1,368
Views
40
CrossRef citations to date
0
Altmetric
Review

Development of novel tools for the in vitro investigation of drug-induced liver injury

(Faculty of Health, Medicine and Life Sciences) , , , &

Bibliography

  • Eisenbrand G, Pool-Zobel B, Baker V, et al. Methods of in vitro toxicology. Food Chemical Toxicol 2002;40(2-3):193-236
  • Timbrell J. Introduction to toxicology. CRC Press; 2001
  • Fontana RJ, Hayashi PH, Gu J, et al. Idiosyncratic drug-induced liver injury is associated with substantial morbidity and mortality within 6 months from onset. Gastroenterology 2014;147(1):96-108 e4.
  • Chen M, Bisgin H, Tong L, et al. Toward predictive models for drug-induced liver injury in humans: are we there yet? Biomark Med 2014;8(2):201-13
  • Suter L, Babiss LE, Wheeldon EB. Toxicogenomics in predictive toxicology in drug development. Chem Biol 2004;11(2):161-71
  • Greek R. Animal models in drug development. Americans For Medical Advancement; Goleta, CA: 2013
  • Collins FS, Gray GM, Bucher JR. Toxicology. Transforming environmental health protection. Science 2008;319(5865):906-7
  • Heijne WH, Kienhuis AS, van Ommen B, et al. Systems toxicology: applications of toxicogenomics, transcriptomics, proteomics and metabolomics in toxicology. Expert Rev Proteomics 2005;2(5):767-80
  • Cui Y, Paules RS. Use of transcriptomics in understanding mechanisms of drug-induced toxicity. Pharmacogenomics 2010;11(4):573-85
  • Aardema MJ, MacGregor JT. Toxicology and genetic toxicology in the new era of "toxicogenomics": impact of "-omics" technologies. Mutat Res 2002;499(1):13-25
  • Blomme EA, Yang Y, Waring JF. Use of toxicogenomics to understand mechanisms of drug-induced hepatotoxicity during drug discovery and development. Toxicol Lett 2009;186(1):22-31
  • Chen M, Zhang M, Borlak J, et al. A decade of toxicogenomic research and its contribution to toxicological science. Toxicol Sci 2012;130(2):217-28
  • Ning B, Su Z, Mei N, et al. Toxicogenomics and cancer susceptibility: advances with next-generation sequencing. J Environ Sci Health Part C Environ Carcinog Ecotoxicol Rev 2014;32(2):121-58
  • Driessen M, Kienhuis AS, Pennings JL, et al. Exploring the zebrafish embryo as an alternative model for the evaluation of liver toxicity by histopathology and expression profiling. Arch Toxicol 2013;87(5):807-23
  • Buermans HP, den Dunnen JT. Next generation sequencing technology: Advances and applications. Biochim Biophys Acta 2014;1842(10):1932-41
  • Tuschl G, Lauer B, Mueller SO. Primary hepatocytes as a model to analyze species-specific toxicity and drug metabolism. Expert Opin Drug Metab Toxicol 2008;4(7):855-70
  • Soldatow VY, Lecluyse EL, Griffith LG, et al. models for liver toxicity testing. Toxicol Res 2013;2(1):23-39
  • Vollmer CM, Ribas A, Butterfield LH, et al. p53 selective and nonselective replication of an E1B-deleted adenovirus in hepatocellular carcinoma. Cancer Res 1999;59(17):4369-74
  • Adachi T, Nakagawa H, Chung I, et al. Nrf2-dependent and -independent induction of ABC transporters ABCC1, ABCC2, and ABCG2 in HepG2 cells under oxidative stress. J Exp Ther Oncol 2007;6(4):335-48
  • Van den Hof WF, Coonen ML, van Herwijnen M, et al. Classification of hepatotoxicants using HepG2 cells: A proof of principle study. Chem Res Toxicol 2014;27(3):433-42
  • Jennen DG, Magkoufopoulou C, Ketelslegers HB, et al. Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci 2010;115(1):66-79
  • Harris AJ, Dial SL, Casciano DA. Comparison of basal gene expression profiles and effects of hepatocarcinogens on gene expression in cultured primary human hepatocytes and HepG2 cells. Mutat Res 2004;549(1-2):79-99
  • Hart SN, Li Y, Nakamoto K, et al. A comparison of whole genome gene expression profiles of HepaRG cells and HepG2 cells to primary human hepatocytes and human liver tissues. Drug Metab Dispos 2010;38(6):988-94
  • Gerets HH, Tilmant K, Gerin B, et al. Characterization of primary human hepatocytes, HepG2 cells, and HepaRG cells at the mRNA level and CYP activity in response to inducers and their predictivity for the detection of human hepatotoxins. Cell Biol Toxicol 2012;28(2):69-87
  • McGill MR, Yan HM, Ramachandran A, et al. HepaRG cells: a human model to study mechanisms of acetaminophen hepatotoxicity. Hepatology 2011;53(3):974-82
  • Li AP. Critical human hepatocyte-based in vitro assays for the evaluation of adverse drug effects. INTECH Open Access Publisher; 2011
  • Berry MN, Friend DS. High-yield preparation of isolated rat liver parenchymal cells: a biochemical and fine structural study. J Cell Biol 1969;43(3):506-20
  • Guillouzo A, Guguen-Guillouzo C. Evolving concepts in liver tissue modeling and implications for in vitro toxicology. Expert Opin Drug Metab Toxicol 2008;4(10):1279-94
  • Hart NA, van der Plaats A, Moers C, et al. Development of the isolated dual perfused rat liver model as an improved reperfusion model for transplantation research. Int J Artific Organs 2006;29(2):219-27
  • Li AP. Human hepatocytes: isolation, cryopreservation and applications in drug development. Chem Biol Interact 2007;168(1):16-29
  • Griffin SJ, Houston JB. Prediction of in vitro intrinsic clearance from hepatocytes: comparison of suspensions and monolayer cultures. Drug Metab Dispos 2005;33(1):115-20
  • Guillouzo A. Liver cell models in in vitro toxicology. Environ Health Perspect 1998;106(Suppl 2):511-32
  • Heaton RB, Wright LS, Hargraves RW, et al. Coagulopathy and warfarin-associated breast necrosis in a patient with a primary brain tumor. Surg Neurol 1990;33(6):395-9
  • Skett P. Problems in using isolated and cultured hepatocytes for xenobiotic metabolism/metabolism-based toxicity testing—Solutions? Toxicol in vitro 1994;8(3):491-504
  • Brandon EF, Raap CD, Meijerman I, et al. An update on in vitro test methods in human hepatic drug biotransformation research: pros and cons. Toxicol Appl Pharmacol 2003;189(3):233-46
  • Li AP, Lu C, Brent JA, et al. Cryopreserved human hepatocytes: characterization of drug-metabolizing enzyme activities and applications in higher throughput screening assays for hepatotoxicity, metabolic stability, and drug-drug interaction potential. Chem Biol Interact 1999;121(1):17-35
  • Duret C, Moreno D, Anangi B, et al. Cold-preservation of human adult hepatocytes for liver cell therapy. Cell Transplant 2015. [Epub ahead of print]
  • Gramignoli R, Dorko K, Tahan V, et al. Hypothermic storage of human hepatocytes for transplantation. Cell Transplant 2014;23(9):1143-51
  • Smith C, Nolan C, Edwards M, et al. Comparison of metabolic capacities of fresh and cryopreserved human hepatocytes isolated from the same donor: metabolic stability, plated metabolism, metabolite ID applications. Drug Metab Rev 2009;40(2):223
  • Sohlenius-Sternbeck AK, Schmidt S. Impaired glutathione-conjugating capacity by cryopreserved human and rat hepatocytes. Xenobiotica 2005;35(7):727-36
  • Stefanovich P, Ezzell RM, Sheehan SJ, et al. Effects of hypothermia on the function, membrane integrity, and cytoskeletal structure of hepatocytes. Cryobiology 1995;32(4):389-403
  • LeCluyse EL, Alexandre E, Hamilton GA, et al. Isolation and culture of primary human hepatocytes. Methods Mol Biol 2005;290:207-29
  • Dunn JC, Yarmush ML, Koebe HG, et al. Hepatocyte function and extracellular matrix geometry: long-term culture in a sandwich configuration. FASEB J 1989;3(2):174-7
  • Grondin M, Hamel F, Sarhan F, et al. Metabolic activity of cytochrome p450 isoforms in hepatocytes cryopreserved with wheat protein extract. Drug Metab Dispos 2008;36(10):2121-9
  • Swift B, Pfeifer ND, Brouwer KL. Sandwich-cultured hepatocytes: an in vitro model to evaluate hepatobiliary transporter-based drug interactions and hepatotoxicity. Drug Metab Rev 2010;42(3):446-71
  • Dunn JC, Tompkins RG, Yarmush ML. Long-term in vitro function of adult hepatocytes in a collagen sandwich configuration. Biotechnol Prog 1991;7(3):237-45
  • LeCluyse EL. Human hepatocyte culture systems for the in vitro evaluation of cytochrome P450 expression and regulation. Eur J Pharm Sci 2001;13(4):343-68
  • Kern A, Bader A, Pichlmayr R, et al. Drug metabolism in hepatocyte sandwich cultures of rats and humans. Biochem Pharmacol 1997;54(7):761-72
  • Schyschka L, Sanchez JJ, Wang Z, et al. Hepatic 3D cultures but not 2D cultures preserve specific transporter activity for acetaminophen-induced hepatotoxicity. Arch Toxicol 2013;87(8):1581-93
  • Rongbin H. Overcoming mass transfer barriers in sandwich configuration for primary hepatocytes culture. 2007
  • Du Y, Han R, Wen F, et al. Synthetic sandwich culture of 3D hepatocyte monolayer. Biomaterials 2008;29(3):290-301
  • Olinga P, Elferink MG, Draaisma AL, et al. Coordinated induction of drug transporters and phase I and II metabolism in human liver slices. Eur J Pharm Sci 2008;33(4-5):380-9
  • de Graaf IA, Olinga P, de Jager MH, et al. Preparation and incubation of precision-cut liver and intestinal slices for application in drug metabolism and toxicity studies. Nat Protoc 2010;5(9):1540-51
  • Kleinjans J. Toxicogenomics-based cellular models: alternatives to animal testing for safety assessment. Academic Press; 2014
  • Graaf IA, Groothuis GM, Olinga P. Precision-cut tissue slices as a tool to predict metabolism of novel drugs. Expert Opin Drug Metab Toxicol 2007;3(6):879-98
  • Lerche-Langrand C, Toutain HJ. Precision-cut liver slices: characteristics and use for in vitro pharmaco-toxicology. Toxicology 2000;153(1-3):221-53
  • Elferink MG, Olinga P, Draaisma AL, et al. Microarray analysis in rat liver slices correctly predicts in vivo hepatotoxicity. Toxicol Appl Pharmacol 2008;229(3):300-9
  • Kratschmar DV, Messner S, Moritz W, et al. Characterization of a rat multi-cell type 3D-liver microtissue system. Tissue Sci Eng 2013;4:2
  • Yildirimman R, Brolen G, Vilardell M, et al. Human embryonic stem cell derived hepatocyte-like cells as a tool for in vitro hazard assessment of chemical carcinogenicity. Toxicol Sci 2011;124(2):278-90
  • Li XJ, Valadez AV, Zuo P, et al. Microfluidic 3D cell culture: potential application for tissue-based bioassays. Bioanalysis 2012;4(12):1509-25
  • Si-Tayeb K, Noto FK, Nagaoka M, et al. Highly efficient generation of human hepatocyte-like cells from induced pluripotent stem cells. Hepatology 2010;51(1):297-305
  • Nibourg GA, Chamuleau RA, van Gulik TM, et al. Proliferative human cell sources applied as biocomponent in bioartificial livers: a review. Expert Opin Biol Ther 2012;12(7):905-21
  • Peters SJ, Vanhaecke T, Papeleu P, et al. Co-culture of primary rat hepatocytes with rat liver epithelial cells enhances interleukin-6-induced acute-phase protein response. Cell Tissue Res 2010;340(3):451-7
  • Milosevic N, Schawalder H, Maier P. Kupffer cell-mediated differential down-regulation of cytochrome P450 metabolism in rat hepatocytes. Eur J Pharmacol 1999;368(1):75-87
  • Hoebe KH, Witkamp RF, Fink-Gremmels J, et al. Direct cell-to-cell contact between Kupffer cells and hepatocytes augments endotoxin-induced hepatic injury. Am J Physiol Gastrointest Liver Physiol 2001;280(4):G720-8
  • Schutte M, Fox B, Baradez MO, et al. Rat primary hepatocytes show enhanced performance and sensitivity to acetaminophen during three-dimensional culture on a polystyrene scaffold designed for routine use. Assay Drug Dev Technol 2011;9(5):475-86
  • Wang L, Boyer JL. The maintenance and generation of membrane polarity in hepatocytes. Hepatology 2004;39(4):892-9
  • Deluzio TG, Seifu DG, Mequanint K. 3D scaffolds in tissue engineering and regenerative medicine: beyond structural templates? Pharmaceutical Bioprocessing 2013;1(3):267-81
  • Haycock JW. 3D cell culture: a review of current approaches and techniques. Methods Mol Biol 2011;695:1-15
  • Kim YJ, Bae HI, Kwon OK, et al. Three-dimensional gastric cancer cell culture using nanofiber scaffold for chemosensitivity test. Int J Biol Macromol 2009;45(1):65-71
  • Andria B, Bracco A, Cirino G, et al. Liver cell culture devices. Cell Med 2010;1(1):55-70
  • Peshwa MV, Wu FJ, Sharp HL, et al. Mechanistics of formation and ultrastructural evaluation of hepatocyte spheroids. In Vitro Cell Dev Biol Anim 1996;32(4):197-203
  • Ramaiahgari SC, den Braver MW, Herpers B, et al. A 3D in vitro model of differentiated HepG2 cell spheroids with improved liver-like properties for repeated dose high-throughput toxicity studies. Arch Toxicol 2014;88(5):1083-95
  • Ramaiahgari SC. Advanced in vitro models for studying drug induced toxicity. Department of Toxicology, Leiden Academic Center for Drug Research (LACDR), Faculty of Science, Leiden University; 2014
  • Fey SJ, Wrzesinski K. Determination of drug toxicity using 3D spheroids constructed from an immortal human hepatocyte cell line. Toxicol Sci 2012;127(2):403-11
  • Prestwich GD. Simplifying the extracellular matrix for 3-D cell culture and tissue engineering: a pragmatic approach. J Cell Biochem 2007;101(6):1370-83
  • Lin RZ, Chang HY. Recent advances in three-dimensional multicellular spheroid culture for biomedical research. Biotechnol J 2008;3(9-10):1172-84
  • Torisawa YS, Takagi A, Shiku H, et al. A multicellular spheroid-based drug sensitivity test by scanning electrochemical microscopy. Oncol Rep 2005;13(6):1107-12
  • Kermanizadeh A, Lohr M, Roursgaard M, et al. Hepatic toxicology following single and multiple exposure of engineered nanomaterials utilising a novel primary human 3D liver microtissue model. Part Fibre Toxicol 2014;11(1):56
  • Messner S, Agarkova I, Moritz W, et al. Multi-cell type human liver microtissues for hepatotoxicity testing. Arch Toxicol 2013;87(1):209-13
  • Foster A, Williams D. Evaluation of the 3D InSight TM human liver microtissues for the detection of compounds that cause drug-induced liver injury in humans
  • Bruderer R, Bernhardt OM, Gandhi T, et al. Extending the limits of quantitative proteome profiling with data-independent acquisition and application to acetaminophen-treated three-dimensional liver microtissues. MCP 2015;14(5):1400-10
  • Telese F, Gamliel A, Skowronska-Krawczyk D, et al. "Seq-ing" insights into the epigenetics of neuronal gene regulation. Neuron 2013;77(4):606-23
  • Duenas-Gonzalez A, Alatorre B, Gonzalez-Fierro A. The impact of DNA methylation technologies on drug toxicology. Expert Opin Drug Metab Toxicol 2014;10(5):637-46
  • Jurkowska RZ, Jurkowski TP, Jeltsch A. Structure and function of mammalian DNA methyltransferases. ChemBioChem 2011;12(2):206-22
  • Davie JR, Hendzel MJ. Multiple functions of dynamic histone acetylation. J Cell Biochem 1994;55(1):98-105
  • Seisenberger S, Peat JR, Hore TA, et al. Reprogramming DNA methylation in the mammalian life cycle: building and breaking epigenetic barriers. Philos Trans R Soc Lond B Biol Sci 2013;368(1609):20110330
  • Shi L, Reid LH, Jones WD, et al. The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nat Biotechnol 2006;24(9):1151-61
  • Fent K, Sumpter JP. Progress and promises in toxicogenomics in aquatic toxicology: is technical innovation driving scientific innovation? Aquat Toxicol 2011;105(3-4 Suppl):25-39
  • Hendrickx DM, Aerts HJ, Caiment F, et al. diXa: a data infrastructure for chemical safety assessment. Bioinformatics 2015;31(9):1505-7
  • Hebels DG, Jetten MJ, Aerts HJ, et al. Evaluation of database-derived pathway development for enabling biomarker discovery for hepatotoxicity. Biomark Med 2014;8(2):185-200
  • Zhang JD, Berntenis N, Roth A, et al. Data mining reveals a network of early-response genes as a consensus signature of drug-induced in vitro and in vivo toxicity. Pharmacogenomics J 2014;14(3):208-16
  • De Abrew KN, Overmann GJ, Adams RL, et al. A novel transcriptomics based in vitro method to compare and predict hepatotoxicity based on mode of action. Toxicology 2015;328:29-39
  • George J, Singh R, Mahmood Z, et al. Toxicoproteomics: new paradigms in toxicology research. Toxicol Mech Methods 2010;20(7):415-23
  • Borrebaeck CA, Ekstrom S, Hager AC, et al. Protein chips based on recombinant antibody fragments: a highly sensitive approach as detected by mass spectrometry. Biotechniques 2001;30(5):1126-30; 32
  • Yu LR. Pharmacoproteomics and toxicoproteomics: the field of dreams. J Proteomics 2011;74(12):2549-53
  • Wetmore BA, Merrick BA. Toxicoproteomics: proteomics applied to toxicology and pathology. Toxicol Pathol 2004;32(6):619-42
  • Suter L, Schroeder S, Meyer K, et al. EU framework 6 project: predictive toxicology (PredTox)–overview and outcome. Toxicol Appl Pharm 2011;252(2):73-84
  • Collins BC, Sposny A, McCarthy D, et al. Use of SELDI MS to discover and identify potential biomarkers of toxicity in InnoMed PredTox: a multi-site, multi-compound study. Proteomics 2010;10(8):1592-608
  • Halappanavar S, Jackson P, Williams A, et al. Pulmonary response to surface-coated nanotitanium dioxide particles includes induction of acute phase response genes, inflammatory cascades, and changes in microRNAs: a toxicogenomic study. Environ Mol Mutagen 2011;52(6):425-39
  • He Y, Meng XM, Huang C, et al. Long noncoding RNAs: Novel insights into hepatocellular carcinoma. Cancer Lett 2014;344(1):20-7
  • Kim VN, Han J, Siomi MC. Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 2009;10(2):126-39
  • Guil S, Esteller M. DNA methylomes, histone codes and miRNAs: tying it all together. Int J Biochem Cell Biol 2009;41(1):87-95
  • Van den Hof WF, Van Summeren A, Lommen A, et al. Integrative cross-omics analysis in primary mouse hepatocytes unravels mechanisms of cyclosporin A-induced hepatotoxicity. Toxicology 2014;324:18-26
  • Dettmer K, Aronov PA, Hammock BD. Mass spectrometry-based metabolomics. Mass Spectrom Rev 2007;26(1):51-78
  • Roberts LD, Souza AL, Gerszten RE, et al. Targeted metabolomics. Curr Protoc Mol Biol 2012;Chapter 30:Unit 30 2 1-24
  • Ebbels TM, Keun HC, Beckonert OP, et al. Prediction and classification of drug toxicity using probabilistic modeling of temporal metabolic data: the consortium on metabonomic toxicology screening approach. J Proteome Res 2007;6(11):4407-22
  • Coen M. A metabonomic approach for mechanistic exploration of pre-clinical toxicology. Toxicology 2010;278(3):326-40
  • Su Z, Ning B, Fang H, et al. Next-generation sequencing and its applications in molecular diagnostics. Expert Rev Mol Diagn 2011;11(3):333-43
  • Morozova O, Marra MA. Applications of next-generation sequencing technologies in functional genomics. Genomics 2008;92(5):255-64
  • Hurd PJ, Nelson CJ. Advantages of next-generation sequencing versus the microarray in epigenetic research. Brief Funct Genomic Proteomic 2009;8(3):174-83
  • Chu Y, Corey DR. RNA sequencing: platform selection, experimental design, and data interpretation. Nucleic Acid Ther 2012;22(4):271-4
  • Caiment F, Gaj S, Claessen S, et al. High-throughput data integration of RNA-miRNA-circRNA reveals novel insights into mechanisms of benzo[a]pyrene-induced carcinogenicity. Nucleic Acids Res 2015;43(5):2525-34
  • Harrill AH, Rusyn I. Systems biology and functional genomics approaches for the identification of cellular responses to drug toxicity. Expert Opin Drug Metab Toxicol 2008;4(11):1379-89
  • Cavill R, Kleinjans J, Briede JJ. DTW4Omics: comparing patterns in biological time series. PLoS One 2013;8(8):e71823

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.