1,280
Views
152
CrossRef citations to date
0
Altmetric
Review

Whole-body physiologically based pharmacokinetic models

Pages 235-249 | Published online: 11 Apr 2007

Bibliography

  • REDDY M, YANG RS, ANDERSEN ME, CLEWELL HJ III: Physiologically Based Pharmacokinetic Modeling: Science and Applications. Wiley and Sons, New York, USA (2005):420.
  • LEAHY DE: Integrating in vitro ADMET data through generic physiologically based pharmacokinetic models. Expert Opin. Drug Metab. Toxicol. (2006) 2(4):619-628.
  • CLEWELL HJ, GENTRY PR, KESTER JE, ANDERSEN ME: Evaluation of physiologically based pharmacokinetic models in risk assessment: an example with perchloroethylene. Crit. Rev. Toxicol. (2005) 35(5):413-433.
  • BERNAUER U, OBEREMM A, MADLE S, GUNDERT-REMY U: The use of in vitro data in risk assessment. Basic Clin. Pharmacol. Toxicol. (2005) 96(3):176-181.
  • CLEWELL HJ, ANDERSEN ME: Applying mode-of-action and pharmacokinetic considerations in contemporary cancer risk assessments: an example with trichloroethylene. Crit. Rev. Toxicol. (2004) 34(5):385-445.
  • THEIL FP, GUENTERT TW, HADDAD S, POULIN P: Utility of physiologically based pharmacokinetic models to drug development and rational drug discovery candidate selection. Toxicol. Lett. (2003) 138(1-2):29-49.
  • ANDERSEN ME: Toxicokinetic modeling and its applications in chemical risk assessment. Toxicol. Lett. (2003) 138(1-2):9-27.
  • NESTOROV I: Whole body pharmacokinetic models. Clin. Pharmacokinet. (2003) 42(10):883-908.
  • THAKUR AK: Model: Mechanistic versus empirical. In: New Trends in Pharmacokinetics. Resigno A, Thakur AK (Eds), Plenum Press, New York, USA (1991):41-51.
  • RESCIGNO A, BECK JS: The use and abuse of models. J. Pharmacokinet. Biopharm. (1987)15:327.
  • ROWLAND M: (Chapter 4) Physiologic pharmacokinetic models and interanimal species scaling. In: Pharmacokinetics: Theory and methodology. International Encyclopedia of Pharmacology and Therapeutics, Section 122. Rowland M, Tucker GT (Eds), Pergamon, Oxford (1986):69-88.
  • AARONS L: Editor’s view. Physiologically based pharmacokinetic modeling: sound mechanistic basis is needed. Br. J. Clin. Pharm. (2006) 60(6):581-583.
  • GODFREY K: Compartmental Models and Their Application. Academic Press, London, UK (1983).
  • ANDERSON DA: Compartmental Modeling and Tracer Kinetics. Lecture Notes in Biomathematics. Springer-Verlag, Germany (1983) 50.
  • BISCHOFF KB: Physiological pharmacokinetics. Bull. Math. Biol. (1986)48:309-322.
  • ANDERSEN ME: Physiological modelling of organic compounds. Ann. Occup. Hyg. (1991)35:309-321.
  • NESTOROV I, AARONS LJ, ARUNDEL PA, ROWLAND M: Lumping of whole-body physiologically based pharmacokinetic models. J. Pharmacokinet. Biopharm. (1998)26:21-46.
  • BJORKMAN S: Reduction and lumping of physiologically based pharmacokinetic models: prediction of the disposition of fentanyl and pethidine in humans by successively simplified models. J. Pharmacokinet. Pharmacodyn. (2003) 30(4):285-307.
  • BROCHOT C, TOTH J, BOIS FY: Lumping in pharmacokinetics. J. Pharmacokinet. Pharmacodyn. (2005) 32(5-6):719-736.
  • LI G, RABITZ H: A general analysis of exact lumping in chemical kinetics. Chem. Eng. Sci. (1989) 44(6):1413-1430.
  • LI GY, TOMLIN AS, RABITZ H, TOTH J: A general analysis of approximate nonlinear lumping in chemical kinetics. II. Unconstrained lumping. J. Chem. Phys. (1994) 101(2):1172-1187.
  • LI G, RABITZ H, TOTH J: A general analysis of exact nonlinear lumping in chemical kinetics. Chem. Eng. Sci. (1994) 49(3):343-361.
  • DENNISON JE, ANDERSEN ME, CLEWELL HJ, YANG RS: Development of a physiologically based pharmacokinetic model for volatile fractions of gasoline using chemical lumping analysis. Environ. Sci. Technol. (2004) 38(21):5674-5681.
  • DENNISON JE, ANDERSEN ME, YANG RS: Characterization of the pharmacokinetics of gasoline using PBPK modeling with a complex mixtures chemical lumping approach. Inhal. Toxicol. (2003) 15(10):961-986.
  • GUEORGUIEVA I, NESTOROV IA, ROWLAND M: Reducing whole body physiologically based pharmacokinetic models using global sensitivity analysis: diazepam case study. J. Pharmacokinet. Pharmacodyn. (2006) 33(1):1-27.
  • CLEWELL HJ III, GENTRY PR, GEARHART JM, COVINGTON TR, BANTON MI, ANDERSEN ME: Development of a physiologically based pharmacokinetic model of isopropanol and its metabolite acetone. Toxicol. Sci. (2001)63:160-172.
  • MOGHADAMNIA AA, ROSTAMI-HODJEGAN A, ABDUL-MANAP R, WRIGHT CE, MORICE AH, TUCKER GT: Physiologically based modelling of inhibition of metabolism and assessment of the relative potency of drug and metabolite: dextromethorphan versus dextrorphan using quinidine inhibition. Br. J. Clin. Pharmacol. (2003) 56(1):57-67.
  • HACK CE, CHIU WA, JAY ZHAO Q, CLEWELL HJ: Bayesian population analysis of a harmonized physiologically based pharmacokinetic model of trichloroethylene and its metabolites. Regul. Toxicol. Pharmacol. (2006) 46(1):63-83.
  • CORLEY RA, MAST TJ, CARNEY EW, ROGERS JM, DASTON GP: Evaluation of physiologically based models of pregnancy and lactation for their application in children’s health risk assessments. Crit. Rev. Toxicol. (2003) 33(2):137-211.
  • BYCZKOWSKI JZ, KINKEAD ER, LEAHY HF, RANDALL GM, FISHER JW: Computer simulation of the lactational transfer of tetrachloroethylene in rats using a physiologically based model. Toxicol. Appl. Pharmacol. (1994)125:228-236.
  • LEE SK, OU YC, ANDERSEN ME, YANG RS: A physiologically based pharmacokinetic model for lactational transfer of PCB 153 with or without PCB 126 in mice. Arch. Toxicol. (2007) 81(2):101-111.
  • CLEWELL RA, MERRILL EA, YU KO et al.: Predicting neonatal perchlorate dose and inhibition of iodide uptake in the rat during lactation using physiologically-based pharmacokinetic modeling. Toxicol. Sci. (2003) 74(2):416-436.
  • CLEWELL RA, MERRILL EA, YU KO et al.: Predicting fetal perchlorate dose and inhibition of iodide kinetics during gestation: a physiologically-based pharmacokinetic analysis of perchlorate and iodide kinetics in the rat. Toxicol. Sci. (2003) 73(2):235-255.
  • BYCZKOWSKI JZ, LIPSCOMB JC: Physiologically based pharmacokinetic modeling of the lactational transfer of methylmercury. Risk Anal. (2001) 21(5):869-882.
  • BAXTER LT, ZHU H, MACKENSEN DG, BUTLER WF, JAIN RK: Biodistribution of monoclonal antibodies: scale-up from mouse to human using a physiologically based pharmacokinetic model. Cancer Res. (1995)55:4611-4622.
  • BAXTER LT, ZHU H, MACKENSEN DG, JAIN RK: Physiologically based pharmacokinetic model for specific and nonspecific monoclonal antibodies and fragments in normal tissues and human tumor xenografts in nude mice. Cancer Res. (1994)54:1517-1528.
  • FERL GZ, KENANOVA V, WU AM, DISTEFANO JJ III: A two-tiered physiologically based model for dually labeled single-chain Fv-Fc antibody fragments. Mol. Cancer Ther. (2006) 5(6):1550-1558.
  • FERL GZ, WU AM, DISTEFANO JJ III: A predictive model of therapeutic monoclonal antibody dynamics and regulation by the neonatal Fc receptor (FcRn). Ann. Biomed. Eng. (2005) 33(11):1640-1652.
  • OLIVER RE, JONES AF, ROWLAND M: A whole-body physiologically based pharmacokinetic model incorporating dispersion concepts: short and long time characteristics. J. Pharmacokinet. Pharmacodyn. (2001)28:27-55.
  • TANAKA C, KAWAI R, ROWLAND M: Physiologically based pharmacokinetics of cyclosporine A: reevaluation of dose-nonlinear kinetics in rats. J. Pharmacokinet. Biopharm. (1999)27:597-623.
  • KAWAI R, MATHEW D, TANAKA C, ROWLAND M: Physiologically based pharmacokinetics of cyclosporine A: extension to tissue distribution kinetics in rats and scale-up to human. J. Pharmacol. Exp. Ther. (1998)287:457-468.
  • YATES JW: Structural identifiability of physiologically based pharmacokinetic models. J. Pharmacokinet. Pharmacodyn. (2006) 33(4):421-439.
  • CHEUNG SYA, GUEORGUIEVA I, AARONS L: Structural identifiability analysis of some semi-physiologically based and whole body physiologically based (WBPBPK) pharmacokinetic models. Poster presented at: The Population Approach Europe (PAGE) conference. Pamplona, Spain (2005).
  • KIRMAN CR, SWEENEY LM, CORLEY R, GARGAS ML: Using physiologically-based pharmacokinetic modeling to address nonlinear kinetics and changes in rodent physiology and metabolism due to aging and adaptation in deriving reference values for propylene glycol methyl ether and propylene glycol methyl ether acetate. Risk Anal. (2005) 25(2):271-284.
  • LIU X, SMITH BJ, CHEN C et al.: Use of a physiologically based pharmacokinetic model to study the time to reach brain equilibrium: an experimental analysis of the role of blood–brain barrier permeability, plasma protein binding, and brain tissue binding. J. Pharmacol. Exp. Ther. (2005) 313(3):1254-1262.
  • LEVITT DG: PKQuest: a general physiologically based pharmacokinetic model. Introduction and application to propranolol. BMC Clin. Pharmacol. (2002)2:5.
  • BROWN RP, DELP MD, LINDSTEDT SL, RHOMBERG LR, BELILES RP: Physiological parameter values for physiologically based pharmacokinetic models. Toxicol. Ind. Health (1997)13:407-484.
  • ICRP 2002 Basic anatomical and physiological data for use in radiological protection: reference values. ICRP Publication 89 (ISSN 01466453) (2002).
  • PRICE PS, CONNOLLY RB, CHAISSON CF et al.: Modeling interindividual variation in physiological factors used in PBPK models of humans. Crit. Rev. Toxicol. (2003)33:469-503.
  • CALDER WA: Size, function, and life history. Harvard University Press, London, England, UK (1984).
  • LINDSTEDT SL, PJ SCHAEFER: Use of allometry in predicting anatomical and physiological parameters of mammals. Lab. Anim. (2002)36:1-19.
  • YANG F, TONG X, MCCARVER DG, HINES RN, BEARD DA: Population-based analysis of methadone distribution and metabolism using an age-dependent physiologically based pharmacokinetic model. J. Pharmacokinet. Pharmacodyn. (2006) 33(4):485-518.
  • PRICE K, HADDAD S, KRISHNAN K: Physiological modeling of age-specific changes in the pharmacokinetics of organic chemicals in children. J. Toxicol. Environ. Health A (2003) 66(5):417-433.
  • ITO K, HOUSTON JB: Prediction of human drug clearance from in vitro and preclinical data using physiologically based and empirical approaches. Pharm. Res. (2005) 22(1):103-112.
  • POET TS, WU H, ENGLISH JC, CORLEY RA: Metabolic rate constants for hydroquinone in F344 rat and human liver isolated hepatocytes: application to a PBPK model. Toxicol. Sci. (2004) 82(1):9-25.
  • CHRISTENSEN H, BAKER M, TUCKER GT, ROSTAMI-HODJEGAN A: Prediction of plasma protein binding displacement and its implications for quantitative assessment of metabolic drug-drug interactions from in vitro data. J. Pharm. Sci. (2006) 95(12):2778-2787.
  • JOHNSON TN, ROSTAMI-HODJEGAN A, TUCKER GT: Prediction of the clearance of eleven drugs and associated variability in neonates, infants and children. Clin. Pharmacokinet. (2006) 45(9):931-956.
  • LIU L, PANG KS: An integrated approach to model hepatic drug clearance. Eur. J. Pharm. Sci. (2006) 29(3-4):215-230.
  • YANG J, JAMEI M, HEYDARI A et al.: Implications of mechanism-based inhibition of CYP2D6 for the pharmacokinetics and toxicity of MDMA. J. Psychopharmacol. (2006) 20(6):842-849.
  • MACDONALD AJ, ROSTAMI-HODJEGAN A, TUCKER GT, LINKENS DA: Analysis of solvent central nervous system toxicity and ethanol interactions using a human population physiologically based kinetic and dynamic model. Regul. Toxicol. Pharmacol. (2002) 35(2 Pt 1):165-176.
  • PASTINO GM, CONOLLY RB: Application of a physiologically based pharmacokinetic model to estimate the bioavailability of ethanol in male rats: distinction between gastric and hepatic pathways of metabolic clearance. Toxicol. Sci. (2000)55:256-265.
  • LILLY PD, ANDERSEN ME, ROSS TM, PEGRAM RA: A physiologically based pharmacokinetic description of the oral uptake, tissue dosimetry, and rates of metabolism of bromodichloromethane in the male rat. Toxicol. Appl. Pharmacol. (1998)150:205-217.
  • SEMINO G, LILLY P, ANDERSEN ME: A pharmacokinetic model describing pulsatile uptake of orally-administered carbon tetrachloride. Toxicology (1997)117:25-33.
  • LIN JH, SUGIYAMA Y, AWAZU S, HANANO M: In vitro and in vivo evaluation of the tissue-to-blood partition coefficient for physiological pharmacokinetic models. J. Pharmacokinet. Biopharm. (1982)10:637-647.
  • ROTH WL, WEBER LW, ROZMAN KK: Incorporation of first-order uptake rate constants from simple mammillary models into blood-flow limited physiological pharmacokinetic models via extraction efficiencies. Pharm. Res. (1995)12:263-269.
  • HWANG IY, REARDON KF, TESSARI JD, YANG RS: A gas-liquid system for enzyme kinetic studies of volatile organic chemicals. Determination of enzyme kinetic constants and partition coefficients of trichloroethylene. Drug Metab. Dispos. (1996)24:377-382.
  • DEJONGH J, BLAAUBOER BJ: Simulation of toluene kinetics in the rat by a physiologically based pharmacokinetic model with application of biotransformation parameters derived independently in vitro and in vivo. Fundam. Appl. Toxicol. (1996)32:260-268.
  • BALLARD P, LEAHY DE, ROWLAND M: Prediction of in vivo tissue distribution for in vitro data 1: experiments with markers of aqueous spaces. Pharm. Res. (2000)17:321-326.
  • KATO M, TACHIBANA T, ITO K, SUGIYAMA Y: Evaluation of methods for predicting drug–drug interactions by Monte Carlo simulation. Drug Metab. Pharmacokinet. (2003) 18(2):121-127.
  • KEDDERIS GL, LIPSCOMB JC: Application of in vitro biotransformation data and pharmacokinetic modeling to risk assessment. Toxicol. Ind. Health. (2001) 17(5-10):315-321.
  • CHIEN JY, MOHUTSKY MA, WRIGHTON SA: Physiological approaches to the prediction of drug–drug interactions in study populations. Curr. Drug Metab. (2003) 4(5):347-356.
  • KRISHNAN K, HADDAD S, BELIVEAU M, TARDIF R: Physiological modeling and extrapolation of pharmacokinetic interactions from binary to more complex chemical mixtures. Environ. Health Perspect. (2002) 110(Suppl. 6):989-994.
  • CAHILL TM, COUSINS I, MACKAY D: Development and application of a generalized physiologically based pharmacokinetic model for multiple environmental contaminants. Environ. Toxicol. Chem. (2003) 22(1):26-34.
  • SHIBATA N, GAO W, OKAMOTO H et al.: Drug interactions between HIV protease inhibitors based on physiologically-based pharmacokinetic model. J. Pharm. Sci. (2002) 91(3):680-689.
  • LEE SK, OU YC, YANG RS: Comparison of pharmacokinetic interactions and physiologically based pharmacokinetic modeling of PCB 153 and PCB 126 in nonpregnant mice, lactating mice, and suckling pups. Toxicol. Sci. (2002) 65(1):26-34.
  • VAN DER WATERBEEMD HE, GIFFORD E: ADMET in silico modeling: towards prediction paradise? Nat. Rev. Drug Discov. (2003)2:192-204.
  • VEDANI A, DOBLER M, LILL MA: In silico prediction of harmful effects triggered by drugs and chemicals. Toxicol. Appl. Pharmacol. (2005)207:398-407.
  • STERNER TR, GOODYEAR CD, ROBINSON PJ, MATTIE DR, BURTON GA: Analysis of algorithms predicting blood:air and tissue:blood partition coefficients from solvent partition coefficients for prevalent components of JP-8 jet fuel. J. Toxicol. Environ. Health A (2006) 69(15):1441-1479.
  • CAI H, STONER C, REDDY A et al.: Evaluation of an integrated in vitro–in silico PBPK (physiologically based pharmacokinetic) model to provide estimates of human bioavailability. Int. J. Pharm. (2006) 308(1-2):133-139.
  • BRIGHTMAN FA, LEAHY DE, SEARLE GE, THOMAS S: Application of a generic physiologically based pharmacokinetic model to the estimation of xenobiotic levels in rat plasma. Drug Metab. Dispos. (2006) 34(1):84-93.
  • BRIGHTMAN FA, LEAHY DE, SEARLE GE, THOMAS S: Application of a generic physiologically based pharmacokinetic model to the estimation of xenobiotic levels in human plasma. Drug Metab. Dispos. (2006) 34(1):94-101.
  • RODGERS T, LEAHY D, ROWLAND M: Physiologically based pharmacokinetic modeling 1: predicting the tissue distribution of moderate-to-strong bases. J. Pharm. Sci. (2005) 94(6):1259-1276.
  • ROSS IA, SAPIENZA PP, HANES DE, JOHNSON W, KIM CS: Determination of the rat tissue partitioning of endotoxin in vitro for physiologically-based pharmacokinetic (PBPK) modeling. J. Appl. Toxicol. (2004) 24(3):177-181.
  • BELIVEAU M, TARDIF R, KRISHNAN K: Quantitative structure–property relationships for physiologically based pharmacokinetic modeling of volatile organic chemicals in rats. Toxicol. Appl. Pharmacol. (2003) 189(3):221-232.
  • DOBREV ID, ANDERSEN ME, YANG RS: In silico toxicology: simulating interaction thresholds for human exposure to mixtures of trichloroethylene, tetrachloroethylene, and 1,1,1-trichloroethane. Environ. Health Perspect. (2002) 110(10):1031-1039.
  • PAYNE MP, KENNY LC: Comparison of models for the estimation of biological partition coefficients. J. Toxicol. Environ. Health A (2002) 65(13):897-931.
  • YOKOGAWA K, ISHIZAKI J, OHKUMA S, MIYAMOTO K: Influence of lipophilicity and lysosomal accumulation on tissue distribution kinetics of basic drugs: a physiologically based pharmacokinetic model. Methods Find. Exp. Clin. Pharmacol. (2002) 24(2):81-93.
  • MARUYAMA W, YOSHIDA K, TANAKA T, NAKANISHI J: Determination of tissue–blood partition coefficients for a physiological model for humans, and estimation of dioxin concentration in tissues. Chemosphere (2002) 46(7):975-985.
  • EMOND C, CHARBONNEAU M, KRISHNAN K: Physiologically based modeling of the accumulation in plasma and tissue lipids of a mixture of PCB congeners in female Sprague–Dawley rats. J. Toxicol. Environ. Health A (2005) 68(16):1393-1412.
  • BELIVEAU M, KRISHNAN K: A spreadsheet program for modeling quantitative structure–pharmacokinetic relationships for inhaled volatile organics in humans. SAR QSAR Environ. Res. (2005) 16(1-2):63-77.
  • FOUCHECOURT MO, BELIVEAU M, KRISHNAN K: Quantitative structure–pharmacokinetic relationship modelling. Sci. Total Environ. (2001) 274(1-3):125-135.
  • LUTTRINGER O, THEIL FP, POULIN P, SCHMITT-HOFFMANN AH, GUENTERT TW, LAVE T: Physiologically based pharmacokinetic (PBPK) modeling of disposition of epiroprim in humans. J. Pharm. Sci. (2003) 92(10):1990-2007.
  • SWEENEY LM, GARGAS ML, STROTHER DE, KEDDERIS GL: Physiologically based pharmacokinetic model parameter estimation and sensitivity and variability analyses for acrylonitrile disposition in humans. Toxicol. Sci. (2003) 71(1):27-40.
  • NESTOROV IA, AARONS LJ, ROWLAND M: Physiologically-based pharmacokinetic modelling of a homologous series of barbiturates in the rat: a sensitivity analysis. J. Pharmacokinet. Biopharm. (1997)25:413-447.
  • LICATA AC, DEKANT W, SMITH CE, BORGHOFF SJ: A physiologically based pharmacokinetic model for methyl tert-butyl ether in humans: implementing sensitivity and variability analyses. Toxicol. Sci. (2001) 62(2):191-204.
  • NESTOROV I: A structural approach to sensitivity analysis of physiologically based pharmacokinetic models. J. Pharmacokinet. Biopharm. (1999)27:577-597.
  • EVANS MV, CRANK WD, YANG HM, SIMMONS JE: Applications of sensitivity analysis to a physiologically based pharmacokinetic model for carbon tetrachloride in rats. Toxicol. Appl. Pharmacol. (1994)128:36-44.
  • SLOB W, JANSSEN PH, VAN DEN HOF JM: Structural identifiability of PBPK models: practical consequences for modeling strategies and study designs. Crit. Rev. Toxicol. (1997) 27(3):261-272.
  • GUEORGUIEVA I, AARONS L, OGUNGBENRO K, JORGA KM, RODGERS T, ROWLAND M: Optimal design for multivariate response pharmacokinetic models. J. Pharmacokinet. Pharmacodyn. (2006) 33(2):97-124.
  • RAPPAPORT SM, KUPPER LL, LIN YS: On the importance of exposure variability to the doses of volatile organic compounds. Toxicol. Sci. (2005) 83(2):224-236.
  • BUUR J, BAYNES R, SMITH G, RIVIERE J: Use of probabilistic modeling within a physiologically based pharmacokinetic model to predict sulfamethazine residue withdrawal times in edible tissues in swine. Antimicrob. Agents Chemother. (2006) 50(7):2344-2351.
  • KRISHNAN K, JOHANSON G: Physiologically-based pharmacokinetic and toxicokinetic models in cancer risk assessment. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev. (2005) 23(1):31-53.
  • GALLO JM, VICINI P, ORLANSKY A et al.: Pharmacokinetic model-predicted anticancer drug concentrations in human tumors. Clin. Cancer Res. (2004) 10(23):8048-8058.
  • SULTATOS LG, PASTINO GM, ROSENFELD CA, FLYNN EJ: Incorporation of the genetic control of alcohol dehydrogenase into a physiologically based pharmacokinetic model for ethanol in humans. Toxicol. Sci. (2004) 78(1):20-31.
  • PELEKIS M, NICOLICH MJ, GAUTHIER JS: Probabilistic framework for the estimation of the adult and child toxicokinetic intraspecies uncertainty factors. Risk Anal. (2003) 23(6):1239-1255.
  • TIMCHALK C, KOUSBA A, POET TS: Monte Carlo analysis of the human chlorpyrifos-oxonase (PON1) polymorphism using a physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) model. Toxicol. Lett. (2002) 135(1-2):51-59.
  • MEIBOHM B, LAER S, PANETTA JC, BARRETT JS: Population pharmacokinetic studies in pediatrics: issues in design and analysis. AAPS J. (2005) 7(02):E475-E487.
  • JONSSON F, JOHANSON G: Bayesian estimation of variability in adipose tissue blood flow in man by physiologically based pharmacokinetic modeling of inhalation exposure to toluene. Toxicology (2001)157:177-193.
  • YOKLEY K, TRAN HT, PEKARI K et al.: Physiologically-based pharmacokinetic modeling of benzene in humans: a Bayesian approach. Risk Anal. (2006) 26(4):925-943.
  • GUEORGUIEVA I, AARONS L, ROWLAND M: Diazepam pharamacokinetics from preclinical to Phase I using a Bayesian population physiologically based pharmacokinetic model with informative prior distributions in winbugs. J. Pharmacokinet. Pharmacodyn. (2006) 33(5):571-594.
  • HACK CE: Bayesian analysis of physiologically based toxicokinetic and toxicodynamic models. Toxicology (2006) 221(2-3):241-248.
  • MARINO DJ, CLEWELL HJ, GENTRY PR et al.: Revised assessment of cancer risk to dichloromethane: part I Bayesian PBPK and dose-response modeling in mice. Regul. Toxicol. Pharmacol. (2006) 45(1):44-54.
  • JONSSON F, JOHANSON G: The Bayesian population approach to physiological toxicokinetic–toxicodynamic models-an example using the MCSim software. Toxicol. Lett. (2003) 138(1-2):143-150.
  • JONSSON F, JOHANSON G: Physiologically based modeling of the inhalation kinetics of styrene in humans using a bayesian population approach. Toxicol. Appl. Pharmacol. (2002) 179(1):35-49.
  • COVINGTON TR, ROBINAN GENTRY P, VAN LANDINGHAM CB, ANDERSEN ME, KESTER JE, CLEWELL HJ: The use of Markov chain Monte Carlo uncertainty analysis to support a Public Health Goal for perchloroethylene. Regul. Toxicol. Pharmacol. (2007) 47(1):1-18.
  • NESTOROV I: Modelling and simulation of variability and uncertainty in toxicokinetics and pharmacokinetics. Toxicol. Lett. (2001)120:411-420.
  • GUEORGUIEVA II, NESTOROV IA, ROWLAND M: Fuzzy simulation of pharmacokinetic models: case study of whole body physiologically based model of diazepam. J. Pharmacokinet. Pharmacodyn. (2004) 31(3):185-213.
  • SENG K-Y, VICINI P, NESTOROV I: A fuzzy physiologically based pharmacokinetic modeling frame-work to predict drug disposition in humans. Proceedings of the 28th IEEE EMBS Annual International Conference. New York, USA August 30 – September 3 (2006):5037-5040.
  • CHIU WA, WHITE P: Steady-state solutions to PBPK models and their applications to risk assessment I: route-to-route extrapolation of volatile chemicals. Risk Anal. (2006) 26(3):769-780.
  • SWEENEY RE, LANGENBERG JP, MAXWELL DM: A physiologically based pharmacokinetic (PB/PK) model for multiple exposure routes of soman in multiple species. Arch. Toxicol. (2006) 80(11):719-731.
  • SARANGAPANI R, TEEGUARDEN J, ANDERSEN ME, REITZ RH, PLOTZKE KP: Route-specific differences in distribution characteristics of octamethylcyclotetrasiloxane in rats: analysis using PBPK models. Toxicol. Sci. (2003) 71(1):41-52.
  • SIMMONS JE, EVANS MV, BOYES WK: Moving from external exposure concentration to internal dose: duration extrapolation based on physiologically based pharmacokinetic derived estimates of internal dose. J. Toxicol. Environ. Health A (2005) 68(11-12):927-950.
  • MARUYAMA W, HIRANO S, KOBAYASHI T, AOKI Y: Quantitative risk analysis of particulate matter in the air: interspecies extrapolation with bioassay and mathematical models. Inhal. Toxicol. (2006) 18(13):1013-1023.
  • SARANGAPANI R, TEEGUARDEN JG, GENTRY PR, CLEWELL HJ III, BARTON HA, BOGDANFFY MS: Interspecies dose extrapolation for inhaled dimethyl sulfate: a PBPK model-based analysis using nasal cavity N7-methylguanine adducts. Inhal. Toxicol. (2004) 16(9):593-605.
  • CORLEY RA, BARTELS MJ, CARNEY EW et al.: Development of a physiologically based pharmacokinetic model for ethylene glycol and its metabolite, glycolic acid, in rats and humans. Toxicol. Sci. (2005) 85(1):476-490.
  • CORLEY RA, GIES RA, WU H, WEITZ KK: Development of a physiologically based pharmacokinetic model for propylene glycol monomethyl ether and its acetate in rats and humans. Toxicol. Lett. (2005) 156(1):193-213.
  • KIRMAN CR, SWEENEY LM, MEEK ME, GARGAS ML: Assessing the dose-dependency of allometric scaling performance using physiologically based pharmacokinetic modeling. Regul. Toxicol. Pharmacol. (2003) 38(3):345-367.
  • THRALL K, WOODSTOCK A: Evaluation of the dermal bioavailability of aqueous xylene in F344 rats and human volunteers. J. Toxicol. Environ. Health A (2003) 66(13):1267-1281.
  • FREDERICK CB, LOMAX LG, BLACK KA et al.: Use of a hybrid computational fluid dynamics and physiologically based inhalation model for interspecies dosimetry comparisons of ester vapors. Toxicol. Appl. Pharmacol. (2002) 183(1):23-40.
  • SARANGAPANI R, TEEGUARDEN JG, CRUZAN G, CLEWELL HJ, ANDERSEN ME: Physiologically based pharmacokinetic modeling of styrene and styrene oxide respiratory-tract dosimetry in rodents and humans. Inhal. Toxicol. (2002) 14(8):789-834.
  • HOSSEINI-YEGANEH M, MCLACHLAN AJ: Physiologically based pharmacokinetic model for terbinafine in rats and humans. Antimicrob. Agents Chemother. (2002) 46(7):2219-2228.
  • BJORKMAN S, WADA DR, BERLING BM, BENONI G: Prediction of the disposition of midazolam in surgical patients by a physiologically based pharmacokinetic model. J. Pharm. Sci. (2001) 90(9):1226-1241.
  • XU L, EISEMAN JL, EGORIN MJ, D’ARGENIO DZ: Physiologically-based pharmacokinetics and molecular pharmacodynamics of 17-(allylamino)-17-demethoxygeldana- mycin and its active metabolite in tumor-bearing mice. J. Pharmacokinet. Pharmacodyn. (2003) 30(3):185-219.
  • FRIEDRICH SW, LIN SC, STOLL BR, BAXTER LT, MUNN LL, JAIN RK: Antibody-directed effector cell therapy of tumors: analysis and optimization using a physiologically based pharmacokinetic model. Neoplasia (2002) 4(5):449-463.
  • GINSBERG G, HATTIS D, RUSS A, SONAWANE B: Physiologically based pharmacokinetic (PBPK) modeling of caffeine and theophylline in neonates and adults: implications for assessing children’s risks from environmental agents. J. Toxicol. Environ. Health A (2004) 67(4):297-329.
  • BYCZKOWSKI JZ, FISHER JW: A computer program linking physiologically based pharmacokinetic model with cancer risk assessment for breast-fed infants. Comput. Methods Programs Biomed. (1995)46:155-163.
  • FISHER J, MAHLE D, BANKSTON L, GREENE R, GEARHART J: Lactational transfer of volatile chemicals in breast milk. Am. Ind. Hyg. Assoc. J. (1997)58:425-431.
  • CLEWELL RA, GEARHART JM: Pharmacokinetics of toxic chemicals in breast milk: use of PBPK models to predict infant exposure. Environ. Health Perspect. (2002) 110(6):A333-A337.
  • NONG A, MCCARVER DG, HINES RN, KRISHNAN K: Modeling interchild differences in pharmacokinetics on the basis of subject-specific data on physiology and hepatic CYP2E1 levels: a case study with toluene. Toxicol. Appl. Pharmacol. (2006) 214(1):78-87.
  • BJORKMAN S: Prediction of drug disposition in infants and children by means of physiologically based pharmacokinetic (PBPK) modelling: theophylline and midazolam as model drugs. Br. J. Clin. Pharmacol. (2005) 59(6):691-704.
  • SHELLEY ML, ANDERSEN ME, FISHER JW: An inhalation distribution model for the lactating mother and nursing child. Toxicol. Lett. (1988)43:23-29.
  • CORLEY RA, GRANT DM, FARRIS E et al.: Determination of age and gender differences in biochemical processes affecting the disposition of 2-butoxyethanol and its metabolites in mice and rats to improve PBPK modeling. Toxicol. Lett. (2005) 156(1):127-161.
  • CLEWELL HJ, GENTRY PR, COVINGTON TR, SARANGAPANI R, TEEGUARDEN JG: Evaluation of the potential impact of age- and gender-specific pharmacokinetic differences on tissue dosimetry. Toxicol. Sci. (2004) 79(2):381-393.
  • EDGINTON AN, SCHMITT W, WILLMANN S: Development and evaluation of a generic physiologically based pharmacokinetic model for children. Clin. Pharmacokinet. (2006) 45(10):1013-1034.
  • LI J, GWILT PR: The effect of age on the early disposition of doxorubicin. Cancer Chemother. Pharmacol. (2003) 51(5):395-402.
  • DENNISON JE, BIGELOW PL, MUMTAZ MM, ANDERSEN ME, DOBREV ID, YANG RS: Evaluation of potential toxicity from co-exposure to three CNS depressants (toluene, ethylbenzene, and xylene) under resting and working conditions using PBPK modeling. J. Occup. Environ. Hyg. (2005) 2(3):127-135.
  • HAMELIN G, CHAREST-TARDIF G, TRUCHON G, TARDIF R: Physiologically based modeling of n-hexane kinetics in humans following inhalation exposure at rest and under physical exertion: impact on free 2,5-hexanedione in urine and on n-hexane in alveolar air. J. Occup. Environ. Hyg. (2005) 2(2):86-97.
  • REDDY MB, ANDERSEN ME, MORROW PE et al.: Physiological modeling of inhalation kinetics of octamethylcyclotetrasiloxane in humans during rest and exercise. Toxicol. Sci. (2003) 72(1):3-18.
  • CORLEY RA, MCMARTIN KE: Incorporation of therapeutic interventions in physiologically based pharmacokinetic modeling of human clinical case reports of accidental or intentional overdosing with ethylene glycol. Toxicol. Sci. (2005) 85(1):491-501.
  • LAGNEAU F, MARTY J, BEYNE P, TOD M: Physiological modeling for indirect evaluation of drug tissular pharmacokinetics under non-steady-state conditions: an example of antimicrobial prophylaxis during liver surgery. J. Pharmacokinet. Pharmacodyn. (2005) 32(1):1-32.
  • DUCONGE J, FERNANDEZ-SANCHEZ E, MACIAS A et al.: Monoclonal anti-EGF receptor antibody (ior-R3) pharmacokinetic study in tumor bearing nude mice: role of the receptor-mediated endocytosis on drug clearance. Eur. J. Drug Metab. Pharmacokinet. (2002) 27(2):101-105.
  • FALLON MS, VARSHNEY M, DENNIS DM, CHAUHAN A: A physiologically-based pharmacokinetic model of drug detoxification by nanoparticles. J. Pharmacokinet. Pharmacodyn. (2004) 31(5):381-400.
  • VILLESEN HH, FOSTER DJ, UPTON RN, SOMOGYI AA, MARTINEZ A, GRANT C: Cerebral kinetics of oxycodone in conscious sheep. J. Pharm. Sci. (2006) 95(8):1666-1676.
  • FOSTER DJ, JENSEN ML, UPTON RN, SOMOGYI AA, GRANT C, MARTINEZ A: Blood–brain equilibration kinetics of levo-alpha-acetyl-methadol using a chronically instrumented sheep preparation. Br. J. Pharmacol. (2006) 147(2):209-217.
  • FOSTER DJ, UPTON RN, SOMOGYI AA, GRANT C, MARTINEZ A: The acute disposition of (R)- and (S)-methadone in brain and lung of sheep. J. Pharmacokinet. Pharmacodyn. (2005) 32(3-4):547-570.
  • UPTON RN, LUDBROOK GL: Pharmacokinetic–pharmacodynamic modelling of the cardiovascular effects of drugs – method development and application to magnesium in sheep. BMC Pharmacol. (2005) 5(1):5.
  • CRAIGMILL AL: A physiologically based pharmacokinetic model for oxytetracycline residues in sheep. J. Vet. Pharmacol. Ther. (2003) 26(1):55-63.
  • KNOBLOCH M, PORTIER CJ, LEVIONNOIS OL et al.: Antinociceptive effects, metabolism and disposition of ketamine in ponies under target-controlled drug infusion. Toxicol. Appl. Pharmacol. (2006) 216(3):373-386.
  • TRACHSEL D, TSCHUDI P, PORTIER CJ et al.: Pharmacokinetics and pharmacodynamic effects of amiodarone in plasma of ponies after single intravenous administration. Toxicol. Appl. Pharmacol. (2004) 195(1):113-125.
  • NICHOLS JW, FITZSIMMONS PN, WHITEMAN FW, DAWSON TD, BABEU L, JUENEMANN J: A physiologically based toxicokinetic model for dietary uptake of hydrophobic organic compounds by fish: I. Feeding studies with 2,2′,5,5′-tetrachlorobiphenyl. Toxicol. Sci. (2004) 77(2):206-218.
  • WINTERMYER M, SKAIDAS A, ROY A et al.: The development of a physiologically-based pharmacokinetic model using the distribution of 2,3,7,8-tetrachlorodibenzo-p-dioxin in the tissues of the eastern oyster (Crassostrea virginica). Mar. Environ. Res. (2005) 60(2):133-152.
  • LIAO CM, LIANG HM, CHEN BC et al.: Dynamical coupling of PBPK/PD and AUC-based toxicity models for arsenic in tilapia Oreochromis mossambicus from blackfoot disease area in Taiwan. Environ. Pollut. (2005) 135(2):221-233.
  • BOYES WK, BERCEGEAY M, KRANTZ T, EVANS M, BENIGNUS V, SIMMONS JE: Momentary brain concentration of trichloroethylene predicts the effects on rat visual function. Toxicol. Sci. (2005) 87(1):187-196.
  • LOIZOU GD, SPENDIFF M: A human PBPK model for ethanol describing inhibition of gastric motility. J. Mol. Histol. (2004) 35(7):687-696.
  • TOUTAIN PL, LEFEBVRE HP: Pharmacokinetics and pharmacokinetic/pharmacodynamic relationships for angiotensin-converting enzyme inhibitors. J. Vet. Pharmacol. Ther. (2004) 27(6):515-525.
  • HIMMELSTEIN MW, CARPENTER SC, EVANS MV, HINDERLITER PM, KENYON EM: Kinetic modeling of beta-chloroprene metabolism: II. The application of physiologically based modeling for cancer dose response analysis. Toxicol. Sci. (2004) 79(1):28-37.
  • PLOWCHALK DR, TEEGUARDEN J: Development of a physiologically based pharmacokinetic model for estradiol in rats and humans: a biologically motivated quantitative framework for evaluating responses to estradiol and other endocrine-active compounds. Toxicol. Sci. (2002) 69(1):60-78.
  • MEEK ME, BEAUCHAMP R, LONG G, MOIR D, TURNER L, WALKER M: Chloroform: exposure estimation, hazard characterization, and exposure-response analysis. J. Toxicol. Environ. Health B Crit. Rev. (2002) 5(3):283-334.
  • TIMCHALK C, NOLAN RJ, MENDRALA AL, DITTENBER DA, BRZAK KA, MATTSSON JL: A physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) model for the organophosphate insecticide chlorpyrifos in rats and humans. Toxicol. Sci. (2002) 66(1):34-53.
  • ROWLAND ML, BALANT C, PECK C: Physiologically based pharmacokinetics in drug development and regulatory science: a workshop report (Georgetown University, Washington, DC, May 29 – 30, 2002). AAPS PharmSci. (2004) 6(1):E6.
  • CLARK LH, SETZER RW, BARTON HA: Framework for evaluation of physiologically-based pharmacokinetic models for use in safety or risk assessment. Risk Anal. (2004) 24(6):1697-1717.
  • HINDERLITER PM, THRALL KD, CORLEY RA, BLOEMEN LJ, BOGDANFFY MS: Validation of human physiologically based pharmacokinetic model for vinyl acetate against human nasal dosimetry data. Toxicol. Sci. (2005) 85(1):460-467.
  • DALEY-YATES PT, RICHARDS DH: Relationship between systemic corticosteroid exposure and growth velocity: development and validation of a pharmacokinetic/pharmacodynamic model. Clin. Ther. (2004) 26(11):1905-1919.
  • ARMITAGE P, BEHRENBRUCH C, BRADY M, MOORE N: Extracting and visualizing physiological parameters using dynamic contrast-enhanced magnetic resonance imaging of the breast. Med. Image Anal. (2005) 9(4):315-329.
  • KAMASAK ME, BOUMAN CA, MORRIS ED, SAUER K: Direct reconstruction of kinetic parameter images from dynamic PET data. IEEE Trans. Med. Imaging (2005) 24(5):636-650.
  • BERKELMANS HW, MOESKOPS BW, BOMINAAR J, SCHEEPERS PT, HARREN FJ: Pharmacokinetics of ethylene in man by on-line laser photoacoustic detection. Toxicol. Appl. Pharmacol. (2003) 190(3):206-213.
  • JONES HM, PARROTT N, OHLENBUSCH G, LAVE T: Predicting pharmacokinetic food effects using biorelevant solubility media and physiologically based modelling. Clin. Pharmacokinet. (2006) 45(12):1213-1226.
  • JONES HM, PARROTT N, JORGA K, LAVE T: A novel strategy for physiologically based predictions of human pharmacokinetics. Clin. Pharmacokinet. (2006) 45(5):511-542.
  • PARROTT N, JONES H, PAQUEREAU N, LAVE T: Application of full physiological models for pharmaceutical drug candidate selection and extrapolation of pharmacokinetics to man. Basic Clin. Pharmacol. Toxicol. (2005) 96(3):193-199.

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.