation (the 3C Study): a randomised trial. Lancet 2014;384(9955):1684-90
  • Keown P, Landsberg D, Halloran P, et al. A randomized, prospective multicenter pharmacoepidemiologic study of cyclosporine microemulsion in stable renal graft recipients. Report of the Canadian Neoral Renal Transplantation Study Group. Transplantation 1996;62(12):1744-52
  • Kuypers DR, Le Meur Y, Cantarovich M, et al. Consensus report on therapeutic drug monitoring of mycophenolic acid in solid organ transplantation. Clin J Am Soc Nephrol 2010;5(2):341-58
  • Gourishankar S, Houde I, Keown PA, et al. The CLEAR study: a 5-day, 3-g loading dose of mycophenolate mofetil versus standard 2-g dosing in renal transplantation. Clin J Am Soc Nephrol 2010;5(7):1282-9
  • Product Information: CellCept(R) oral capsules, tablets, suspension, IV injection, mycophenolate mofetil oral capsules, tablets, suspension, mycophenolate mofetil HCl IV injection. Roche Laboratories, Inc; Nutley, N: 2009
  • Matas AJ, Smith JM, Skeans MA, et al. OPTN/SRTR 2013 annual data report: kidney. Am J Transplant 2015;15(S2):1-34
  • Shuker N, van Gelder T, Hesselink DA. Intra-patient variability in tacrolimus exposure: causes, consequences for clinical management. Transplant Rev(Orlando) 2015. [Epub ahead of print]
  • Staatz CE, Tett SE. Clinical pharmacokinetics and pharmacodynamics of tacrolimus in solid organ transplantation. Clin Pharmacokinet 2004;43(10):623-53
  • Knopsa N, Levtchenko E, Den Heuvel B, Kuypers D. From gut to kidney: transporting and metabolizing calcineurin-inhibitors in solid organ transplantation. Int J Pharm 2013;452(1-2):14-35
  • Swen JJ, Nijenhuis M, de Boer A, et al. Pharmacogenetics: from bench to byte – an update of guidelines. Clin Pharmacol Ther 2011;89(5):662-73
  • Press RR, Ploeger BA, Hartigh JD, et al. Explaining variability in tacrolimus pharmacokinetics to optimize early exposure in adult kidney transplant recipients. Ther Drug Monit 2009;31(2):187-97
  • Staatz CE, Willis C, Taylor PJ, Tett SE. Population pharmacokinetics of tacrolimus in adult kidney transplant recipients. Clin Pharmacol Ther 2002;72(6):660-9
  • Armendariz Y, Garcia S, Lopez RM, Pou L. Hematocrit influences immunoassay performance for the measurement of tacrolimus in whole blood. Ther Drug Monit 2005;27(6):766-9
  • Leroy S, Isapof A, Fargue S, et al. Tacrolimus nephrotoxicity: beware of the association of diarrhea, drug interaction and pharmacogenetics. Pediatr Nephrol 2010;25(5):965-9
  • Lalan S, Abdel-Rahman S, Gaedigk A, et al. Effect of CYP3A5 genotype, steroids, and azoles on tacrolimus in a pediatric renal transplant population. Pediatr Nephrol 2014;29(10):2039-49
  • Gregoor PJ, van Gelder T, van der Ende ME, et al. Cyclosporine and triple-drug treatment with human immunodeficiency virus protease inhibitors. Transplantation 1999;68(8):1210
  • van Maarseveen EM, Rogers CC, Trofe-Clark J, et al. Drug-drug interactions between antiretroviral and immunosuppressive agents in HIV-infected patients after solid organ transplantation: a review. AIDS Patient Care STDS 2012;26(10):568-81
  • Van Maarseveen EM, Crommelin HA, Mudrikova T, et al. Pretransplantation pharmacokinetic curves of tacrolimus in HIV-infected patients on ritonavir-containing cART: a pilot study. Transplantation 2013;95(2):397-402
  • Elie V, De Beaumais T, Fakhoury M, Jacqz-Aigrain E. Pharmacogenetics and individualized therapy in children: immunosuppressants, antidepressants, anticancer and anti-inflammatory drugs. Pharmacogenomics 2011;12(6):827-43
  • Montini G, Ujka F, Varagnolo C, et al. The pharmacokinetics and immunosuppressive response of tacrolimus in paediatric renal transplant recipients. Pediatr Nephrol 2006;21(5):719-24
  • Kabasakul SC, Clarke M, Kane H, et al. Comparison of Neoral and Sandimmune cyclosporin A pharmacokinetic profiles in young renal transplant recipients. Pediatr Nephrol 1997;11(3):318-21
  • Zhao W, Fakhoury M, Baudouin V, et al. Population pharmacokinetics and pharmacogenetics of once daily prolonged-release formulation of tacrolimus in pediatric and adolescent kidney transplant recipients. Eur J Clin Pharmacol 2013;69(2):189-95
  • e Wildt SN, Van Schaik RHN, Soldin OP, et al. The interactions of age, genetics, and disease severity on tacrolimus dosing requirements after pediatric kidney and liver transplantation. Eur J Clin Pharmacol 2011;67(12):1231-41
  • Peters DH, Fitton A, Plosker GL, Faulds D. Tacrolimus: a review of its pharmacology, and therapeutic potential in hepatic and renal transplantation. Drugs 1993;46(4):746-94
  • Venkataramanan R, Swaminathan A, Prasad T, et al. Clinical pharmacokinetics of tacrolimus. Clin Pharmacokinet 1995;29(6):404-30
  • Gerard C, Stocco J, Hulin A, et al. Determination of the most influential sources of variability in tacrolimus trough blood concentrations in adult liver transplant recipients: a bottom-up approach. AAPS J 2014;16(3):379-91
  • Guy-Viterbo V, Scohy A, Verbeeck RK, et al. Population pharmacokinetic analysis of tacrolimus in the first year after pediatric liver transplantation. Eur J Clin Pharmacol 2013;69(8):1533-42
  • Fukudo M, Yano I, Masuda S, Goto M. Population pharmacokinetic and pharmacogenomic analysis of tacrolimus in pediatric living-donor liver transplant recipients*. Clin Pharmacol Ther 2006;80(4):331-45
  • Hawwa AF, McKiernan PJ, Shields M, et al. Influence of ABCB1 polymorphisms and haplotypes on tacrolimus nephrotoxicity and dosage requirements in children with liver transplant. Br J Clin Pharmacol 2009;68(3):413-21
  • Cooney GF, Habucky K, Hoppu K. Cyclosporin pharmacokinetics in paediatric transplant recipients. Clin Pharmacokinet 1997;32(6):481-95
  • Wu KH, Cui YM, Guo JF, et al. Population pharmacokinetics of cyclosporine in clinical renal transplant patients. Drug Metab Dispos 2005;33(9):1268-75
  • McLachlan AJ, Tett SE. Effect of metabolic inhibitors on cyclosporine pharmacokinetics using a population approach. Ther Drug Monit 1998;20(4):390-5
  • Rosenbaum SE, Baheti G, Trull AK, Akhlaghi F. Population pharmacokinetics of cyclosporine in cardiopulmonary transplant recipients. Ther Drug Monit 2005;27(2):116-22
  • Ji E, Kim MY, Yun HY, et al. Population pharmacokinetics of cyclosporine in Korean adults undergoing living-donor kidney transplantation. Pharmacotherapy 2011;31(6):574-84
  • Rui JZ, Zhuo HT, Jiang GH, Chen G. Evaluation of population pharmacokinetics of cyclosporin A in renal transplantation patients with NONMEM. Yao Xue Xue Bao 1995;30(4):241-7
  • Irtan S, Saint-Marcoux F, Rousseau A, et al. Population pharmacokinetics and Bayesian estimator of cyclosporine in pediatric renal transplant patients. Ther Drug Monit 2007;29(1):96-102
  • Falck P, Midtvedt K, Van Le TT, et al. A population pharmacokinetic model of ciclosporin applicable for assisting dose management of kidney transplant recipients. Clin Pharmacokinet 2009;48(9):615-23
  • Mochon M, Cooney G, Lum B, et al. Pharmacokinetics of cyclosporine after renal transplant in children. J Clin Pharmacol 1996;36(7):580-6
  • Han K, Pillai VC, Venkataramanan R. Population pharmacokinetics of cyclosporine in transplant recipients. AAPS J 2013;15(4):901-12
  • Fanta S, Jonsson S, Backman JT, et al. Developmental pharmacokinetics of ciclosporin - A population pharmacokinetic study in paediatric renal transplant candidates. Br J Clin Pharmacol 2007;64(6):772-84
  • Hesselink DA, van Gelder T, Van Schaik RH, et al. Population pharmacokinetics of cyclosporine in kidney and heart transplant recipients and the influence of ethnicity and genetic polymorphisms in the MDR-1, CYP3A4, and CYP3A5 genes. Clin Pharmacol Ther 2004;76(6):545-56
  • Ferraresso M, Belingheri M, Turolo S, et al. Long-term effects of ABCB1 and SXR SNPs on the systemic exposure to cyclosporine in pediatric kidney transplant patients. Pharmacogenomics 2013;14(13):1605-13
  • Ferraresso M, Turolo S, Belinghieri M, et al. The potential of steroids and xenobiotic receptor polymorphisms in forecasting cyclosporine pharmacokinetic variability in young kidney transplant recipients. Pediatr Transplant 2012;16(6):658-63
  • Fanta S, Niemi M, Jonsson S, et al. Pharmacogenetics of cyclosporine in children suggests an age-dependent influence of ABCB1 polymorphisms. Pharmacogenet Genomics 2008;18(2):77-90
  • Elens L, Hesselink DA, Bouamar R, et al. Impact of POR*28 on the pharmacokinetics of tacrolimus and cyclosporine A in renal transplant patients. Ther Drug Monit 2014;36(1):71-9
  • Lunde I, Bremer S, Midtvedt K, et al. The influence of CYP3A, PPARA, and POR genetic variants on the pharmacokinetics of tacrolimus and cyclosporine in renal transplant recipients. Eur J Clin Pharmacol 2014;70(6):685-93
  • van Gelder T, Van Schaik RH, Hesselink DA. Practicability of pharmacogenetics in transplantation medicine. Clin Pharmacol Ther 2014;95(3):262-4
  • De Winter BCM, van Gelder T, Sombogaard F, et al. Pharmacokinetic role of protein binding of mycophenolic acid and its glucuronide metabolite in renal transplant recipients. J Pharmacokinet Pharmacodyn 2009;36(6):541-64
  • van Hest RM, van Gelder T, Vulto AG, Mathot RA. Population pharmacokinetics of mycophenolic acid in renal transplant recipients. Clin Pharmacokinet 2005;44(10):1083-96
  • van Hest RM, van Gelder T, Vulto AG, et al. Pharmacokinetic modelling of the plasma protein binding of mycophenolic acid in renal transplant recipients. Clin Pharmacokinet 2009;48(7):463-76
  • Ghio L, Ferraresso M, Zacchello G, et al. Longitudinal evaluation of mycophenolic acid pharmacokinetics in pediatric kidney transplant recipients. The role of post-transplant clinical and therapeutic variables. Clin Transplant 2009;23(2):264-70
  • Weber LT, Shipkova M, Armstrong VW, et al. The pharmacokinetic-pharmacodynamic relationship for total and free mycophenolic Acid in pediatric renal transplant recipients: a report of the German study group on mycophenolate mofetil therapy. J Am Soc Nephrol 2002;13(3):759-68
  • Hesselink DA, van Hest RM, Mathot RA, et al. Cyclosporine interacts with mycophenolic acid by inhibiting the multidrug resistance-associated protein 2. Am J Transplant 2005;5(5):987-94
  • Aw MM, Brown NW, Itsuka T, et al. Mycophenolic acid pharmacokinetics in pediatric liver transplant recipients. Liver Transpl 2003;9(4):383-8
  • van Gelder T, Klupp J, Barten MJ, et al. Comparison of the effects of tacrolimus and cyclosporine on the pharmacokinetics of mycophenolic acid. Ther Drug Monit 2001;23(2):119-28
  • Smak Gregoor PJ, van Gelder T, van Besouw NM, et al. Mycophenolic acid trough levels after kidney transplantation in a cyclosporine-free protocol. Transpl Int 2000;13(Suppl 1):S333-5
  • Filler G. Value of therapeutic drug monitoring of MMF therapy in pediatric transplantation. Pediatr Transplant 2006;10(6):707-11
  • Van Hest RMan Gelder T, Bouw R, et al. Time-dependent clearance of mycophenolic acid in renal transplant recipients. Br J Clin Pharmacol 2007;63(6):741-52
  • Johnson LA, Oetting WS, Basu S, et al. Pharmacogenetic effect of the UGT polymorphisms on mycophenolate is modified by calcineurin inhibitors. Eur J Clin Pharmacol 2008;64(11):1047-56
  • Bullingham RES, Nicholls AJ, Kamm BR. Clinical pharmacokinetics of mycophenolate mofetil. Clin Pharmacokinet 1998;34(6):429-55
  • Hesselink DA, van Gelder T. Genetic and nongenetic determinants of between-patient variability in the pharmacokinetics of mycophenolic acid. Clin Pharmacol Ther 2005;78(4):317-21
  • Girard H, Court MH, Bernard O, et al. Identification of common polymorphisms in the promoter of the UGT1A9 gene: evidence that UGT1A9 protein and activity levels are strongly genetically controlled in the liver. Pharmacogenetics 2004;14(8):501-15
  • Zhao W, Fakhoury M, Deschênes G. Population pharmacokinetics and pharmacogenetics of mycophenolic acid following administration of mycophenolate mofetil in de novo pediatric renal-transplant patients. J Clin Pharmacol 2010;50(11):1280-91
  • Li P, Shuker N, Hesselink DA, et al. Do Asian renal transplant patients need another mycophenolate mofetil dose compared with Caucasian or African American patients? Transplant Int 2014;27(10):994-1004
  • Abdel Jalil MH, Hawwa AF, McKiernan PJ, et al. Population pharmacokinetic and pharmacogenetic analysis of tacrolimus in paediatric liver transplant patients. Br J Clin Pharmacol 2014;77(1):130-40
  • Passey C, Birnbaum AK, Brundage RC, et al. Dosing equation for tacrolimus using genetic variants and clinical factors. Br J Clin Pharmacol 2011;72(6):948-57
  • Passey C, Birnbaum AK, Brundage RC, et al. Validation of tacrolimus equation to predict troughs using genetic and clinical factors. Pharmacogenomics 2012;13(10):1141-7
  • Boughton O, Borgulya G, Cecconi M, et al. A published pharmacogenetic algorithm was poorly predictive of tacrolimus clearance in an independent cohort of renal transplant recipients. Br J Clin Pharmacol 2013;76(3):425-31
  • Elens L, Hesselink DA, van Schaik RH, van Gelder T. The CYP3A4*22 allele affects the predictive value of a pharmacogenetic algorithm predicting tacrolimus predose concentrations. Br J Clin Pharmacol 2013;75(6):1545-7
  • Zuo XC, Ng CM, Barrett JS, et al. Effects of CYP3A4 and CYP3A5 polymorphisms on tacrolimus pharmacokinetics in Chinese adult renal transplant recipients: a population pharmacokinetic analysis. Pharmacogenet Genomics 2013;23(5):251-61
  • Golubovic B, Vucicevic K, Radivojevic D, et al. Total plasma protein effect on tacrolimus elimination in kidney transplant patients - Population pharmacokinetic approach. Eur J Pharm Sci 2014;52(1):34-40
  • Thervet E, Loriot MA, Barbier S, et al. Optimization of initial tacrolimus dose using pharmacogenetic testing. Clin Pharmacol Ther 2010;87(6):721-6
  • Zhang J, Zhang X, Liu L, Tong W. Value of CYP3A5 genotyping on determining initial dosages of tacrolimus for Chinese renal transplant recipients. Transplant Proc 2010;42(9):3459-64
  • Bergmann TK, Hennig S, Barraclough KA, et al. Population pharmacokinetics of tacrolimus in adult kidney transplant patients: impact of CYP3A5 genotype on starting dose. Ther Drug Monit 2014;36(1):62-70
  • Campbell S, Hawley C, Irish A, et al. Pre-transplant pharmacokinetic profiling and tacrolimus requirements post-transplant. Nephrology (Carlton) 2010;15(7):714-19
  • Kausman JY, Patel B, Marks SD. Standard dosing of tacrolimus leads to overexposure in pediatric renal transplantation recipients. Pediatr Transplant 2008;12(3):329-35
  • Zhao W, Elie V, Roussey G, et al. Population pharmacokinetics and pharmacogenetics of tacrolimus in de novo pediatric kidney transplant recipients. Clin Pharmacol Ther 2009;86(6):609-18
  • Chen B, Zhang WX, Gu ZD, et al. Population pharmacokinetic study of cyclosporine in Chinese renal transplant recipients. Eur J Clin Pharmacol 2011;67(6):601-12
  • Press RR, Ploeger BA, Den Hartigh J, et al. Explaining variability in ciclosporin exposure in adult kidney transplant recipients. Eur J Clin Pharmacol 2010;66(6):579-90
  • Song J, Kim MG, Choi B, et al. CYP3A5 polymorphism effect on cyclosporine pharmacokinetics in living donor renal transplant recipients: analysis by population pharmacokinetics. Ann Pharmacother 2012;46(9):1141-51
  • Fanta S, Jonsson S, Karlsson MO, et al. Long-term changes in cyclosporine pharmacokinetics after renal transplantation in children: evidence for saturable presystemic metabolism and effect of NR1I2 polymorphism. J Clin Pharmacol 2010;50(5):581-97
  • Hennig S, Nyberg J, Fanta S, et al. Application of the optimal design approach to improve a pretransplant drug dose finding design for ciclosporin. J Clin Pharmacol 2012;52(3):347-60
  • Seikku P, Hoppu K, Jalanko H, Holmberg C. Predictive value of pretransplantation cyclosporine pharmacokinetic studies on initial post-transplantation dosing in pediatric kidney allograft recipients. Pediatr Transplant 2003;7(2):102-10
  • Hoppu K, Koskimies O, Holmberg C, Hirvisalo EL. Pharmacokinetically determined cyclosporine dosage in young children. Pediatr Nephrol 1991;5(1):1-4
  • Cattaneo D, Perico N, Gaspari F, et al. Glucocorticoids interfere with mycophenolate mofetil bioavailability in kidney transplantation. Kidney Int 2002;62(3):1060-7
  • Li D, Lu W, Zhu JY, et al. Population pharmacokinetics of tacrolimus and CYP3A5, MDR1 and IL-10 polymorphisms in adult liver transplant patients. J Clin Pharm Ther 2007;32(5):505-15
  • Oteo I, Lukas JC, Leal N, et al. Tacrolimus pharmacokinetics in the early post-liver transplantation period and clinical applicability via Bayesian prediction. Eur J Clin Pharmacol 2013;69(1):65-74
  • Yang JW, Liao SS, Zhu LQ, et al. Population pharmacokinetic analysis of tacrolimus early after Chinese pediatric liver transplantation. Int J Clin Pharmacol Ther 2015;53(1):75-83
  • Staatz CE, Taylor PJ, Lynch SV, et al. Population pharmacokinetics of tacrolimus in children who receive cut-down or full liver transplants. Transplantation 2001;72(6):1056-61
  • Musuamba FT, Guy-Viterbo V, Reding R, et al. Population pharmacokinetic analysis of tacrolimus early after pediatric liver transplantation. Ther Drug Monit 2014;36(1):54-61
  • Wallin JE, Bergstrand M, Wilczek H, et al. Population pharmacokinetics of tacrolimus in pediatric liver transplantation: early posttransplantation clearance. Ther Drug Monit 2011;33(6):663-72
  • Sun B, Li XY, Gao JW, et al. Population pharmacokinetic study of cyclosporine based on NONMEM in Chinese liver transplant recipients. Ther Drug Monit 2010;32(6):715-22
  • Chen SY, Li JL, Meng FH, et al. Individualization of tacrolimus dosage basing on cytochrome P450 3A5 polymorphism - a prospective, randomized, controlled study. Clin Transplant 2013;27(3):E272-E81
  • Hesselink DA, Van Schaik RHN, Van Agteren M, et al. CYP3A5 genotype is not associated with a higher risk of acute rejection in tacrolimus-treated renal transplant recipients. Pharmacogenet Genomics 2008;18(4):339-48
  • Saint-Marcoux F, Vandierdonck S, Premaud A, et al. Large scale analysis of routine dose adjustments of mycophenolate mofetil based on global exposure in renal transplant patients. Ther Drug Monit 2011;33(3):285-94
  • Storset E, Holford N, Hennig S, et al. Improved prediction of tacrolimus concentrations early after kidney transplantation using theory-based pharmacokinetic modelling. Br J Clin Pharmacol 2014;78(3):509-23
  • Asberg A, Midtvedt K, Van Guilder M, et al. Inclusion of CYP3A5 genotyping in a nonparametric population model improves dosing of tacrolimus early after transplantation. Transpl Int 2013;26(12):1198-207
  • Fukatsu S, Yano I, Igarashi T, et al. Population pharmacokinetics of tacrolimus in adult recipients receiving living-donor liver transplantation. Eur J Clin Pharmacol 2001;57(5-6):479-84
  • Fukudo M, Yano I, Fukatsu S, et al. Forecasting of blood tacrolimus concentrations based on the Bayesian method in adult patients receiving living-donor liver transplantation. Clin Pharmacokinet 2003;42(13):1161-78
  • Zahir H, McLachlan AJ, Nelson A, et al. Population pharmacokinetic estimation of tacrolimus apparent clearance in adult liver transplant recipients. Ther Drug Monit 2005;27(4):422-30
  • Sam WJ, Aw M, Quak SH, et al. Population pharmacokinetics of tacrolimus in Asian paediatric liver transplant patients. Br J Clin Pharmacol 2000;50(6):531-41

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.