4,472
Views
58
CrossRef citations to date
0
Altmetric
Review

Current status and opportunities for therapeutic drug monitoring in the treatment of tuberculosis

, , , , , , , & show all
Pages 509-521 | Received 27 Nov 2015, Accepted 03 Mar 2016, Published online: 24 Mar 2016

References

  • Global tuberculosis report 2015 [Internet]. World Health Organization; 2015. Available from: http://apps.who.int/iris/bitstream/10665/191102/1/9789241565059_eng.pdf?ua=1; http://www.who.int/en/:.
  • Nardell E, Dharmadhikari A. Turning off the spigot: reducing drug-resistant tuberculosis transmission in resource-limited settings. Int J Tuberc Lung Dis. 2010 Oct;14(10):1233–1243.
  • Van Altena R, De Vries G, Haar CH, et al. Highly successful treatment outcome of multidrug-resistant tuberculosis in the netherlands, 2000–2009. Int J Tuberc Lung Dis. 2015 Apr;19(4):406–412.
  • Overview of pharmacokinetics [Internet]. 2014. Available from: http://www.msdmanuals.com/professional/clinical-pharmacology/pharmacokinetics/overview-of-pharmacokinetics.
  • Mehrotra N, Gupta M, Kovar A, et al. The role of pharmacokinetics and pharmacodynamics in phosphodiesterase-5 inhibitor therapy. Int J Impot Res. 2007 May–Jun;19(3):253–264.
  • Chideya S, Winston CA, Peloquin CA, et al. Isoniazid, rifampin, ethambutol, and pyrazinamide pharmacokinetics and treatment outcomes among a predominantly HIV-infected cohort of adults with tuberculosis from botswana. Clin Infect Dis. 2009 Jun 15;48(12):1685–1694.
  • Alsultan A, Peloquin CA. Therapeutic drug monitoring in the treatment of tuberculosis: An update. Drugs. 2014 Jun;74(8):839–854.
  • Pasipanodya JG, Srivastava S, Gumbo T. Meta-analysis of clinical studies supports the pharmacokinetic variability hypothesis for acquired drug resistance and failure of antituberculosis therapy. Clin Infect Dis. 2012 Jul;55(2):169–177.
  • Pranger AD, Van Altena R, Aarnoutse RE, et al. Evaluation of moxifloxacin for the treatment of tuberculosis: 3 years of experience. Eur Respir J. 2011 Oct;38(4):888–894.
  • Gumbo T, Angulo-Barturen I, Ferrer-Bazaga S. Pharmacokinetic-pharmacodynamic and dose-response relationships of antituberculosis drugs: recommendations and standards for industry and academia. J Infect Dis. 2015 Jun 15;211(Suppl 3):S96–S106.
  • Medellin-Garibay SE, Correa-Lopez T, Romero-Mendez C, et al. Limited sampling strategies to predict the area under the concentration-time curve for rifampicin. Ther Drug Monit. 2014 Dec;36(6):746–751.
  • Pasipanodya JG, McIlleron H, Burger A, et al. Serum drug concentrations predictive of pulmonary tuberculosis outcomes. J Infect Dis. 2013 Nov 1;208(9):1464–1473.
  • Diacon AH, Donald PR. The early bactericidal activity of antituberculosis drugs. Expert Rev Anti Infect Ther. 2014 Feb;12(2):223–237.
  • Gumbo T, Louie A, Liu W, et al. Isoniazid bactericidal activity and resistance emergence: integrating pharmacodynamics and pharmacogenomics to predict efficacy in different ethnic populations. Antimicrob Agents Chemother. 2007 Jul;51(7):2329–2336.
  • Alsultan A, An G, Peloquin CA. Limited sampling strategy and target attainment analysis for levofloxacin in patients with tuberculosis. Antimicrob Agents Chemother. 2015 Jul;59(7):3800–3807.
  • Magis-Escurra C, Later-Nijland HM, Alffenaar JW, et al. Population pharmacokinetics and limited sampling strategy for first-line tuberculosis drugs and moxifloxacin. Int J Antimicrob Agents. 2014 Sep;44(3):229–234.
  • Gumbo T, Louie A, Deziel MR, et al. Pharmacodynamic evidence that ciprofloxacin failure against tuberculosis is not due to poor microbial kill but to rapid emergence of resistance. Antimicrob Agents Chemother. 2005 Aug;49(8):3178–3181.
  • Peloquin CA. Therapeutic drug monitoring in the treatment of tuberculosis. Drugs. 2002;62(15):2169–2183.
  • Vaddady PK, Lee RE, Meibohm B. In vitro pharmacokinetic/pharmacodynamic models in anti-infective drug development: focus on TB. Future Med Chem. 2010 Aug;2(8):1355–1369.
  • Lange C, Abubakar I, Alffenaar JW, et al. Management of patients with multidrug-resistant/extensively drug-resistant tuberculosis in europe: A TBNET consensus statement. Eur Respir J. 2014 Jul;44(1):23–63.
  • World Health Organization. Treatment of tuberculosis guidelines. 4th ed. Geneva: World Health Organization; 2010.
  • Gumbo T. New susceptibility breakpoints for first-line antituberculosis drugs based on antimicrobial pharmacokinetic/pharmacodynamic science and population pharmacokinetic variability. Antimicrob Agents Chemother. 2010 Apr;54(4):1484–1491.
  • Sturkenboom MG, Mulder LW, De Jager A, et al. Pharmacokinetic modeling and optimal sampling strategies for therapeutic drug monitoring of rifampin in patients with tuberculosis. Antimicrob Agents Chemother. 2015 Aug;59(8):4907–4913.
  • Allanson AL, Cotton MM, Tettey JN, et al. Determination of rifampicin in human plasma and blood spots by high performance liquid chromatography with UV detection: A potential method for therapeutic drug monitoring. J Pharm Biomed Anal. 2007 Aug 15;44(4):963–969.
  • Vu DH, Koster RA, Alffenaar JW, et al. Determination of moxifloxacin in dried blood spots using LC-MS/MS and the impact of the hematocrit and blood volume. J Chromatogr B Analyt Technol Biomed Life Sci. 2011 May 1;879(15–16):1063–1070.
  • Pranger AD, Kosterink JG, Van Altena R, et al. Limited-sampling strategies for therapeutic drug monitoring of moxifloxacin in patients with tuberculosis. Ther Drug Monit. 2011 Jun;33(3):350–354.
  • Alffenaar JW, Kosterink JG, Van Altena R, et al. Limited sampling strategies for therapeutic drug monitoring of linezolid in patients with multidrug-resistant tuberculosis. Ther Drug Monit. 2010 Feb;32(1):97–101.
  • Baietto L, D’Avolio A, Ariaudo A, et al. Development and validation of a new UPLC-PDA method to quantify linezolid in plasma and in dried plasma spots. J Chromatogr B Analyt Technol Biomed Life Sci. 2013 Oct 1;936:42–47.
  • Vu DH, Koster RA, Bolhuis MS, et al. Simultaneous determination of rifampicin, clarithromycin and their metabolites in dried blood spots using LC-MS/MS. Talanta. 2014;121:9–17.
  • Chahine EB, Karaoui LR, Mansour H. Bedaquiline: A novel diarylquinoline for multidrug-resistant tuberculosis. Ann Pharmacother. 2014 Jan;48(1):107–115.
  • Parsons TL, Marzinke MA, Hoang T, et al. Quantification of rifapentine, a potent antituberculosis drug, from dried blood spot samples using liquid chromatographic-tandem mass spectrometric analysis. Antimicrob Agents Chemother. 2014 Nov;58(11):6747–6757.
  • Lakshminarayana SB, Boshoff HIM, Cherian J, et al. Pharmacokinetics-pharmacodynamics analysis of bicyclic 4-nitroimidazole analogs in a murine model of tuberculosis. PLoS One. 2014 Aug 20;9(8):e105222.
  • Diacon AH, Dawson R, Hanekom M, et al. Early bactericidal activity of delamanid (OPC-67683) in smear-positive pulmonary tuberculosis patients. Int J Tuberc Lung Dis. 2011 Jul;15(7):949–954.
  • Alffenaar JC, Gumbo T, Aarnoutse RE. Acquired drug resistance: we can do more than we think! Clin Infect Dis. 2015 March 15;60(6):969–970.
  • Cegielski JP, Dalton T, Yagui M, et al. Extensive drug resistance acquired during treatment of multidrug-resistant tuberculosis. Clin Infect Dis. 2014 Jul 23;59:1049–1063.
  • Srivastava S, Pasipanodya JG, Meek C, et al. Multidrug-resistant tuberculosis not due to noncompliance but to between-patient pharmacokinetic variability. J Infect Dis. 2011 Dec 15;204(12):1951–1959.
  • Van Deun A, Wright A, Zignol M, et al. Drug susceptibility testing proficiency in the network of supranational tuberculosis reference laboratories. Int J Tuberc Lung Dis. 2011 Jan;15(1):116–124.
  • Boehme CC, Nabeta P, Hillemann D, et al. Rapid molecular detection of tuberculosis and rifampin resistance. N Engl J Med. 2010 Sep 9;363(11):1005–1015.
  • Bottger EC. The ins and outs of mycobacterium tuberculosis drug susceptibility testing. Clin Microbiol Infect. 2011 Aug;17(8):1128–1134.
  • Heysell SK, Moore JL, Peloquin CA, et al. Outcomes and use of therapeutic drug monitoring in multidrug-resistant tuberculosis patients treated in virginia, 2009–2014. Tuberc Respir Dis (Seoul). 2015 Apr;78(2):78–84.
  • Migliori GB, Eker B, Richardson MD, et al. A retrospective TBNET assessment of linezolid safety, tolerability and efficacy in multidrug-resistant tuberculosis. Eur Respir J. 2009 Aug;34(2):387–393.
  • Prasad R, Verma SK, Sahai S, et al. Efficacy and safety of kanamycin, ethionamide, PAS and cycloserine in multidrug-resistant pulmonary tuberculosis patients. Indian J Chest Dis Allied Sci. 2006 Jul-Sep;48(3):183–186.
  • Van Tongeren L, Nolan S, Cook VJ, et al. Therapeutic drug monitoring in the treatment of tuberculosis: A retrospective analysis. Int J Tuberc Lung Dis. 2013 Feb;17(2):221–224.
  • Prahl JB, Johansen IS, Cohen AS, et al. Clinical significance of 2 h plasma concentrations of first-line anti-tuberculosis drugs: A prospective observational study. J Antimicrob Chemother. 2014 Oct;69(10):2841–2847.
  • Arbex MA, Varella Mde C, Siqueira HR, et al. Antituberculosis drugs: drug interactions, adverse effects, and use in special situations. part 2: second line drugs. J Bras Pneumol. 2010 Sep–Oct;36(5):641–656.
  • Satyaraddi A, Velpandian T, Sharma SK, et al. Correlation of plasma anti-tuberculosis drug levels with subsequent development of hepatotoxicity. Int J Tuberc Lung Dis. 2014 Feb;18(2):188,95,i–iii.
  • Holmes CX, Martin GE, Fetterhoff KI. The role of the cycloserine (seromycin) blood level in the treatment of pulmonary tuberculosis and the prevention and control of cycloserine (seromycin) toxicity. Dis Chest. 1959 Dec;36:591–593.
  • Torun T, Gungor G, Ozmen I, et al. Side effects associated with the treatment of multidrug-resistant tuberculosis. Int J Tuberc Lung Dis. 2005 Dec;9(12):1373–1377.
  • Hasenbosch RE, Alffenaar JW, Koopmans SA, et al. Ethambutol-induced optical neuropathy: risk of overdosing in obese subjects. Int J Tuberc Lung Dis. 2008 Aug;12(8):967–971.
  • Koh WJ, Kang YR, Jeon K, et al. Daily 300 mg dose of linezolid for multidrug-resistant and extensively drug-resistant tuberculosis: updated analysis of 51 patients. J Antimicrob Chemother. 2012 Jun;67(6):1503–1507.
  • De Lorenzo S, Alffenaar JW, Sotgiu G, et al. Efficacy and safety of meropenem-clavulanate added to linezolid-containing regimens in the treatment of MDR-/XDR-TB. Eur Respir J. 2013 Jun;41(6):1386–1392.
  • Alffenaar JW, Van Altena R, Harmelink IM, et al. Comparison of the pharmacokinetics of two dosage regimens of linezolid in multidrug-resistant and extensively drug-resistant tuberculosis patients. Clin Pharmacokinet. 2010 Aug;49(8):559–565.
  • Bolhuis MS, Tiberi S, Sotgiu G, et al. Linezolid tolerability in multidrug-resistant tuberculosis: A retrospective study. Eur Respir J. 2015 Oct;46(4):1205–1207.
  • World Health Organization. Companion handbook to the WHO guidelines for the programmatic management of drug-resistant tuberculosis. Geneva: WHO, 2014. p. 39–60.
  • Angeby K, Jureen P, Kahlmeter G, et al. Challenging a dogma: antimicrobial susceptibility testing breakpoints for mycobacterium tuberculosis. Bull World Health Organ. 2012 Sep 1;90(9):693–698.
  • Angeby K, Giske CG, Jureen P, et al. Wild-type MIC distributions must be considered to set clinically meaningful susceptibility testing breakpoints for all bacterial pathogens, including mycobacterium tuberculosis. Antimicrob Agents Chemother. 2011 Sep;55(9):4492,3. author reply 4493.
  • Katiyar SK, Bihari S, Prakash S, et al. A randomised controlled trial of high-dose isoniazid adjuvant therapy for multidrug-resistant tuberculosis. Int J Tuberc Lung Dis. 2008 Feb;12(2):139–145.
  • Niehaus AJ, Mlisana K, Gandhi NR, et al. High prevalence of inhA promoter mutations among patients with drug-resistant tuberculosis in KwaZulu-natal, south africa. PLoS One. 2015 Sep 2;10(9):e0135003.
  • Van Deun A, Barrera L, Bastian I, et al. Mycobacterium tuberculosis strains with highly discordant rifampin susceptibility test results. J Clin Microbiol. 2009 Nov;47(11):3501–3506.
  • Aung KJ, Declercq E, Ali MA, et al. Extension of the intensive phase reduces relapse but not failure in a regimen with rifampicin throughout. Int J Tuberc Lung Dis. 2012 Apr;16(4):455–461.
  • Boeree MJ, Diacon AH, Dawson R, et al. A step toward an optimized rifampin dose completed. Am J Respir Crit Care Med. 2015 Aug 15;192(4):525–526.
  • Christianson S, Voth D, Wolfe J, et al. Re-evaluation of the critical concentration for ethambutol antimicrobial sensitivity testing on the MGIT 960. PLoS One. 2014 Sep 26;9(9):e108911.
  • Den Hertog AL, Montero-Martin M, Saunders RL, et al. Cytokine kinetics in the first week of tuberculosis therapy as a tool to confirm a clinical diagnosis and guide therapy. PLoS One. 2015 Jun 26;10(6):e0129552.
  • Tonby K, Ruhwald M, Kvale D, et al. IP-10 measured by dry plasma spots as biomarker for therapy responses in mycobacterium tuberculosis infection. Sci Rep. 2015 Mar 18;5:9223.
  • Vu DH, Alffenaar JW, Edelbroek PM, et al. Dried blood spots: A new tool for tuberculosis treatment optimization. Curr Pharm Des. 2011;17(27):2931–2939.
  • Hofman S, Bolhuis MS, Koster RA, et al. Role of therapeutic drug monitoring in pulmonary infections: use and potential for expanded use of dried blood spot samples. Bioanalysis. 2015;7(4):481–495.
  • Pandya HC, Spooner N, Mulla H. Dried blood spots, pharmacokinetic studies and better medicines for children. Bioanalysis. 2011 Apr;3(7):779–786.
  • Gumbo T, Dona CS, Meek C, et al. Pharmacokinetics-pharmacodynamics of pyrazinamide in a novel in vitro model of tuberculosis for sterilizing effect: A paradigm for faster assessment of new antituberculosis drugs. Antimicrob Agents Chemother. 2009 Aug;53(8):3197–3204.
  • Hillemann D, Rusch-Gerdes S, Richter E. Evaluation of the GenoType MTBDRplus assay for rifampin and isoniazid susceptibility testing of mycobacterium tuberculosis strains and clinical specimens. J Clin Microbiol. 2007 Aug;45(8):2635–2640.
  • Hillemann D, Rusch-Gerdes S, Richter E. Feasibility of the GenoType MTBDRsl assay for fluoroquinolone, amikacin-capreomycin, and ethambutol resistance testing of mycobacterium tuberculosis strains and clinical specimens. J Clin Microbiol. 2009 Jun;47(6):1767–1772.
  • Rigouts L, Hoza AS, De Rijk P, et al. Evaluation of the genotype(R) MTBDRplus assay as a tool for drug resistance surveys. Int J Tuberc Lung Dis. 2011 Jul;15(7):959–965.
  • Walker TM, Kohl TA, Omar SV, et al. Whole-genome sequencing for prediction of mycobacterium tuberculosis drug susceptibility and resistance: A retrospective cohort study. Lancet Infect Dis. 2015 Oct;15(10):1193–1202.
  • Van Deun A, Aung KJ, Hossain A, et al. Disputed rpoB mutations can frequently cause important rifampicin resistance among new tuberculosis patients. Int J Tuberc Lung Dis. 2015 Feb;19(2):185–190.
  • Simons SO, van der Laan T, De Zwaan R, et al. Molecular drug susceptibility testing in the netherlands: performance of the MTBDRplus and MTBDRsl assays. Int J Tuberc Lung Dis. 2015 Jul;19(7):828–833.
  • Simons SO, van der Laan T, Mulder A, et al. Rapid diagnosis of pyrazinamide-resistant multidrug-resistant tuberculosis using a molecular-based diagnostic algorithm. Clin Microbiol Infect. 2014 Oct;20(10):1015–1020.
  • Zhang S, Chen J, Shi W, et al. Mutations in panD encoding aspartate decarboxylase are associated with pyrazinamide resistance in mycobacterium tuberculosis. Emerg Microbes Infect. 2013 Jun;2(6):e34.
  • ElMaraachli W, Slater M, Berrada ZL, et al. Predicting differential rifamycin resistance in clinical mycobacterium tuberculosis isolates by specific rpoB mutations. Int J Tuberc Lung Dis. 2015 Oct;19(10):1222–1226.
  • Tagliani E, Cabibbe AM, Miotto P, et al. Diagnostic performance of the new version (v2.0) of GenoType MTBDRsl assay for detection of resistance to fluoroquinolones and second-line injectable drugs: A multicenter study. J Clin Microbiol. 2015 Sep;53(9):2961–2969.
  • Brossier F, Veziris N, Aubry A, et al. Detection by GenoType MTBDRsl test of complex mechanisms of resistance to second-line drugs and ethambutol in multidrug-resistant mycobacterium tuberculosis complex isolates. J Clin Microbiol. 2010 May;48(5):1683–1689.
  • Vadwai V, Ajbani K, Jose M, et al. Can inhA mutation predict ethionamide resistance? Int J Tuberc Lung Dis. 2013 Jan;17(1):129–130.
  • Takiff HE, Feo O. Clinical value of whole-genome sequencing of mycobacterium tuberculosis. Lancet Infect Dis. 2015 Sep;15(9):1077–1090.
  • Keller PM, Homke R, Ritter C, et al. Determination of MIC distribution and epidemiological cutoff values for bedaquiline and delamanid in mycobacterium tuberculosis using the MGIT 960 system equipped with TB eXiST. Antimicrob Agents Chemother. 2015 Jul;59(7):4352–4355.
  • Torrea G, Coeck N, Desmaretz C, et al. Bedaquiline susceptibility testing of mycobacterium tuberculosis in an automated liquid culture system. J Antimicrob Chemother. 2015 Aug;70(8):2300–2305.
  • Miotto P, Bigoni S, Migliori GB, et al. Early tuberculosis treatment monitoring by xpert(R) MTB/RIF. Eur Respir J. 2012 May;39(5):1269–1271.
  • Honeyborne I, McHugh TD, Phillips PP, et al. Molecular bacterial load assay, a culture-free biomarker for rapid and accurate quantification of sputum mycobacterium tuberculosis bacillary load during treatment. J Clin Microbiol. 2011 Nov;49(11):3905–3911.
  • Datta S, Sherman JM, Bravard MA, et al. Clinical evaluation of tuberculosis viability microscopy for assessing treatment response. Clin Infect Dis. 2015 Apr 15;60(8):1186–1195.
  • Kayigire XA, Friedrich SO, van der Merwe L, et al. Simultaneous staining of sputum smears for acid-fast and lipid-containing myobacterium tuberculosis can enhance the clinical evaluation of antituberculosis treatments. Tuberculosis (Edinb). 2015 Aug 13;95:770–779.
  • Campbell PJ, Morlock GP, Sikes RD, et al. Molecular detection of mutations associated with first- and second-line drug resistance compared with conventional drug susceptibility testing of mycobacterium tuberculosis. Antimicrob Agents Chemother. 2011 May;55(5):2032–2041.
  • Den Hertog AL, Mayboroda OA, Klatser PR, et al. Simple rapid near-patient diagnostics for tuberculosis remain elusive–is a “treat-to-test” strategy more realistic? PLoS Pathog. 2011 Nov;7(11):e1002207.
  • Gardiner JL, Karp CL. Transformative tools for tackling tuberculosis. J Exp Med. 2015 Oct 19;212(11):1759–1769.
  • Den Hertog AL, De Vos AF, Klatser PR, et al. Early specific host response associated with starting effective tuberculosis treatment in an infection controlled placebo controlled mouse study. PLoS One. 2013;8(2):e57997.
  • Cliff JM, Kaufmann SH, McShane H, et al. The human immune response to tuberculosis and its treatment: A view from the blood. Immunol Rev. 2015 Mar;264(1):88–102.
  • Djoba Siawaya JF, Beyers N, Van Helden P, et al. Differential cytokine secretion and early treatment response in patients with pulmonary tuberculosis. Clin Exp Immunol. 2009 Apr;156(1):69–77.
  • Pai M, Denkinger CM, Kik SV, et al. Gamma interferon release assays for detection of mycobacterium tuberculosis infection. Clin Microbiol Rev. 2014 Jan;27(1):3–20.
  • De Steenwinkel JE, De Knegt GJ, Ten Kate MT, et al. Dynamics of interferon-gamma release assay and cytokine profiles in blood and respiratory tract specimens from mice with tuberculosis and the effect of therapy. Eur J Clin Microbiol Infect Dis. 2012 Jun;31(6):1195–1201.
  • Riou C, Perez Peixoto B, Roberts L, et al. Effect of standard tuberculosis treatment on plasma cytokine levels in patients with active pulmonary tuberculosis. PLoS One. 2012;7(5):e36886.
  • Ruhwald M, Bodmer T, Maier C, et al. Evaluating the potential of IP-10 and MCP-2 as biomarkers for the diagnosis of tuberculosis. Eur Respir J. 2008 Dec;32(6):1607–1615.
  • Hong JY, Lee HJ, Kim SY, et al. Efficacy of IP-10 as a biomarker for monitoring tuberculosis treatment. J Infect. 2014 Mar;68(3):252–258.
  • Azzurri A, Sow OY, Amedei A, et al. IFN-gamma-inducible protein 10 and pentraxin 3 plasma levels are tools for monitoring inflammation and disease activity in mycobacterium tuberculosis infection. Microbes Infect. 2005 Jan;7(1):1–8.
  • Dheda K, Davids V, Lenders L, et al. Clinical utility of a commercial LAM-ELISA assay for TB diagnosis in HIV-infected patients using urine and sputum samples. PLoS One. 2010 Mar 24;5(3):e9848.
  • Pan SJ, Tapley A, Adamson J, et al. Biomarkers for tuberculosis based on secreted, species-specific, bacterial small molecules. J Infect Dis. 2015 Dec 1;212(11):1827–1834.
  • Corstjens PL, Tjon Kon Fat EM, De Dood CJ, et al. Multi-center evaluation of a user-friendly lateral flow assay to determine IP-10 and CCL4 levels in blood of TB and non-TB cases in africa. Clin Biochem. 2016 Jan;49(1):22–31.
  • Zhu Y, Jia H, Chen J, et al. Decreased osteopontin expression as a reliable prognostic indicator of improvement in pulmonary tuberculosis: impact of the level of interferon-x03B3;-inducible protein 10. Cell Physiol Biochem. 2015;37(5):1983–1996.
  • Vu DH, Bolhuis MS, Koster RA, et al. Dried blood spot analysis for therapeutic drug monitoring of linezolid in patients with multidrug-resistant tuberculosis. Antimicrob Agents Chemother. 2012 Nov;56(11):5758–5763.
  • Veringa A, Sturkenboom MGG, Dekkers BGJ, et al. LC-MS/MS for therapeutic drug monitoring of anti-infective drugs. TrAC Trends Anal Chem. 2016. doi:10.1016/j.trac.2015.11.026.
  • Han M, Jun SH, Lee JH, et al. Method for simultaneous analysis of nine second-line anti-tuberculosis drugs using UPLC-MS/MS. J Antimicrob Chemother. 2013 Sep;68(9):2066–2073.
  • Ghimire S, Bolhuis MS, Sturkenboom MGG, et al. Incorporating therapeutic drug monitoring in WHO’s hierarchy of tuberculosis diagnostics! Eur Respir J. 2016;47(6).