1,644
Views
20
CrossRef citations to date
0
Altmetric
Review

Tools for predicting the PK/PD of therapeutic proteins

, PhD & , PhD FCP

Bibliography

  • Meibohm B, Derendorf H. Pharmacokinetic/pharmacodynamic studies in drug product development. J Pharm Sci 2002;91(1):18–31
  • Derendorf H, Meibohm B. Modeling of pharmacokinetic/pharmacodynamic (PK/PD) relationships: concepts and perspectives. Pharm Res 1999;16(2):176-85
  • Rajman I. PK/PD modelling and simulations: utility in drug development. Drug Discov Today 2008;13(7-8):341-6
  • Zhang L, Pfister M, Meibohm B. Concepts and challenges in quantitative pharmacology and model-based drug development. AAPS J 2008;10(4):552-9
  • Meibohm B. Pharmacokinetics and Pharmacodynamics of Peptide and Protein Therapeutics. In: Crommelin DJA, Sindelar RD, Meibohm B, editors. Pharmaceutical biotechnology: fundamentals and applications. 4th edition. Springer; New York: 2013. p. 101-32
  • Tang L, Persky AM, Hochhaus G, Meibohm B. Pharmacokinetic aspects of biotechnology products. J Pharm Sci 2004;93(9):2184-204
  • Keizer RJ, Huitema AD, Schellens JH, Beijnen JH. Clinical pharmacokinetics of therapeutic monoclonal antibodies. Clin Pharmacokinet 2010;49(8):493-507
  • Dirks NL, Meibohm B. Population pharmacokinetics of therapeutic monoclonal antibodies. Clin Pharmacokinet 2010;49(10):633-59
  • Zhao L, Shang EY, Sahajwalla CG. Application of pharmacokinetics-pharmacodynamics/clinical response modeling and simulation for biologics drug development. J Pharm Sci 2012;101(12):4367-82
  • Mager DE, Krzyzanski W. Quasi-equilibrium pharmacokinetic model for drugs exhibiting target-mediated drug disposition. Pharm Res 2005;22(10):1589-96
  • Meibohm B, Zhou H. Characterizing the impact of renal impairment on the clinical pharmacology of biologics. J Clin Pharmacol 2012;52(1 Suppl):54S-62S
  • Mould DR, Green B. Pharmacokinetics and pharmacodynamics of monoclonal antibodies: concepts and lessons for drug development. BioDrugs 2010;24(1):23-39
  • Tang H, Mayersohn M. A global examination of allometric scaling for predicting human drug clearance and the prediction of large vertical allometry. J Pharm Sci 2006;95(8):1783-99
  • Mordenti J, Chen SA, Moore JA, et al. Interspecies scaling of clearance and volume of distribution data for five therapeutic proteins. Pharm Res 1991;8(11):1351-9
  • Mahmood I. Interspecies scaling of protein drugs: prediction of clearance from animals to humans. J Pharm Sci 2004;93(1):177-85
  • Dong JQ, Salinger DH, Endres CJ, et al. Quantitative prediction of human pharmacokinetics for monoclonal antibodies: retrospective analysis of monkey as a single species for first-in-human prediction. Clin Pharmacokinet 2011;50(2):131-42
  • Deng R, Iyer S, Theil FP, et al. Projecting human pharmacokinetics of therapeutic antibodies from nonclinical data: what have we learned? MAbs 2011;3(1):61-6
  • Kagan L, Abraham AK, Harrold JM, Mager DE. Interspecies scaling of receptor-mediated pharmacokinetics and pharmacodynamics of type I interferons. Pharm Res 2010;27(5):920-32
  • Kagan L, Zhao J, Mager DE. Interspecies pharmacokinetic modeling of subcutaneous absorption of rituximab in mice and rats. Pharm Res 2014;
  • Sinha VK, Vaarties K, De Buck SS, et al. Towards a better prediction of peak concentration, volume of distribution and half-life after oral drug administration in man, using allometry. Clin Pharmacokinet 2011;50(5):307-18
  • Van den Bergh A, Sinha V, Gilissen R, et al. Prediction of human oral plasma concentration-time profiles using preclinical data: comparative evaluation of prediction approaches in early pharmaceutical discovery. Clin Pharmacokinet 2011;50(8):505-17
  • Woo S, Jusko WJ. Interspecies comparisons of pharmacokinetics and pharmacodynamics of recombinant human erythropoietin. Drug Metab Dispos 2007;35(9):1672-8
  • Jolling K, Perez Ruixo JJ, Hemeryck A, et al. Mixed-effects modelling of the interspecies pharmacokinetic scaling of pegylated human erythropoietin. Eur J Pharm Sci 2005;24(5):465-75
  • Kagan L. Pharmacokinetic modeling of the subcutaneous absorption of therapeutic proteins. Drug Metab Dispos 2014;42(11):1890-905
  • Mager DE, Woo S, Jusko WJ. Scaling pharmacodynamics from in vitro and preclinical animal studies to humans. Drug Metab Pharmacokinet 2009;24(1):16-24
  • Mager DE. Target-mediated drug disposition and dynamics. Biochem Pharmacol 2006;72(1):1-10
  • Levy G. Pharmacologic target-mediated drug disposition. Clin Pharmacol Ther 1994;56(3):248-52
  • Luu KT, Kraynov E, Kuang B, et al. Modeling, simulation, and translation framework for the preclinical development of monoclonal antibodies. AAPS J 2013;15(2):551-8
  • Gibiansky L, Gibiansky E, Kakkar T, Ma P. Approximations of the target-mediated drug disposition model and identifiability of model parameters. J Pharmacokinet Pharmacodyn 2008;35(5):573-91
  • Lee JW, Kelley M, King LE, et al. Bioanalytical approaches to quantify “total” and “free” therapeutic antibodies and their targets: technical challenges and PK/PD applications over the course of drug development. AAPS J 2011;13(1):99-110
  • Wang W, Wang X, Doddareddy R, et al. Mechanistic pharmacokinetic/target engagement/pharmacodynamic (PK/TE/PD) modeling in deciphering interplay between a monoclonal antibody and its soluble target in cynomolgus monkeys. AAPS J 2014;16(1):129-39
  • Luu KT, Bergqvist S, Chen E, et al. A model-based approach to predicting the human pharmacokinetics of a monoclonal antibody exhibiting target-mediated drug disposition. J Pharmacol Exp Ther 2012;341(3):702-8
  • Suntharalingam G, Perry MR, Ward S, et al. Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N Engl J Med 2006;355(10):1018-28
  • EMEA. Guideline on strategies to identify and mitigate risks for first-in-human clinical trials with investigational medicinal products. European Medicines Agency; London: 2007
  • Duff G. Expert scientific group on phase one clinical trials: final report. Department of Health; UK, London: 2006
  • Gibbs JP. Prediction of exposure-response relationships to support first-in-human study design. AAPS J 2010;12(4):750-8
  • Betts AM, Clark TH, Yang J, et al. The application of target information and preclinical pharmacokinetic/pharmacodynamic modeling in predicting clinical doses of a Dickkopf-1 antibody for osteoporosis. J Pharmacol Exp Ther 2010;333(1):2-13
  • Agoram BM. Use of pharmacokinetic/pharmacodynamic modelling for starting dose selection in first-in-human trials of high-risk biologics. Br J Clin Pharmacol 2009;67(2):153-60
  • Rowland M, Peck C, Tucker G. Physiologically-based pharmacokinetics in drug development and regulatory science. Annu Rev Pharmacol Toxicol 2011;51:45-73
  • Jones H, Rowland-Yeo K. Basic concepts in physiologically based pharmacokinetic modeling in drug discovery and development. CPT Pharmacomet Syst Pharmacol 2013;2:e63
  • Zhou Q, Gallo JM. The pharmacokinetic/pharmacodynamic pipeline: translating anticancer drug pharmacology to the clinic. AAPS J 2011;13(1):111-20
  • Elmeliegy M, Lowe P, Krzyzanski W. Simplification of complex physiologically based pharmacokinetic models of monoclonal antibodies. AAPS J 2014;16(4):810-42
  • Jones HM, Mayawala K, Poulin P. Dose selection based on physiologically based pharmacokinetic (PBPK) approaches. AAPS J 2013;15(2):377-87
  • Covell DG, Barbet J, Holton OD, et al. Pharmacokinetics of monoclonal immunoglobulin G1, F(ab’)2, and Fab’ in mice. Cancer Res 1986;46(8):3969-78
  • Rippe B, Haraldsson B. Fluid and protein fluxes across small and large pores in the microvasculature. Application of two-pore equations. Acta Physiol Scand 1987;131(3):411-28
  • Rippe B, Haraldsson B. Transport of macromolecules across microvascular walls: the two-pore theory. Physiol Rev 1994;74(1):163-219
  • Baxter LT, Zhu H, Mackensen DG, Jain RK. Physiologically based pharmacokinetic model for specific and nonspecific monoclonal antibodies and fragments in normal tissues and human tumor xenografts in nude mice. Cancer Res 1994;54(6):1517-28
  • Garg A, Balthasar JP. Physiologically-based pharmacokinetic (PBPK) model to predict IgG tissue kinetics in wild-type and FcRn-knockout mice. J Pharmacokinet Pharmacodyn 2007;34(5):687-709
  • Nestorov I. Whole body pharmacokinetic models. Clin Pharmacokinet 2003;42(10):883-908
  • Nestorov I. Whole-body physiologically based pharmacokinetic models. Expert Opin Drug Metab Toxicol 2007;3(2):235-49
  • Nestorov IA, Aarons LJ, Arundel PA, Rowland M. Lumping of whole-body physiologically based pharmacokinetic models. J Pharmacokinet Biopharm 1998;26(1):21-46
  • Cao Y, Jusko WJ. Applications of minimal physiologically-based pharmacokinetic models. J Pharmacokinet Pharmacodyn 2012;39(6):711-23
  • Cao Y, Balthasar JP, Jusko WJ. Second-generation minimal physiologically-based pharmacokinetic model for monoclonal antibodies. J Pharmacokinet Pharmacodyn 2013;40(5):597-607
  • Cao Y, Jusko WJ. Survey of monoclonal antibody disposition in man utilizing a minimal physiologically-based pharmacokinetic model. J Pharmacokinet Pharmacodyn 2014;41(6):571-80
  • Stepensky D. Local versus systemic anti-tumour necrosis factor-alpha effects of adalimumab in rheumatoid arthritis: pharmacokinetic modelling analysis of interaction between a soluble target and a drug. Clin Pharmacokinet 2012;51(7):443-55
  • Pejovic M, Stankovic A, Mitrovic DR. Determination of the apparent synovial permeability in the knee joint of patients suffering from osteoarthritis and rheumatoid arthritis. Br J Rheumatol 1995;34(6):520-4
  • Kinne RW, Becker W, Simon G, et al. Joint uptake and body distribution of a technetium-99m-labeled anti-rat-CD4 monoclonal antibody in rat adjuvant arthritis. J Nucl Med 1993;34(1):92-8
  • Li L, Gardner I, Dostalek M, Jamei M. Simulation of Monoclonal Antibody Pharmacokinetics in HumansUsing a Minimal Physiologically Based Model. AAPS J 2014;16(5):1097-109
  • Davda JP, Jain M, Batra SK, et al. A physiologically based pharmacokinetic (PBPK) model to characterize and predict the disposition of monoclonal antibody CC49 and its single chain Fv constructs. Int Immunopharmacol 2008;8(3):401-13
  • Upton RN, Mould DR. Basic concepts in population modeling, simulation, and model-based drug development: part 3-introduction to pharmacodynamic modeling methods. CPT Pharmacomet Syst Pharmacol 2014;3:e88
  • Sharma A, Jusko WJ. Characteristics of indirect pharmacodynamic models and applications to clinical drug responses. Br J Clin Pharmacol 1998;45(3):229-39
  • Krzyzanski W, Perez-Ruixo JJ, Vermeulen A. Basic pharmacodynamic models for agents that alter the lifespan distribution of natural cells. J Pharmacokinet Pharmacodyn 2008;35(3):349-77
  • Perez-Ruixo JJ, Green B, Doshi S, et al. Romiplostim dose response in patients with immune thrombocytopenia. J Clin Pharmacol 2012;52(10):1540-51
  • Krzyzanski W, Jusko WJ, Wacholtz MC, et al. Pharmacokinetic and pharmacodynamic modeling of recombinant human erythropoietin after multiple subcutaneous doses in healthy subjects. Eur J Pharm Sci 2005;26(3-4):295-306
  • Ramakrishnan R, Cheung WK, Wacholtz MC, et al. Pharmacokinetic and pharmacodynamic modeling of recombinant human erythropoietin after single and multiple doses in healthy volunteers. J Clin Pharmacol 2004;44(9):991-1002
  • Suryawanshi S, Zhang L, Pfister M, Meibohm B. The current role of model-based drug development. Exp Opinion Drug Discovery 2010;5(4):311-21
  • Tabrizi M, Funelas C, Suria H. Application of quantitative pharmacology in development of therapeutic monoclonal antibodies. AAPS J 2010;12(4):592-601
  • Meibohm B. Protein engineering for improved pharmacologic characteristics of established monoclonal antibody-based therapeutics. Clin Pharmacokinet 2014;53(10):863-4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.