170
Views
20
CrossRef citations to date
0
Altmetric
Review

Role of pharmacogenetics of drug-metabolizing enzymes in treating osteosarcoma

, PhD & , PhD

Bibliography

  • Ekhart C, Rodenhuis S, Smits PH, et al. An overview of the relations between polymorphisms in drug metabolising enzymes and drug transporters and survival after cancer drug treatment. Cancer Treat Rev 2009;35(1):18-31
  • Michael M, Doherty MM. Tumoral drug metabolism: overview and its implications for cancer therapy. J Clin Oncol 2005;23(1):205-29
  • Hattinger CM, Pasello M, Ferrari S, et al. Emerging drugs for high-grade osteosarcoma. Expert Opin Emerg Dr 2010;15(4):615-34
  • Picci P. Classic osteosarcoma. In: Picci P, Manfrini M, Fabbri N, Gambarotti M, Vanel D, editor. Atlas of musculoskeletal tumors and tumorlike lesions. Springer International Publishing; Switzerland: 2014. p. 147-52
  • Anninga JK, Gelderblom H, Fiocco M, et al. Chemotherapeutic adjuvant treatment for osteosarcoma: where do we stand? Eur J Cancer 2011;47(16):2431-45
  • Longhi A, Errani C, De Paolis M, et al. Primary bone osteosarcoma in the pediatric age: state of the art. Cancer Treat Rev 2006;32(6):423-36
  • Andre N, Abed S, Orbach D, et al. Pilot study of a pediatric metronomic 4-drug regimen. Oncotarget 2011;2(12):960-5
  • Bacci G, Briccoli A, Longhi A, et al. Treatment and outcome of recurrent osteosarcoma: experience at Rizzoli in 235 patients initially treated with neoadjuvant chemotherapy. Acta Oncol 2005;44(7):748-55
  • Chuk MK, Aikin A, Whitcomb T, et al. A phase I trial and pharmacokinetic study of a 24-hour infusion of trabectedin (Yondelis(R), ET-743) in children and adolescents with relapsed or refractory solid tumors. Pediatr Blood Cancer 2012;59(5):865-9
  • Ferrari S, Briccoli A, Mercuri M, et al. Postrelapse survival in osteosarcoma of the extremities: prognostic factors for long-term survival. J Clin Oncol 2003;21(4):710-15
  • Fox E, Patel S, Wathen JK, et al. Phase II study of sequential gemcitabine followed by docetaxel for recurrent Ewing sarcoma, osteosarcoma, or unresectable or locally recurrent chondrosarcoma: results of sarcoma alliance for research through collaboration study 003. Oncologist 2012;17(3):321
  • Kempf-Bielack B, Bielack SS, Jurgens H, et al. Osteosarcoma relapse after combined modality therapy: an analysis of unselected patients in the Cooperative Osteosarcoma Study Group (COSS). J Clin Oncol 2005;23(3):559-68
  • Laverdiere C, Kolb EA, Supko JG, et al. Phase II study of ecteinascidin 743 in heavily pretreated patients with recurrent osteosarcoma. Cancer 2003;98(4):832-40
  • McTiernan A, Whelan JS. A Phase II study of docetaxel for the treatment of recurrent osteosarcoma. Sarcoma 2004;8(2-3):71-6
  • Sakamoto A, Iwamoto Y. Current status and perspectives regarding the treatment of osteo-sarcoma: chemotherapy. Rev Recent Clin Trials 2008;3(3):228-31
  • Song BS, Seo J, Kim DH, et al. Gemcitabine and docetaxel for the treatment of children and adolescents with recurrent or refractory osteosarcoma: Korea cancer center hospital experience. Pediatr Blood Cancer 2014;61(8):1376-81
  • Iyanagi T. Molecular mechanism of phase I and phase II drug-metabolizing enzymes: implications for detoxification. Int Rev Cytol 2007;260:35-112
  • Guengerich FP. Mechanisms of cytochrome P450 substrate oxidation: MiniReview. J Biochem Mol Toxicol 2007;21(4):163-8
  • Guengerich FP. Cytochrome p450 and chemical toxicology. Chem Res Toxicol 2008;21(1):70-83
  • Bock KW, Lilienblum W, Fischer G, et al. The role of conjugation reactions in detoxication. Arch Toxicol 1987;60(1-3):22-9
  • Jancova P, Anzenbacher P, Anzenbacherova E. Phase II drug metabolizing enzymes. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2010;154(2):103-16
  • Penner N, Xu L, Prakash C. Radiolabeled absorption, distribution, metabolism, and excretion studies in drug development: why, when, and how? Chem Res Toxicol 2012;25(3):513-31
  • McFadyen MC, Melvin WT, Murray GI. Cytochrome P450 enzymes: novel options for cancer therapeutics. Mol Cancer Ther 2004;3(3):363-71
  • Rendic S, Di Carlo FJ. Human cytochrome P450 enzymes: a status report summarizing their reactions, substrates, inducers, and inhibitors. Drug Metab Rev 1997;29(1-2):413-580
  • Slaughter RL, Edwards DJ. Recent advances: the cytochrome P450 enzymes. Ann Pharmacother 1995;29(6):619-24
  • Sim SC, Ingelman-Sundberg M. The human Cytochrome P450 (CYP) allele nomenclature website: a peer-reviewed database of CYP variants and their associated effects. Hum Genomics 2010;4(4):278-81
  • Lynch T, Price A. The effect of cytochrome P450 metabolism on drug response, interactions, and adverse effects. Am Fam Physician 2007;76(3):391-6
  • Ingelman-Sundberg M, Oscarson M, McLellan RA. Polymorphic human cytochrome P450 enzymes: an opportunity for individualized drug treatment. Trends Pharmacol Sci 1999;20(8):342-9
  • Rodriguez-Antona C, Ingelman-Sundberg M. Cytochrome P450 pharmacogenetics and cancer. Oncogene 2006;25(11):1679-91
  • Hayes JD, Flanagan JU, Jowsey IR. Glutathione transferases. Annu Rev Pharmacol Toxicol 2005;45:51-88
  • Morel F, Aninat C. The glutathione transferase kappa family. Drug Metab Rev 2011;43(2):281-91
  • Jakobsson PJ, Morgenstern R, Mancini J, et al. Membrane-associated proteins in eicosanoid and glutathione metabolism (MAPEG). A widespread protein superfamily. Am J Respir Crit Care Med 2000;161(2 Pt 2):S20-4
  • Jakobsson PJ, Thoren S, Morgenstern R, Samuelsson B. Identification of human prostaglandin E synthase: a microsomal, glutathione-dependent, inducible enzyme, constituting a potential novel drug target. Proc Natl Acad Sci U S A 1999;96(13):7220-5
  • Hamilton DS, Zhang X, Ding Z, et al. Mechanism of the glutathione transferase-catalyzed conversion of antitumor 2-crotonyloxymethyl-2-cycloalkenones to GSH adducts. J Am Chem Soc 2003;125(49):15049-58
  • Hayes JD, Pulford DJ. The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol 1995;30(6):445-600
  • Lien S, Larsson AK, Mannervik B. The polymorphic human glutathione transferase T1-1, the most efficient glutathione transferase in the denitrosation and inactivation of the anticancer drug 1,3-bis(2-chloroethyl)-1-nitrosourea. Biochem Pharmacol 2002;63(2):191-7
  • Gatti L, Beretta GL, Cossa G, et al. ABC transporters as potential targets for modulation of drug resistance. Mini Rev Med Chem 2009;9(9):1102-12
  • Ramsay EE, Dilda PJ. Glutathione S-conjugates as prodrugs to target drug-resistant tumors. Front Pharmacol 2014;5:181
  • Ruzza P, Rosato A, Rossi CR, et al. Glutathione transferases as targets for cancer therapy. Anticancer Agents Med Chem 2009;9(7):763-77
  • Pasello M, Michelacci F, Scionti I, et al. Overcoming glutathione S-transferase P1-related cisplatin resistance in osteosarcoma. Cancer Res 2008;68(16):6661-8
  • Ouzzine M, Gulberti S, Ramalanjaona N, et al. The UDP-glucuronosyltransferases of the blood-brain barrier: their role in drug metabolism and detoxication. Front Cell Neurosci 2014;8:349
  • Stingl JC, Bartels H, Viviani R, et al. Relevance of UDP-glucuronosyltransferase polymorphisms for drug dosing: A quantitative systematic review. Pharmacol Ther 2014;141(1):92-116
  • Desai AA, Innocenti F, Ratain MJ. UGT pharmacogenomics: implications for cancer risk and cancer therapeutics. Pharmacogenetics 2003;13(8):517-23
  • Scripture CD, Sparreboom A, Figg WD. Modulation of cytochrome P450 activity: implications for cancer therapy. Lancet Oncol 2005;6(10):780-9
  • Bray J, Sludden J, Griffin MJ, et al. Influence of pharmacogenetics on response and toxicity in breast cancer patients treated with doxorubicin and cyclophosphamide. Br J Cancer 2010;102(6):1003-9
  • Pastina I, Giovannetti E, Chioni A, et al. Cytochrome 450 1B1 (CYP1B1) polymorphisms associated with response to docetaxel in Castration-Resistant Prostate Cancer (CRPC) patients. BMC Cancer 2010;10:511
  • Dhaini HR, Thomas DG, Giordano TJ, et al. Cytochrome P450 CYP3A4/5 expression as a biomarker of outcome in osteosarcoma. J Clin Oncol 2003;21(13):2481-5
  • Caronia D, Patino-Garcia A, Perez-Martinez A, et al. Effect of ABCB1 and ABCC3 polymorphisms on osteosarcoma survival after chemotherapy: a pharmacogenetic study. PLoS ONE 2011;6(10):e26091
  • Hagleitner MM, Coenen MJ, Gelderblom H, et al. A first step towards personalized medicine in osteosarcoma: Pharmacogenetics as predictive marker of outcome after chemotherapy based treatment. Clin Cancer Res 2015. [Epub ahead of print]
  • Biason P, Toffoli G. Sarcomas and pharmacogenetics. Pharmacogenomics 2005;6(6):585-601
  • Wunder JS, Nielsen TO, Maki RG, et al. Opportunities for improving the therapeutic ratio for patients with sarcoma. Lancet Oncol 2007;8(6):513-24
  • McIlwain CC, Townsend DM, Tew KD. Glutathione S-transferase polymorphisms: cancer incidence and therapy. Oncogene 2006;25(11):1639-48
  • Lo HW, Ali-Osman F. Genetic polymorphism and function of glutathione S-transferases in tumor drug resistance. Curr Opin Pharmacol 2007;7(4):367-74
  • Inskip A, Elexperu-Camiruaga J, Buxton N, et al. Identification of polymorphism at the glutathione S-transferase, GSTM3 locus: evidence for linkage with GSTM1*A. Biochem J 1995;312(Pt 3):713-16
  • Langer T, am Zehnhoff-Dinnesen A, Radtke S, et al. Understanding platinum-induced ototoxicity. Trends Pharmacol Sci 2013;34(8):458-69
  • Cotton SC, Sharp L, Little J, Brockton N. Glutathione S-transferase polymorphisms and colorectal cancer: a HuGE review. Am J Epidemiol 2000;151(1):7-32
  • Moyer AM, Salavaggione OE, Hebbring SJ, et al. Glutathione S-transferase T1 and M1: gene sequence variation and functional genomics. Clin Cancer Res 2007;13(23):7207-16
  • Barnette P, Scholl R, Blandford M, et al. High-throughput detection of glutathione s-transferase polymorphic alleles in a pediatric cancer population. Cancer Epidemiol Biomarkers Prev 2004;13(2):304-13
  • Peters U, Preisler-Adams S, Hebeisen A, et al. Glutathione S-transferase genetic polymorphisms and individual sensitivity to the ototoxic effect of cisplatin. Anticancer Drugs 2000;11(8):639-43
  • Wang Z, Xu H, He M, et al. The association of glutathione S-transferase polymorphisms in patients with osteosarcoma: evidence from a meta-analysis. Eur J Cancer Care (Engl) 2015;24(3):417-24
  • Lu XF, Yang WL, Wan ZH, et al. Glutathione S-transferase polymorphisms and bone tumor risk in China. Asian Pac J Cancer Prev 2011;12(12):3357-60
  • Savage SA, Mirabello L, Wang Z, et al. Genome-wide association study identifies two susceptibility loci for osteosarcoma. Nat Genet 2013;45(7):799-803
  • Salinas-Souza C, Petrilli AS, de Toledo SR. Glutathione S-transferase polymorphisms in osteosarcoma patients. Pharmacogenet Genomics 2010;20(8):507-15
  • Zhang SL, Mao NF, Sun JY, et al. Predictive potential of glutathione S-transferase polymorphisms for prognosis of osteosarcoma patients on chemotherapy. Asian Pac J Cancer Prev 2012;13(6):2705-9
  • Windsor RE, Strauss SJ, Kallis C, et al. Germline genetic polymorphisms may influence chemotherapy response and disease outcome in osteosarcoma: a pilot study. Cancer 2012;118(7):1856-67
  • Li JZ, Tian ZQ, Jiang SN, Feng T. Effect of variation of ABCB1 and GSTP1 on osteosarcoma survival after chemotherapy. Genet Mol Res 2014;13(2):3186-92
  • Liu S, Yi Z, Ling M, et al. Predictive potential of ABCB1, ABCC3, and GSTP1 gene polymorphisms on osteosarcoma survival after chemotherapy. Tumour Biol 2014;35(10):9897-904
  • Teng JW, Yang ZM, Li J, Xu B. Predictive role of Glutathione S-transferases (GSTs) on the prognosis of osteosarcoma patients treated with chemotherapy. Pak J Med Sci 2013;29(5):1182-6
  • Yang LM, Li XH, Bao CF. Glutathione S-transferase P1 and DNA polymorphisms influence response to chemotherapy and prognosis of bone tumors. Asian Pac J Cancer Prev 2012;13(11):5883-6
  • Goricar K, Kovac V, Jazbec J, et al. Genetic variability of DNA repair mechanisms and glutathione-S-transferase genes influences treatment outcome in osteosarcoma. Cancer Epidemiol 2015;39(2):182-8
  • Innocenti F, Grimsley C, Das S, et al. Haplotype structure of the UDP-glucuronosyltransferase 1A1 promoter in different ethnic groups. Pharmacogenetics 2002;12(9):725-33
  • Innocenti F, Liu W, Fackenthal D, et al. Single nucleotide polymorphism discovery and functional assessment of variation in the UDP-glucuronosyltransferase 2B7 gene. Pharmacogenet Genomics 2008;18(8):683-97
  • Kim JY, Cheong HS, Park BL, et al. Comprehensive variant screening of the UGT gene family. Yonsei Med J 2014;55(1):232-9
  • O’Donnell PH, Ratain MJ. Germline pharmacogenomics in oncology: decoding the patient for targeting therapy. Mol Oncol 2012;6(2):251-9
  • Ramirez J, Ratain MJ, Innocenti F. Uridine 5’-diphospho-glucuronosyltransferase genetic polymorphisms and response to cancer chemotherapy. Future Oncol 2010;6(4):563-85
  • Han JY, Lim HS, Shin ES, et al. Comprehensive analysis of UGT1A polymorphisms predictive for pharmacokinetics and treatment outcome in patients with non-small-cell lung cancer treated with irinotecan and cisplatin. J Clin Oncol 2006;24(15):2237-44
  • Nakamura Y, Soda H, Oka M, et al. Randomized phase II trial of irinotecan with paclitaxel or gemcitabine for non-small cell lung cancer: association of UGT1A1*6 and UGT1A1*27 with severe neutropenia. J Thorac Oncol 2011;6(1):121-7
  • Kishi S, Cheng C, French D, et al. Ancestry and pharmacogenetics of antileukemic drug toxicity. Blood 2007;109(10):4151-7
  • Kishi S, Yang W, Boureau B, et al. Effects of prednisone and genetic polymorphisms on etoposide disposition in children with acute lymphoblastic leukemia. Blood 2004;103(1):67-72
  • Innocenti F, Schilsky RL, Ramirez J, et al. Dose-finding and pharmacokinetic study to optimize the dosing of irinotecan according to the UGT1A1 genotype of patients with cancer. J Clin Oncol 2014;32(22):2328-34
  • Rochat B. Importance of influx and efflux systems and xenobiotic metabolizing enzymes in intratumoral disposition of anticancer agents. Curr Cancer Drug Targets 2009;9(5):652-74
  • Herling A, Konig M, Bulik S, Holzhutter HG. Enzymatic features of the glucose metabolism in tumor cells. FEBS J 2011;278(14):2436-59
  • Denny WA. Tumor-activated prodrugs--a new approach to cancer therapy. Cancer Invest 2004;22(4):604-19
  • Lyttle MH, Satyam A, Hocker MD, et al. Glutathione-S-transferase activates novel alkylating agents. J Med Chem 1994;37(10):1501-7
  • Satyam A, Hocker MD, Kane-Maguire KA, et al. Design, synthesis, and evaluation of latent alkylating agents activated by glutathione S-transferase. J Med Chem 1996;39(8):1736-47
  • Dachs GU, Tupper J, Tozer GM. From bench to bedside for gene-directed enzyme prodrug therapy of cancer. Anticancer Drugs 2005;16(4):349-59
  • Swanson HI, Njar VC, Yu Z, et al. Targeting drug-metabolizing enzymes for effective chemoprevention and chemotherapy. Drug Metab Dispos 2010;38(4):539-44
  • Lu H, Chen CS, Waxman DJ. Potentiation of methoxymorpholinyl doxorubicin antitumor activity by P450 3A4 gene transfer. Cancer Gene Ther 2009;16(5):393-404
  • Lohr M, Hoffmeyer A, Kroger J, et al. Microencapsulated cell-mediated treatment of inoperable pancreatic carcinoma. Lancet 2001;357(9268):1591-2
  • Roy P, Waxman DJ. Activation of oxazaphosphorines by cytochrome P450: application to gene-directed enzyme prodrug therapy for cancer. Toxicol In Vitro 2006;20(2):176-86
  • Ivanov M, Barragan I, Ingelman-Sundberg M. Epigenetic mechanisms of importance for drug treatment. Trends Pharmacol Sci 2014;35(8):384-96
  • Shuldiner AR, Relling MV, Peterson JF, et al. The pharmacogenomics research network translational pharmacogenetics Program: overcoming challenges of real-world implementation. Clin Pharmacol Ther 2013;94(2):207-10
  • Johnson JA, Bootman JL. Drug-related morbidity and mortality. A cost-of-illness model. Arch Intern Med 1995;155(18):1949-56
  • Lazarou J, Pomeranz BH, Corey PN. Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. JAMA 1998;279(15):1200-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.