893
Views
107
CrossRef citations to date
0
Altmetric
Review

Stereoselectivity in drug metabolism

Pages 149-158 | Published online: 11 Apr 2007

Bibliography

  • RENTSCH KM: The importance of stereoselective determination of drugs in the clinical laboratory. J. Biochem. Biophys. Methods. (2002) 54:1-9.
  • MARZO A, BALANT LP: Investigation of xenobiotic metabolism by CYP2D6 and CYP2C19: importance of enantioselective analytical methods. J. Chromatogr. B (1996) 678:73-92.
  • JAMALI F, MEHVAR R, PASUTTO M: Enantioselective aspects of drug action and disposition: therapeutic pitfalls. J. Pharm. Sci. (1989) 78(9):695-715.
  • BROCKS DR, JAMALI F: Stereochemical aspects of pharmacotherapy. Pharmacotherapy (1995) 15(5):551-564.
  • TESTA B: Substrate and product stereoselectivity in monooxygenase-mediated drug activation and inactivation. Biochem. Pharmacol. (1988) 37(1):85-92.
  • EICHELBAUM E: Pharmacokinetic and pharmacodynamic consequences of stereoselective drug metabolism in man. Biochem. Pharmacol. (1988) 37(1):93-96.
  • TRAGER WF: Stereochemistry of cytochrome P450 reactions. Drug Metab. Rev. (1989) 20:489-496.
  • CALDWELL J: Stereochemical determinants of the nature and consequences of drug metabolism. J. Chromatogr. A (1995) 694:39-48.
  • BROCKS DR: Drug disposition in three dimensions: an update on stereoselectivity in pharmacokinetics. Biopharm. Drug Dispos. (2006) 27:387-406.
  • WILLIAMS KM, LEE EJD: Importance of drug enantiomers in clinical pharmacology. Drugs (1985) 30:335-354.
  • LEE EJD, WILLIAMS KM: Chirality: clinical pharmacokinetic and pharmacodynamic considerations. Clin. Pharmacokinet. (1990) 18:339-345.
  • TESTA B, MAYER JM: Stereoselective drug metabolism and its significance in drug research. Prog. Drug Res. (1988) 32:249-303.
  • TUCKER GT, LENNARD MS: Enantiomer specific pharmacokinetics. Pharmacol. Ther. (1990) 45:309-329.
  • CHUANG VTG, OTAGIRI M: Stereoselective binding of human serum albumin. Chirality (2006) 18:159-166.
  • KAMINSKY LS, ZHANG ZY: Human P450 metabolism of warfarin. Pharmacol. Ther. (1997) 73(1):67-74.
  • RETTIE AE, KORZEKWA KR, KUNZE KL et al.: Hydroxylation of warfarin by human cDNA-expressed cytochrome P450: a role for P4502C9 in etiology of (S)-warfarin-drug interactions. Chem. Res. Toxicol. (1992) 5:54-59.
  • THIJSSEN HH, FLINOIS JP, BEAUNE PH: Cytochrome P450 2C9 is the principal catalyst of racemic acenocoumarol hydroxylation reactions in human liver microsomes. Drug Metab. Dispos. (2000) 28(11):1284-1290.
  • LU H, WANG JJ, CHAN KK et al.: Stereoselecivity in metabolism of ifosfamide by CYP3A4 and CYP2B6. Xenobiotica (2006) 36(5):367-385.
  • GRANVIL CP, MADAN A, SHARKAWI M et al.: Role of CYP2B6 and CYP3A4 in the in vitro N-dechloroethylation of (R)- and (S)-ifosfamide enantiomers in human liver microsomes. Drug Metab. Dispos. (1999) 27:533-541.
  • ROY P, TRETYAKOV O, WRIGHT J et al.: Stereoselective metabolism of ifosfamide by human P450s 3A4 and 2B6 – favorable metabolic properties of R-enantiomer. Drug Metab. Dispos. (1999) 27:1309-1318.
  • CHEN CS, JOUNAIDI Y, WAXMAN DJ: Enantioselective metabolism and cytotoxicity of R-ifosfamide and S-ifosfamide by tumor cell-expressed cytochrome P450. Drug Metab. Dispos. (2005) 33:1261-1267.
  • WANG JJ, LU H, CHAN KK: Stereoselective pharmacokinetics of ifosfamide in male and female rats. AAPS Pharmascience (2000) 2:1-11.
  • LU H, WANG JJ, CHAN KK: Enantiomer-enantiomer interaction of ifosfamide in the rat. Xenobiotica (2006) 36(6):535-549.
  • YASUI-FURUKORI N, HIDESTRAND M, SPINA E et al.: Different enantioselective 9-hydroxylation of risperidone by the two human CYP2D6 and CYP3A4 enzymes. Drug Metab. Dispos. (2001) 29(9):1263-1268.
  • LEWIS DFV: P450 structures and oxidative metabolism of xenobiotics. Pharmacogenomics (2003) 4:387-395.
  • LEWIS DFV, ITO Y, GOLFARB PS: Cytochrome P450 structures and their substrate interactions. Drug Devel. Res. (2006) 66:19-24.
  • DOMANSKI TL, HALPERT JR: Analysis of mammalian cytochrome P450 structure and function by site-directed mutagenesis. Curr. Drug Metab. (2001) 2:117-137.
  • STEN T, QVISEN S, UUTELA P et al.: Prominent but reverse stereoselectivity in propranolol glucuronidation by human UDP-glucuronosyltransferases 1A9 and 1A10. Drug Metab Dispos. (2006) 34(9):1488-1494.
  • ZHANG M, FAWCETT JP, KENNEDY JM et al.: Stereoselective glucuronidation of formoterol by human liver microsomes. Br. J. Clin. Pharmacol. (2000) 49:152-157.
  • WILSON AA, WANG J, KOCH P et al.: Stereoselective sulphate conjugation of fenoterol by human phenolsulphotransferases. Xenobiotica (1997) 27(11):1147-1154.
  • HARTMAN AP, WILSON AA, WILSON HM et al.: Enantioselective sulfation of β2-receptor agonists by human intestine and the recombinant M-form phenolsulfotransferase. Chirality (1998) 10:800-803.
  • WALLE T, WALLE UK, THORNBURG KR et al.: Stereoselective sulfation of albuterol in humans: Biosynthesis of the sulfate conjugate by HEP G2 cells. Drug Metab. Dispos. (1993) 21(1):76-80.
  • HALL SD, QIAN X: The role of coenzyme A in the transformation of 2-arylpropionic acids. Chem. Biol. Interact. (1994) 90:235-251.
  • BARBANOJ MJ, ANTONIJOAN RM, GICH I: Clinical pharmacokinetics of dexketoprofen. Clin. Pharmacokinet. (2001) 40(4):245-262.
  • FOSTER RT, JAMALI F: Stereoselective pharmacokinetics of ketoprofen in the rat: influence of route of administration. Drug Metab. Dispos. (1988) 16:623-626.
  • ABAS A, MEFFIN: Enantioselective disposition of 2-arylpropionic acid nonsteroidal anti-inflammatory drugs. IV. Ketoprofen disposition. J. Pharmacol. Exp. Ther. (1987) 240(2):637-641.
  • VAKLY M, MEHVAR R, BROCKS D: Stereoselective pharmacokietics and pharmacodynamics of anti-asthma agents. Ann. Pharmacother. (2002) 36:693-701.
  • BOULTON DW, FAWCETT JP: Enantioselective disposition of salbutamol in man following oral and intravenous administration. Br. J. Clin. Pharmacol. (1996) 41:35-40.
  • WARD JK, DOW J, DALLOW N et al.: Enantiomeric disposition of inhaled, intravenous and oral racemic-salbutamol in man – no evidence of enantioselective lung metabolism. Br. J. Clin. Pharmacol. (2000) 49:15-22.
  • KUROSAWA N, OWADA E, KATO A et al.: Serum concentration and cardiovascular effects of salbutamol after oral and rectal administration in healthy volunteers. J. Clin. Pharm. Ther. (1993) 18:103-108.
  • ERIKSSON UG, LUNDAHL J, BAARNHIELM C et al.: Stereoselective metabolism of felodipine in liver microsomes from rat, dog, and human. Drug Metab. Dispos. (1991) 19(5):889-894.
  • SOONS PA, ROOSEMALEN MC, BREIMER DD: Enantioselective determination of felodipine and other chiral dihydropyridine calcium entry blockers in human plasma. J. Chromatogr. A (1990) 528(2):343-356.
  • ECHIZEN H, MANZ M, EICHELBAUM M: Electrophysiological effects of dextro and levo verapamil on sinus node and AV function in humans. J. Cardiovasc. Pharmacol. (1988) 12:543-546.
  • ECHIZEN H, VOGELGESANG B, EICHELBAUM M: Effects of d,l-verapamil on atrioventricular conduction in relation to its stereoselective first pass metabolism. Clin. Pharmacol. Ther. (1985) 38:71-76.
  • MEHVAR R, BROCKS D, VAKILY M: Impact of stereoselectivity on the pharmacokinetics and pharmacodynamics of antiarrhythmic drugs. Clin. Pharmacokinet. (2002) 41(8):533-558.
  • SHEN L, FITZLOFF JF, COOK CS: Differential enantioselectivity and product-dependent activation and inhibition in metabolism of verapamil by human CYP3As. Drug Metab. Dispos. (2004) 32(2):186-196.
  • GIBALDI M: Stereoselective and isozyme-selective drug interaction. Chirality (1993) 5:407-413.
  • KROEMER HK, FROMM MF, EICHELBAUM M: Stereoselectivity in drug metabolism and action: effects of enzyme inhibition and induction. Ther. Drug Monit. (1996) 18(4):388-392.
  • LIN JH, LU AYH: Inhibition and induction of cytochrome P450 and the clinical implications. Clin. Pharmacokinet. (1998) 35(5):361-390.
  • KROEMER HK, FISCHER C, MEESE CO et al.: Enantiomer/enantiomer interaction of (S)- and (R)-propafenone for cytochrome P450IID6-catalyzed 5-hydroxylatin: in vitro evaluation of the mechanism. Mol. Pharmacol. (1991) 40:135-142.
  • KROEMER HK, FUNCK-BRENTANO C, SILBERSTEIN DJ et al.: Stereoselective disposition and pharmacologic activity of propafenone enantiomers. Circulation (1989) 79:1068-1076.
  • KROEMER HK, FROMM MF, BUHL K et al.: An enantiomer-enantiomer interaction of (S)- and (R)-propofenone modifies the effect of racemic drug therapy. Circulation (1994) 89:2396-2400.
  • LI G, GONG PL, QIU J et al.: Stereoselective steady state disposition and action of propofenone in Chinese subjects. Br. J. Clin. Pharmacol. (1998) 46:441-445.
  • TOON S, HOPKINS KJ, GARSTANG FM et al.: Comparative effects of ranitidine and cimetidine on the pharmacokinetics and pharmacodynamics of warfarin in man. Eur. J. Clin. Pharmacol. (1987) 32:165-172.
  • TOON S, LOW LK, GIBALDI M et al.: The warfarin–sulfinpyrazone interaction: stereochemical considerations. Clin. Pharmacol. Ther. (1986) 39:15-24.
  • TAKAHASHI H, SATO T, SHIMOYAMA et al.: Potentiation of anticoagulant effect of warfarin caused by enantioselective metabolic inhibition by the uricosuric agent benzbromarone. Clin. Pharmacol. Ther. (1999) 66(6):569-581.
  • CHOONARA IA, CHOLERTON S, HAYNES BP et al.: Stereoselective interaction between the R enantiomer of warfarin and cimetidine. Br. J. Clin. Pharmacol. (1986) 21:271-277.
  • TOON S, DAVIDSON EM, GARSTANG FM et al.: The racemic metoprolol H2-antagonist interaction. Clin. Pharmacol. Ther. (1988) 43:283-289.
  • MIKUS G, EICHELBAUM M, FISCHER C et al.: Interaction of verapamil and cimetidine: stereochemical aspects of drug metabolism, drug disposition and drug action. J. Pharmcol. Exp. Ther. (1990) 253(3):1042-1048.
  • VERCRUYSSE I, BELPAIRE F, WYNANT P et al.: Enantioselective inhibitory effect of nicardipine on the hepatic clearance of propranolol in man. Chirality (1994) 6:5-10.
  • HUNT BA, BOTTORFF MB, HERRING VL et al.: Effects of calcium channel blockers on the pharmacokinetics of propranolol stereoisomers. Clin. Pharmacol. Ther. (1990) 47:584-591.
  • ZHOU HH, ANTHONY LB, RODEN DM et al.: Quinidine reduces clearance of (+)-propranolol more than (-)-propranolol through marked reduction in 4-hydroxylation. Clin. Pharmacol. Ther. (1990) 47:686-693.
  • MARATHE PH, SHEN DD, NELSON WL: Metabolic kinetics of pseudoracemic propranolol in human liver microsomes: enantioselectivity and quinidine inhibition. Drug Metab. Dispos. (1994) 22(2):237-247.
  • LU H, WANG JJ, CHAN KK et al.: Effects of phenobarbital on stereoselective metabolism of ifosfamide in rats. Drug Metab. Dispos. (1998) 26:476-482.
  • NAKAMOTO T, ODA Y, IMAOKA S et al.: Effect of phenobarbital on the pharmacokinetics of lodocaine, monoethylglycinexylidine and 3-hydroxylidocaine in the rat: correlation with P450 isoform levels. Drug Metab. Dispos. (1997) 25(3):296-300.
  • SCHUETZ EG: Induction of cytochrome P450. Curr. Drug Metab. (2001) 2(2):139-147.
  • FROMM MF, BUSSE D, KROEMER HK et al.: Differential induction of prehepatic and hepatic metabolism of verapamil by rifampin. Hepatology (1996) 24:796-801.
  • SMITH DA, CHANDLER MHH, SHEDLOFSKY SI et al.: Age-dependent stereoselective increase in the oral clearance of hexobarbitone isomers caused by rifampcin. Br. J. Clin. Pharmacol. (1991) 32:735-739.
  • ZHOU HH, ANTHONY LB, WOOD AJJ et al.: Induction of polymorphic 4′-hydroxylation of S-mephenytoin by rifampcin. Br. J. Clin. Pharmacol. (1990) 30:471-475.
  • SMITH DA: Pharmacokinetics and pharmacodynamics in toxicology. Xenobiotica (1997) 27(5):513-525.
  • SOUCEK P, GUT I: Cytochrome P450 in rats: Structures, functions, properties and relevant human forms. Xenobiotica (1992) 22:83-103.
  • MARTIGNONI M, GROOTHUIS GMM, KANTER RD: Species differences between mouse, rat, dog, monkey and human CYP-mediated drug metabolism, inhibition and induction. Expert Opin. Drug Metab. Toxicol. (2006) 2(6):875-894.
  • COOK CS, KARIM A, SOLLMAN P: Stereoselectivity in the metabolism of disopyramide enantiomers in rat and dog. Drug Metab. Dispos. (1982) 10(2):116-121.
  • ERIKSSON UG, HOFFMANN KJ, SIMONSON R et al.: Pharmacokinetics of the enantiomers of felodipine and in the dog after oral and intravenous administration of a pseudoracemic mixture. Xenobiotica (1991) 21:75-84.
  • EDGAR B, REGARDH CG, LUNDBORG P et al.: Pharmacokinetic and pharmacodynamic studies of felodipine in healthy subjects after various single oral and intravenous doses. Biopharm. Drug Dispos. (1987) 8(3):235-248.
  • BAARNHIELM C, DAHLBACK H, SKANBERG I: In vivo pharmacokinetics of felodipine predicted from in vitro studies in rat, dog, and man. Acta Pharmacol. Toxicol. (1986) 59:113-122.
  • NIWA T, TOKUMA K, NAKAGAWA K et al.: Stereoselective oxidation of nilvadipine, a new dihydropyridine calcium antagonist, in rat and dog liver. Drug Metab. Dispos. (1989) 17:64-68.
  • NIWA T, TOKUMA Y, NAKAGAWA H et al.: Stereoselective oxidation and plasma protein binding of nilvadipine, a new dihydropyridine calcium antagonist, in man. Res. Commun. Chem. Pathol. Pharmacol. (1988) 60(2):161-172.
  • TOKUMA Y, FUJIWARA T, NIWA T et al.: Stereoselective disposition of nilvadipine, a new dihydropyridine calcium antagonist, in the rat and dog. Res. Commun. Chem. Pathol. Pharmacol. (1989) 63:249-262.
  • TOKUMA Y, FUJIWARA T, NOGUCHI H: Plasma levels of (+)- and (-)-nilvadipine after oral dosing with racemic (±)-nilvadipine in man. Res Commun. Chem. Pathol. Pharmacol. (1987) 57:229-237.
  • GRAVIL CP, GEHRCKE B, KONIG WA et al.: Determination of the enantiomers of ifosfamide and its 2- and 3-N-dechloroethylated metabolites in plasma and urineusing enantioselective gas chromatography with mass spectrometric detection. J. Chromatogr. (1993) 622:21-31.
  • PRASAD VK, CORLETT SA, ABAASI K et al.: Ifosfamide enantiomers: pharmacokinetics in children. Cancer Chemother. Pharmacol. (1994) 34:447-449.
  • CORLETT SA, PARKER D, CHRYSTYN H: Pharmacokinetics of ifosfamide and its enantiomers following a single 1 h intravenous infusion of the racemate in patients with small cell lung carcinoma. Br. J. Clin. Pharmacol. (1995) 39(4):452-455.
  • WAINER IW, DUCHARME J, GRANVIL CP: The N-dechloroethylation of ifosfamide: Using stereochemistry to obtain an accurate picture of a clinically relevant metabolic pathway. Cancer Chemother. Pharmacol. (1996) 37:332-336.
  • GRANVIL CP, DUCHARME J, JONES BL et al.: Stereoselective pharmacokinetics of ifosfamide and its 2- and 3-N-dechloroethylated metabolites in female cancer patients. Cancer Chemother. Pharmacol. (1996) 37:451-456.
  • INGELMAN-SUNDBERG M: Implications of polymorphic cytochrome P450-dependent drug metabolism for drug development. Drug Metab. Dispos. (2001) 29(4):570-573.
  • FRANK D, JAEHDE U, FUHR U: Evaluation of probe drugs and pharmacokinetic metrics for CYP2D6 phenotyping. Eur. J. Clin. Pharmacol. (2007) 63(4):321-333.
  • SCORDO MG, SPINA E, DAHL ML et al.: Influence of CYP2C9, 2C19 and 2D6 genetic polymorphisms on the steady-state plasma concentrations of the enantiomers of fluoxetine and norfluoxetine. Basic Clin. Pharmacol. Toxicol. (2005) 97:296-301.
  • TYBRING G, BOTTIGER Y, WIDEN J et al.: Enantioselective hydroxylation omeprazole catalyzed by CYP2C19 in Swedish white subjects. Clin. Pharmcol. Ther. (1997) 62(2):129-137.
  • DAHL ML TYBRING G, ELWIN CE et al.: Stereoselective disposition of mianserin is related to debrisoquine hydroxylation polymorphism. Clin. Pharmacol. Ther. (1994) 56(2):176-183.
  • MEESE CO, THALHEIMER P, EICHELBAUM: High-performance liquid chromatographic method for the analysis of debrisoquine and its S-(+)- and R-(-)-hydroxy metabolites in urine. J. Chromatogr. (1987) 423:344-350.
  • EICHELBAUM M, BERTILSSON L, KUPFER A et al.: Enantioselectivity of 4-hydroxylation in extensive and poor metabolizers of debrisoquine. Br. J. Clin. Pharmacol. (1988) 25:505-508.
  • DE MORAIS SMF, WILKINSON GR, BLAISDELL J et al.: The major genetic defect responsible for the polymorphism of S-mephenytoin metabolism in humans. J. Biol. Chem. (1994) 269(22):15419-15422.
  • UFER M, KAMMERER B, KAHLICH R et al.: Genetic polymrphism of cytochrome P450 2C9 causing reduced phenoprocoumon (S)-7-hydroxylation in vitro and in vivo. Xenobiotica. (2004) 34(9):847-859.
  • MADDEN JC, CRONIN MTD: Structure-based methods for the prediction of drug metabolism. Expert Opin. Drug Metab. Toxicol. (2006) 2(4):545-557.
  • MARGOLIS JM, O’DONNELL JP, MANKOWSKI DC et al.: (R)-, (S)-, and racemic fluoxetine N-demethylation by human cytochrome P450 enzymes. Drug Metab. Dispos. (2000) 28(10):1187-1191.
  • ABELO A, ANDERSSON TB, ANTONSSON M et al.: Stereoselective metabolism of omeprazole by human cytochrome P450 enzymes. Drug Metab. Dispos. (2000) 28(8):966-972.
  • ECHIZEN H, TANIZAKI M, TATSUNO J et al.: Identification of CYP3A4 as the enzyme involved in the mono-N-dealkylation of disopyramide enantiomers in humans. Drug Metab. Dispos. (2000) 28(8):937-944.
  • NARIMATSU S, TAKEMI C, KURAMOTO S et al.: Stereoselectivity in the oxidation of bufuralol, a chiral substrate, by human cytochrome P450s. Chirality (2003) 15:333-339.
  • ELLIS SW, ROWLAND K, ACKLAND MJ et al.: Influence of amino acid residue 374 of cytochrome P450 2D6 (CYP2D6) on the regio- and enantio-selective metabolism of metoprolol. Biochem. J. (1996) 316:647-654.
  • MAUTZ DS, SHEN DD, NELSON WL: Regioselectivity and enantioselectivity of metoprolol oxidation by two variants of cDNA-expressed P4502D6. Pharm. Res. (1995) 12(12):2053-2056.
  • KIM M, SHEN DD, EDDY AC et al.: Inhibition of the enantioselective oxidative metabolism of metoprolol by verapamil in human liver microsomes. Drug Metab. Dispos. (1993) 21(2):309-317.
  • HA PTT, SLUYTS IS, DYCK SV et al.: Chiral capillary electrophoretic analysis of verapamil metabolism by cytochrome P450 3A4. J. Chromatogr. A (2006) 1120:94-101.
  • TRACY TS, KORZEKWA KR, GONZALEZ FJ, WAINER IW: Cytochrome P450 isoforms involved in metabolism of the enantiomers of verapamil and norverapamil. Br. J. Clin. Pharmacol. (1999) 47:545-552.
  • NIWA T, SHIRAGA T, MITANI Y et al.: Stereoselective metabolism of cibenzoline, an antiarrhythmic drug, by human and rat liver microsomes: Possible involvement of CYP2D and CYP3A. Drug Metab. Dispos. (2000) 28(9):1128-1134.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.