1,396
Views
117
CrossRef citations to date
0
Altmetric
Review

Applying machine learning techniques for ADME-Tox prediction: a review

, , &

Bibliography

  • Schoenwald RD. Pharmacokinetics in drug discovery and development. 1st edition. CRC Press; Florida: 2006
  • Selick HE, Beresford AP, Tarbit MH. The emerging importance of predictive ADME simulation in drug discovery. Drug Discov Today 2002;7:109-16
  • Honorio KM, Moda TL, Andricopulo AD. Pharmacokinetic Properties and in silico ADME modeling in drug discovery. Medicinal Chemistry 2013;9:163-76
  • Gleeson MP, Modi S, Bender A, et al. The Challenges Involved in Modeling Toxicity Data In Silico: a review. Curr Pharm Des 2012;18:1266-91
  • Richet C. On the relationship between the toxicity and the physical properties of substances. CR Seances Soc Biol Ses Fit 1893;9:775-6
  • Ferguson J. The use of chemical potentials as indices of toxicity. J R Soc Med 1939;127:387-404
  • Palm K, Luthman K, Ungell AL, et al. Correlation of drug absorption with molecular surface properties. J Pharm Sci 1996;85:32-9
  • Yang Y, Engkvist O, Llinàs A, Chen H. Beyond size, ionization state, and lipophilicity: influence of molecular topology on absorption, distribution, metabolism, excretion, and toxicity for druglike compounds. J Med Chem 2012;55:3667-77
  • Selassie C, Verma RP, Abraham DJ. History of quantitative structure–activity relationships. Burger’s medicinal chemistry and drug discovery. John Wiley & Sons, Inc; Hoboken, NJ, USA: 2003
  • Dudek AZ, Arodz T, Galvez J. Computational methods in developing quantitative structure-activity relationships (QSAR): a review. Comb Chem High Throughput Screen 2006;9:213-28
  • Sprous DG, Palmer RK, Swanson JT, Lawless M. QSAR in the Pharmaceutical Research Setting: QSAR Models for Broad, Large Problems. Curr Top Med Chem 2010;10:619-37
  • Tian S, Li Y, Wang J, et al. ADME evaluation in drug discovery. Prediction of oral bioavailability in humans based on molecular properties and structural fingerprints. Mol Pharm 2011;8(3):841-51
  • Cao DS, Xu QS, Liang YZ, et al. Automatic feature subset selection for decision tree–based ensemble methods in the prediction of bioactivity. Chemom Intell Lab Syst 2010;103(2):129-36
  • Mitchell TM. Machine learning. 1st edition. McGraw-Hill, Inc; New York, NY, USA: 1997
  • Cockburn IM. The changing structure of the pharmaceutical industry. Health Aff 2004;23:10-22
  • Decramer S, Decramer M. Who can pay for innovative medicines? Eur Respir J 2013;41:495-6
  • Baillie TA. Metabolism and Toxicity of Drugs. Two decades of progress in industrial drug metabolism. Chem Res Toxicol 2007;21:129-37
  • Lagorce D, Reynes C, Camproux AC, et al. In silico ADME/Tox predictions. ADMET for medicinal chemists:a practical guide. John Wiley and Sons, Inc; Hoboken, NJ, USA: 2011. p. 29-124
  • Enriz RD. The legacy of the past, the reality of the present and the hopes of the future. J Mol Struct 2005;731:163-72
  • Tanrikulu Y, Kruger B, Proschak E. The holistic integration of virtual screening in drug discovery. Drug Discov Today 2013;18:358-64
  • Khanna I. Drug discovery in pharmaceutical industry: productivity challenges and trends. Drug Discov Today 2012;17:1088-102
  • Trotter MWB, Holden SB. Support Vector machines for adme property classification. QSAR Comb Sci 2003;22:533-48
  • Fröhlich H, Wegner JK, Sieker F, Zell A. Kernel functions for attributed molecular graphs – a new similarity-based approach to ADME prediction in classification and regression. QSAR Comb Sci 2006;25:317-26
  • Yang SY, Huang Q, Li LL, et al. An integrated scheme for feature selection and parameter setting in the support vector machine modeling and its application to the prediction of pharmacokinetic properties of drugs. Artif Intell Med 2009;46:155-63
  • Moda TL, Torres LG, Carrara AE, Andricopulo AD. PK/DB: database for pharmacokinetic properties and predictive in silico ADME models. Bioinformatics 2008;24:2270-1
  • Moda TL, Carrara AE, Andricopulo AD. A Fragment-Based Approach for the in Silico Prediction of Blood-Brain Barrier Permeation. J Braz Chem Soc 2012;23:2191-6
  • Moda TL, Andricopulo AD. Consensus hologram QSAR modeling for the prediction of human intestinal absorption. Bioorg Med Chem Lett 2012;22:2889-93
  • Moda TL, Montanari CA, Andricopulo AD. In silico prediction of human plasma protein binding using hologram QSAR. Lett Drug Design Discov 2007;4:502-9
  • Moda TL, Montanari CA, Andricopulo AD. Hologram QSAR model for the prediction of human oral bioavailability. Bioorg Med Chem 2007;15:7738-45
  • Moda TL, Carrara AE, Camara A, Andricopulo AD. In silico predictive ADME models for aqueous solubility and inhibition of P-glycoprotein. Abstracts Papers Am Chem Soc 2009;238
  • Cheng F, Li W, Zhou Y, et al. admetSAR: a Comprehensive source and free tool for assessment of chemical ADMET properties. J Chem Inf Model 2012;52:3099-105
  • Boyer S, Arnby CH, Carlsson L, et al. Reaction Site Mapping of Xenobiotic Biotransformations. J Chem Inf Model 2007;47:583-90
  • Bender A, Mussa HY, Glen RC, Reiling S. Similarity Searching of Chemical Databases Using Atom Environment Descriptors (MOLPRINT 2D):  evaluation of performance. J Chem Inf Comput Sci 2004;44:1708-18
  • Demir-Kavuk O, Bentzien J, Muegge I, Knapp EW. DemQSAR: predicting human volume of distribution and clearance of drugs. J Comput Aided Mol Des 2011;25:1121-33
  • Sander T, Freyss J, von Korff M, et al. OSIRIS, an entirely in-house developed drug discovery informatics system. J Chem Inf Model 2009;49:232-46
  • Hastie T, Tibshirani R, Friedman J. The elements of statistical learning. Springer; New York: 2009
  • Witten IH, Frank E. Data Mining: pratical machine learning tools and techniques. Elsevier; San Francisco, CA: 2005
  • Scior T, Medina-Franco JL, Do QT, et al. How to Recognize and Workaround Pitfalls in QSAR Studies: a critical review. Curr Med Chem 2009;16:4297-313
  • Cramer RDI. Partial Least Squares (PLS): its strengths and limitations. Perspect Drug Discov Des 1993;1:269-78
  • Itskowitz P, Tropsha A. kappa nearest neighbors qsar modeling as a variational problem:  theory and applications. J Chem Inf Model 2005;45:777-85
  • Jensen BF, Vind C, Padkjaer SB, et al. In silico prediction of cytochrome P450 2D6 and 3A4 inhibition using Gaussian kernel weighted k-nearest neighbor and extended connectivity fingerprints, including structural fragment analysis of inhibitors versus noninhibitors. J Med Chem 2007;50(3):501-11
  • Breiman L. Random forests. Mach Learn 2001;45:5-32
  • Verikas A, Gelzinis A, Bacauskiene M. Mining data with random forests: a survey and results of new tests. Pattern Recognit 2011;44:330-49
  • Gertrudes JC, Maltarollo VG, Silva RAA, et al. Machine Learning Techniques and Drug Design. Curr Med Chem 2012;19:4289-97
  • Bishop CM. Neural networks for pattern recognition. Oxford University Press; New York: 2005
  • Haykin SS. Neural networks and learning machines. Prentice Hall; New York: 2009
  • Vapnik V. The nature of statistical learning theory. Springer; 2000
  • Cristianini N, Taylor JS. An introduction to Support vector machines and other kernel-based learning methods. Cambridge University Press; Cambridge, New York; 2005
  • Duda RO, Hart PE, Stork DG. Pattern classification. Wiley; New York: 2001
  • Jolliffe IT. Principal component analysis. Springer; New York: 2002
  • Abdi H, Williams LJ. Principal component analysis. Wiley interdisciplinary reviews: computational statistics 2010;2:433-59
  • Heikkinen AT, Korjamo T, Monkkonen J. Modelling of drug disposition kinetics in in vitro intestinal absorption cell models. Basic Clin Pharmacol Toxicol 2010;106:180-8
  • Artursson P, Palm K, Luthman K. Caco-2 monolayers in experimental and theoretical predictions of drug transport. Adv Drug Deliv Rev 2012;64:280-9
  • Shinde RN, Srikanth K, Sobhia ME. Insights into the permeability of drugs and drug-like molecules from MI-QSAR and HQSAR studies. J Mol Model 2012;18:947-62
  • Zheng T, Hopfinger AJ, Esposito EX, et al. Membrane-interaction quantitative structure-activity relationship (MI-QSAR) analyses of skin penetration enhancers. J Chem Inf Model 2008;48:1238-56
  • Chen C, Yang J. MI-QSAR models for prediction of corneal permeability of organic compounds. Acta Pharmacol Sin 2006;27:193-204
  • Iyer M, Tseng YJ, Senese CL, et al. Prediction and mechanistic interpretation of human oral drug absorption using MI-QSAR analysis. Mol Pharm 2007;4:218-31
  • Chen LL, Yao J, Yang JB, Yang J. Predicting MDCK cell permeation coefficients of organic molecules using membrane-interaction QSAR analysis. Acta Pharmacol Sin 2005;26:1322-33
  • Iyer M, Mishra R, Han Y, Hopfinger AJ. Predicting blood-brain barrier partitioning of organic molecules using membrane-interaction QSAR analysis. Pharm Res 2002;19(11):1611-21
  • Goswami T, Kokate A, Jasti BR, Li X. In silico model of drug permeability across sublingual mucosa. Arch Oral Biol 2013;58:545-51
  • Xu X, Zhang W, Huang C, et al. A novel chemometric method for the prediction of human oral bioavailability. Int J Mol Sci 2012;13:6964-82
  • Antunes F, Andrade F, Ferreira D, et al. Models to predict intestinal absorption of therapeutic peptides and proteins. Curr Drug Metab 2013;14:4-20
  • Schmidt S, Gonzalez D, Derendorf H. Significance of Protein Binding in Pharmacokinetics and Pharmacodynamics. J Pharm Sci 2010;99:1107-22
  • Jambhekar S. Physicochemical and biopharmaceutical properties of drug substances and pharmacokinetics. In: Foye WO, Lemke TL, Williams DA, editors. Foye’s principles of medicinal chemistry. Lippincott Williams and Wilkins, New York; 2008; p. 247-50
  • Gleeson M. Plasma protein binding affinity and its relationship to molecular structure: an in-silico analysis. J Med Chem 2007;50:101-12
  • Ma CY, Yang SY, Zhang H, et al. Prediction models of human plasma protein binding rate and oral bioavailability derived by using GA–CG–SVM method. J Pharm Biomed Anal 2008;47:677-82
  • Ghafourian T, Amin Z. QSAR models for the prediction of plasma protein binding. BioImpacts 2013;3:21-7
  • Chen L, Chen X. Results of molecular docking as descriptors to predict human serum albumin binding affinity. J Mol Graph Model 2012;33:35-43
  • Moroy G, Martiny VY, Vayer P, et al. Toward in silico structure-based ADMET prediction in drug discovery. Drug Discov Today 2012;17:44-55
  • Sun H, Scott DO. Structure-based Drug metabolism predictions for drug design. Chem Biol Drug Design 2010;75:3-17
  • Athersuch TJ, Wilson ID, Keun HC, Lindon JC. Development of quantitative structure-metabolism (QSMR) relationships for substituted anilines based on computational chemistry. Xenobiotica 2013;43:792-802
  • Paine SW, Barton P, Bird J, et al. A rapid computational filter for predicting the rate of human renal clearance. J Mol Graph Model 2010;29:529-37
  • Hsiao Y-W, Fagerholm U, Norinder U. In Silico Categorization of in vivo intrinsic clearance using machine learning. Mol Pharm 2013;10:1318-21
  • Zhang H, Chen QY, Xiang ML, et al. In silico prediction of mitochondrial toxicity by using GA-CG-SVM approach. Toxicol In Vitro 2009;23:134-40
  • Myshkin E, Brennan R, Khasanova T, et al. Prediction of organ toxicity endpoints by QSAR modeling based on precise chemical-histopathology annotations. Chem Biol Drug Design 2012;80:406-16
  • Gleeson MP, Modi S, Bender A, et al. The challenges involved in modeling toxicity data in silico: a review. Curr Pharm Des 2012;18:1266-91
  • Kruhlak NL, Benz RD, Zhou H, Colatsky TJ. Q)SAR Modeling and safety assessment in regulatory review. Clin Pharmacol Ther 2012;91:529-34
  • Toropov AA, Toropova AP, Benfenati E, et al. CORAL: QSPR model of water solubility based on local and global SMILES attributes. Chemosphere 2013;90:877-80
  • Zhang H, Xiang ML, Ma CY, et al. Three-class classification models of logS and logP derived by using GA-CG-SVM approach. Mol Divers 2009;13:261-8
  • Zhang H, Xiang ML, Zhao YL, et al. Support vector machine and pharmacophore-based prediction models of multidrug-resistance protein 2 (MRP2) inhibitors. Eur J Pharm Sci 2009;36:451-7
  • Delaney JS. ESOL: estimating aqueous solubility directly from molecular structure. J Chem Inf Comput Sci 2004;44:1000-5
  • Hou TJ, Xia K, Zhang W, Xu XJ. ADME evaluation in drug discovery. 4. Prediction of aqueous solubility based on atom contribution approach. J Chem Inf Comput Sci 2004;44:266-75
  • Yan A, Gasteiger J. Prediction of aqueous solubility of organic compounds based on a 3D structure representation. J Chem Inf Comput Sci 2002;43:429-34
  • Butina D, Gola JM. Modeling aqueous solubility. J Chem Inf Comput Sci 2003;43:837-41
  • Gao H, Shanmugasundaram V, Lee P. Estimation of aqueous solubility of organic compounds with QSPR approach. Pharm Res 2002;19:497-503
  • Tetko IV, Tanchuk VY, Kasheva TN, Villa AE. Estimation of aqueous solubility of chemical compounds using E-state indices. J Chem Inf Comput Sci 2001;41:1488-93
  • Huuskonen J. Estimation of Aqueous Solubility for a Diverse Set of Organic Compounds Based on Molecular Topology. J Chem Inf Comput Sci 2000;40:773-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.