545
Views
27
CrossRef citations to date
0
Altmetric
Review

Cytochrome P450/redox partner fusion enzymes: biotechnological and toxicological prospects

, &
Pages 847-863 | Published online: 21 Nov 2007

Bibliography

  • GUENGERICH FP: Human cytochrome P450 enzymes. In: Cytochrome P450: Structure, Mechanism and Biochemistry. Ortiz de Montellano PR (Ed.), Kluwer Academic/Plenum Publishers, New York, USA (2005):377-530.
  • MCGINNITY DF, RILEY RJ: Predicting drug pharmacokinetics from in vitro metabolism studies. Biochem. Soc. Trans. (2005) 29:135-139.
  • MUNRO AW, GIRVAN HM, MCLEAN KJ: Cytochrome P450-redox partner fusion enzymes. Biochim. Biophys. Acta (2007) 1770:345-359.
  • MAHGOUB A, IDLE JR, DRING LG et al.: Polymorphic hydroxylation of debrisoquinone in man. Lancet (1977) 2:584-586.
  • WANG RW, KARI PH, LU AY et al.: Biotransformation of lovastatin. IV. Identification of cytochrome P450 3A proteins as the major enzymes responsible for the oxidative metabolism of lovastatin in rat and human liver microsomes. Arch. Biochem. Biophys. (1991) 290:355-361.
  • KUNITOH S, IMAOKA S, HIROI T et al.: Acetaldehyde as well as ethanol is metabolised by human CYP2E1. J. Pharmacol. Exp. Ther. (1997) 280:527-532.
  • KOREEDA M, MOORE PD, WISLOCKI PG et al.: Binding of benzo[a]pyrene 7,8-diol-9,10-epoxides to DNA, RNA, and protein of mouse skin occurs with high stereoselectivity. Science (1978) 199:778-781.
  • BOOCOCK DJ, BROWN K, GIBBS AH et al.: Identification of human CYP forms involved in the activation of tamoxifen and irreversible binding to DNA. Carcinogenesis (2002) 23:1897-1901.
  • MUNRO AW, LINDSAY JG: Bacterial cytochromes P-450. Mol. Microbiol. (1996) 20:1115-1125.
  • SLIGAR SG, CINTI DL, GIBSON GG, SCHENKMAN JB: Spin state control of the hepatic cytochrome P450 redox potential. Biochem. Biophys. Res. Commun. (1979) 90:925-932.
  • DAFF SN, CHAPMAN SK, TURNER KL et al.: Redox control of the catalytic cycle of flavocytochrome P-450 BM3. Biochemistry (1997) 36:13816-13823.
  • DENISOV IG, MAKRIS TM, SLIGAR SG, SCHLICHTING I: Structure and chemistry of cytochrome P450. Chem. Rev. (2005) 105:2253-2277.
  • NEWCOMB M, ZHANG R, CHANDRASENA RE et al.: Cytochrome P450 compound I. J. Am. Chem. Soc. (2006) 128:4580-4581.
  • MUNRO AW, LEYS DG, MCLEAN KJ et al.: P450 BM3: the very model of a modern flavocytochrome. Trends Biochem. Sci. (2002) 27:250-257.
  • MURATALIEV MB, FEYEREISEN R, WALKER FA: Electron transfer by diflavin reductases. Biochim. Biophys. Acta (2004) 1698:1-26.
  • HUBBARD PA, SHEN AL, PASCHKE R et al.: NADPH-cytochrome P450 oxidoreductase. Structural basis for hydride and electron transfer. J. Biol. Chem. (2001) 276:29163-29170.
  • MUNRO AW, GIRVAN HM, MCLEAN KJ: Variations on a (t)heme – novel mechanisms, redox partners and catalytic functions in the cytochrome P450 superfamily. Nat. Prod. Rep. (2007) 24:585-609.
  • LAWSON RJ, VON WACHENFELDT C, HAQ I et al.: Expression and characterization of the two flavodoxin proteins of Bacillus subtilis, YkuN and YkuP: biophysical properties and interactions with cytochrome P450 BioI. Biochemistry (2004) 43:12390-12409.
  • GREEN AJ, MUNRO AW, CHEESMAN MR et al.: Expression, purification and characterisation of a Bacillus subtilis ferredoxin: a potential electron transfer donor to cytochrome P450 BioI. J. Inorg. Biochem. (2003) 93:92-99.
  • SEVRIOUKOVA IF, GARCIA C, LI H et al.: Crystal structure of putidaredoxin, the [2Fe-2S] component of the P450cam monooxygenase system from Pseudomonas putida. J. Mol. Biol. (2003) 333:377-392.
  • DAIBER A, SHOUN H, ULLRICH V: Nitric oxide reductase (P450nor) from Fusarium oxysporum. J. Inorg. Biochem. (2005) 99:185-193.
  • IMAI Y, MATSUNAGA I, KUSENOSE E, ICHIHARA K: Unique heme environment at the putative distal region of hydrogen peroxide-dependent fatty acid α-hydroxylase from Sphingomonas paucimobilis (peroxygenase P450SPα). J. Biochem. (2000) 128:189-194.
  • NOBLE MA, MILES CS, CHAPMAN SK et al.: Roles of key active-site residues in flavocytochrome P450 BM3. Biochem. J. (1999) 339:371-379.
  • JACKSON CJ, LAMB DC, MARCZYLO TH et al.: A novel sterol 14α-demethylase/ferredoxin fusion protein (MCCYP51FX) from Methylococcus capsulatus represents a new class of the cytochrome P450 superfamily. J. Biol. Chem. (2002) 277:46959-46965.
  • RYLOTT EL, JACKSON RG, EDWARDS J et al.: An explosive-degrading cytochrome P450 activity and its targeted application for the phytoremediation of RDX. Nat. Biotechnol. (2006) 24:216-219.
  • NARHI LO, FULCO AJ: Identification and characterization of two functional domains in cytochrome P-450BM-3, a catalytically self-sufficient monooxygenase induced by barbiturates in Bacillus megaterium. J. Biol. Chem. (1987) 262:6683-6690.
  • MILES JS, MUNRO AW, ROSPENDOWSKI BN et al.: Domains of the catalytically self-sufficient cytochrome P-450 BM-3. Genetic construction, overexpression, purification and spectroscopic characterization. Biochem. J. (1992) 288:503-509.
  • GUSTAFSSON MC, ROITEL O, MARSHALL KR et al.: Expression, purification, and characterization of Bacillus subtilis cytochromes P450 CYP102A2 and CYP102A3: flavocytochrome homologues of P450 BM3 from Bacillus megaterium. Biochemistry (2004) 43:5474-5487.
  • DE MOT R, PARRET AH: A novel class of self-sufficient cytochrome P450 monooxygenases in prokaryotes. Trends Microbiol. (2002) 10:502-508.
  • GOVINDARAJ S, POULOS TL: Role of the linker region connecting the reductase and heme domains in cytochrome P450BM-3. Biochemistry (1996) 34:11221-11226.
  • ROBERTS GA, CELIK A, HUNTER DJ et al.: A self-sufficient cytochrome P450 with a primary structural organization that includes a flavin domain and a [2Fe-2S] redox center. J. Biol. Chem. (2003) 278:48914-48920.
  • CELIK A, ROBERTS GA, WHITE JH et al.: Probing the substrate specificity of the catalytically self-sufficient cytochrome P450 RhF from a Rhodococcus species. Chem. Commun. (2006) 2006:4492-4494.
  • MUNRO AW, DAFF S, COGGINS JR et al.: Probing electron transfer in flavocytochrome P-450 BM3 and its component domains. Eur. J. Biochem. (1996) 239:403-409.
  • LI HY, DARWISH K, POULOS TL: Characterization of recombinant Bacillusmegaterium cytochrome P-450 BM-3 and its two functional domains. J. Biol. Chem. (1991) 266:11909-11914.
  • BODDUPALLI SS, ESTABROOK RW, PETERSON JA: Fatty acid monooxygenation by cytochrome P-450BM-3. J. Biol. Chem. (1990) 265:4233-4239.
  • MUNRO AW, LINDSAY JG, COGGINS JR et al.: Structural and enzymological analysis of the interaction of isolated domains of cytochrome P-450 BM3. FEBS Lett. (1994) 343:70-74.
  • PORTER TD: An unusual yet strongly conserved flavoprotein reductase in bacteria and mammals. Trends Biochem. Sci. (1991) 16:154-158.
  • GOVINDARAJ S, POULOS TL: The domain architecture of cytochrome P450BM-3. J. Biol. Chem. (1997) 272:7915-7921.
  • SMITH GC, TEW DG, WOLF CR: Dissection of NADPH-cytochrome P450 oxidoreductase into distinct functional domains. Proc. Natl. Acad. Sci. USA (1994) 91:8710-8714.
  • LI H, POULOS TL: The structure of the cytochrome P450 BM-3 haem domain complexed with the fatty acid substrate, palmitoleic acid. Nat. Struct. Biol. (1997) 4:140-146.
  • HAINES DC, TOMCHICK DR, MACHIUS M, PETERSON JA: Pivotal role of water in the mechanism of P450 BM-3. Biochemistry (2001) 40:13456-13465.
  • GIRVAN HM, MARSHALL KR, LAWSON RJ et al.: Flavocytochrome P450 BM3 mutant A264E undergoes substrate-dependent formation of a novel heme iron ligand set. J. Biol. Chem. (2004) 279:23274-23286.
  • JOYCE HM, GIRVAN HM, MUNRO AW, LEYS D: A single mutation in cytochrome P450 BM3 induces the conformational rearrangement seen upon substrate binding in the wild-type enzyme. J. Biol. Chem. (2004) 279:23287-23293.
  • KLEIN ML, FULCO AJ: Critical residues involved in FMN binding and catalytic activity in cytochrome P450BM-3. J. Biol. Chem. (1993) 268:7553-7561.
  • GIRVAN HM, SEWARD HE, TOOGOOD HS et al.: Structural and spectroscopic characterization of P450 BM3 mutants with unprecedented P450 heme iron ligand sets. New heme ligation states influence conformational equilibria in P450 BM3. J. Biol. Chem. (2007) 282:564-572.
  • NEELI R, GIRVAN HM, LAWRENCE A et al.: The dimeric form of flavocytochrome P450 BM3 is catalytically functional as a fatty acid hydroxylase. FEBS Lett. (2005) 579:5582-5588.
  • BLACK SD, MARTIN ST: Evidence for conformational dynamics and molecular aggregation in cytochrome P450 102 (BM-3). Biochemistry (1994) 33:12056-12062.
  • SIDDHANTA U, PRESTA A, FAN B et al.: Domain swapping in inducible nitric-oxide synthase. Electron transfer occurs between flavin and heme groups located on adjacent subunits in the dimer. J. Biol. Chem. (1998) 273:18950-18958.
  • OLIVER CF, MODI S, SUTCLIFFE MJ et al.: A single mutation in cytochrome P450 BM3 changes substrate orientation in a catalytic intermediate and the regiospecificity of hydroxylation. Biochemistry (1997) 36:1567-1572.
  • YEOM H, SLIGAR SG, LI H et al.: The role of Thr268 in oxygen activation of cytochrome P450BM-3. Biochemistry (1995) 34:14733-14740.
  • OST TW, MILES CS, MUNRO AW et al.: Phenylalanine 393 exerts thermodynamic control over the heme of flavocytochrome P450 BM3. Biochemistry (2001) 40:13421-13429.
  • PALMER CN, GUSTAFSSON MC, DOBSON H et al.: Adaptive responses to fatty acids are mediated by the regulated expression of cytochromes P450. Biochem. Soc. Trans. (1999) 27:374-378.
  • NAKAYAME N, TAKEMAE A, SHOUN H: Cytochrome P450foxy, a catalytically self-sufficient fatty acid hydroxylase of the fungus Fusarium oxysporum. J. Biochem. (1996) 119:435-440.
  • KITAZUME T, TANAKA A, TAKAYA N et al.: Kinetic analysis of saturated fatty acids by recombinant P450foxy produce by an Escherichia coli expression system. Eur. J. Biochem. (2002) 269:2075-2082.
  • SEO JA, PROCTOR RH, PLATTNER RD: Characterization of four clustered and coregulated genes associated with fumonisin biosynthesis in Fusarium verticillioides. Fungal Genet. Biol. (2001) 34:155-165.
  • OST TW, MILES CS, MURDOCH J et al.: Rational re-design of the substrate binding site of flavocytochrome P450 BM3. FEBS Lett. (2000) 486:173-177.
  • CARMICHAEL AB, WONG LL: Protein engineering of Bacillus megaterium CYP102. The oxidation of polycyclic aromatic hydrocarbons. Eur. J. Biochem. (2001) 268:3117-3125.
  • GRAHAM-LORENCE S, TRUAN G, PETERSON JR et al.: An active site substitution, F87V, converts cytochrome P450 BM-3 into a regio- and stereoselective (14S, 15R)-arachidonic acid epoxygenase. J. Biol. Chem. (1997) 272:1127-1135.
  • MEINHOLD P, PETERS MW, CHEN MM et al.: Direct conversion of ethane to ethanol by engineered cytochrome P450 BM3. ChemBiochem (2005) 6:1765-1768.
  • PETERS MW, MEINHOLD P, GLIEDER A, ARNOLD FH: Regio- and enantioselective alkane hydroxylation with engineered cytochromes P450 BM-3. J. Am. Chem. Soc. (2003) 125:13442-13450.
  • KUBO T, PETERS MW, MEINHOLD P, ARNOLD FH: Enantioselective epoxidation of terminal alkenes to (R)- and (S)-epoxides by engineered cytochromes P450 BM-3. Chemistry (2006) 12:1216-1220.
  • SENG WONG T, ARNOLD FH, SCHWANEBERG U: Laboratory evolution of cytochrome P450 BM-3 monooxygenase for organic cosolvents. Biotechnol. Bioeng. (2004) 85:351-358.
  • GLIEDER A, FARINAS ET, ARNOLD FH: Laboratory evolution of a soluble, self-sufficient, highly active alkane hydroxylase. Nat. Biotechnol. (2002) 20:1135-1139.
  • LENTZ O, FEENSTRA A, HABICHER T et al.: Altering the regioselectivity of cytochrome P450 CYP102A3 of Bacillus subtilis by using a new versatile assay system. ChemBiochem (2006) 7:345-350.
  • AXARLI I, PRIGIPAKI A, LABROU NE: Engineering the substrate specificity of cytochrome P450 CYP102A2 by directed evolution: production of an efficient enzyme for bioconversion of fine chemicals. Biomol. Eng. (2005) 22:81-88.
  • LI QS, SCHWANEBERG U, FISCHER M et al.: Rational evolution of a chain-specific cytochrome P-450 BM-3 variant. Biochim. Biophys. Acta (2001) 1545:114-121.
  • SOWDEN RJ, YASMIN S, REES NH et al.: Biotransformation of the sesquiterpene (+)-valencene by cytochrome P450cam and P450BM-3. Org. Biomol. Chem. (2005) 3:57-64.
  • SULISTYANINGDYAH WT, OGAWA J, LI QS et al.: Metabolism of polychlorinated dibenzo-p-dioxins by cytochrome P450 BM-3 and its mutant. Biotechnol. Lett. (2004) 26:1857-1860.
  • LI QS, OGAWA J, SCHMID RD, SHIMIZU S: Indole hydroxylation by bacterial cytochrome P450 BM-3 and modulation of activity by cumene hydroperoxide. Biosci. Biotechnol. Biochem. (2005) 69:293-300.
  • KUMAR S, LIU H, HALPERT JR: Engineering of cytochrome P450 3A4 for enhanced peroxide-mediated substrate oxidation using directed evolution and site-directed mutagenesis. Drug Metab. Dispos. (2006) 34:1958-1965.
  • KUMAR S, SUN L, LIU H et al.: Engineering mammalian cytochrome P450 2B1 by directed evolution for enhanced catalytic tolerance to temperature and dimethyl sulfoxide. Protein Eng. Des. Sel. (2006) 19:547-554.
  • MILES CS, OST TW, NOBLE MA et al.: Protein engineering of cytochromes P-450. Biochim. Biophys. Acta (2000) 1543:383-407.
  • STUEHR DJ, SANTOLINI J, WANG ZQ et al.: Update on mechanism and catalytic regulation in the NO synthases. J. Biol. Chem. (2004) 279:36167-36170.
  • DUNFORD AJ, RIGBY SE, HAY S et al.: Conformational and thermodynamic control of electron transfer in neuronal nitric oxide synthase. Biochemistry (2007) 46:5018-5029.
  • FISHER CW, SHET MS, CAUDLE CA et al.: High level expression in Escherichia coli of enzymatically active fusion proteins containing the domains of mammalian cytochromes P450 and NADPH-cytochrome P450 reductase flavoprotein. Proc. Natl. Acad. Sci. USA (1992) 89:10817-10821.
  • CHAURASIA CS, ALTERMAN MA, LIU P, HANZLIK RP: Biochemical characterization of lauric acid ω-hydroxylation by a CYP4A1/NADPH-cytochrome P450 reductase fusion protein. Arch. Biochem. Biophys. (1995) 317:161-169.
  • CHUN YJ, SHIMADA T, GUENGERICH FP: Construction of a human cytochrome P450 1A1:rat NADPH-cytochrome P450 reductase fusion protein cDNA and expression in Escherichia coli, purification, and catalytic properties of the enzyme in bacterial cells and after purification. Arch. Biochem. Biophys. (1996) 330:48-58.
  • PARIKH A, GUENGERICH FP: Expression, purification and characterization of a catalytically active human cytochrome P450 1A2:rat NADPH-cytochrome P450 reductase fusion protein. Protein Expr. Purif. (1997) 9:346-354.
  • DEENI YY, PAINE MJ, AYRTON AD et al.: Expression, purification and biochemical characterization of a human cytohrome P450 CYP2D6-NADPH cytochrome P450 reductase fusion protein. Arch. Biochem. Biophys. (2001) 396:16-24.
  • DODHIA VR, FANTUZZI A, GILARDI G: Engineering human cytochrome P450 enzymes into catalytically self-sufficient chimeras using molecular lego. J. Biol. Inorg. Chem. (2006) 11:903-916.
  • FUZIWARA S, SAGAMI I, ROZHKOVA E et al.: Catalytically functional chimeras of P450 BM3 and nitric oxide synthase. J. Inorg. Biochem. (2002) 91:515-526.
  • GILEP AA, GURYEV OL, USANOV SA, ESTABROOK RW: Reconstitution of the enzymatic activities of cytochrome P450s using recombinant flavocytochromes containing rat cytochrome b5 fused to NADPH-cytochrome P450 reductase with various membrane-binding segments. Arch. Biochem. Biophys. (2001) 390:215-221.
  • GILEP AA, GURYEV OL, USANOV SA, ESTABROOK RW: Expression, purification, and physical properties of recombinant flavocytochrome fusion proteins containing rat cytochrome b5 linked to NADPH-cytochrome P450 reductase by different membrane-binding segments. Arch. Biochem. Biophys. (2001) 390:222-234.
  • SIBBESEN O, DE VOSS JJ, ORTIZ DE MONTELLANO PR: Putidaredoxin reductase-putidaredoxin-cytochrome P450cam triple fusion protein. Construction of a self-sufficient Escherichia coli catalytic system. J. Biol. Chem. (1996) 271:22462-22469.
  • GOVINDARAJ S, POULOS TL: Probing the structure of the linker connecting the reductase and heme domains of cytochrome P450BM-3 using site-directed mutagenesis. Protein Sci. (1996) 5:1389-1393.
  • STROUP D, RAMSARAN JR: Cholesterol 7-α-hydroxylase is phosphorylated at multiple amino acids. Biochem. Biophys. Res. Commun. (2005) 329:957-965.
  • ZOU MH: Peroxynitrite and protein tyrosine nitration of prostacyclin synthase. Prostaglandins Other Lipid Mediat. (2007) 82:119-127.
  • QUARONI LG, SEWARD HE, MCLEAN KJ et al.: Interaction of nitric oxide with cytochrome P450 BM3. Biochemistry (2004) 43:16416-16431.
  • MUNRO AW, LINDSAY JG, COGGINS JR et al.: NADPH oxidase activity of cytochrome P-450 BM3 and its constituent reductase domain. Biochim. Biophys. Acta (1995) 1231:255-264.
  • DI NARDO G, FANTUZZI A, SIDERI A et al.: Wild-type CYP102A1 as a biocatalyst: turnover of drugs usually metabolised by human liver enzymes. J. Biol. Inorg. Chem. (2007) 12:313-323.
  • VAN VUGT-LUSSENBURG BMA, STJERNSCHANTZ E, LASTDRAGER J et al.: Identification of critical residues in novel drug metabolising mutants of cytochrome P450 BM3 using random mutagenesis. J. Med. Chem. (2007) 50:455-461.
  • OTEY CR, BANDARA G, LALONDE J et al.: Preparation of human metabolites of propranolol using laboratory evolved bacterial cytochromes P450. Biotechnol. Bioeng. (2006) 93:494-499.
  • LANDWEHR M, HOCHREIN L, OTEY CR et al.: Enantioselective α-hydroxylation of 2-arylacetic acid derivatives and buspirone catalyzed by engineered cytochrome P450 BM-3. J. Am. Chem. Soc. (2006) 128:6058-6059.
  • TYCHOPOULOS M, CORCOS L, GENNE P et al.: A virus-directed enzyme prodrug therapy (VDEPT) strategy for lung cancer using a CYP2B6/NADPH-cytochrome P450 reductase fusion protein. Cancer Gene Ther. (2005) 12:497-508.
  • BERNHARDT R: Cytochromes P450 as versatile biocatalysts. J. Biotechnol. (2006) 124:128-145.
  • PERERA R, SONO M, SIGMAN JA et al.: Neutral thiol as a proximal ligand to ferrous heme iron: implications for heme proteins that lose cysteine thiolate ligation on reduction. Proc. Natl. Acad. Sci. USA (2003) 100:3641-3646.
  • DUNFORD AJ, MCLEAN KJ, SABRI M et al.: Rapid P450 heme iron reduction by laser photoexcitation of Mycobacterium tuberculosis CYP121 and CYP51B1. Analysis of CO complexation reactions and reversibility of the P450/P420 equilibrium. J. Biol. Chem. (2007) 282:24816-24824.
  • EIBEN S, BARTELMAS H, URLACHER VB: Construction of a thermostable cytochrome P450 chimera derived from self-sufficient mesophilic parents. Appl. Microbiol. Biotechnol. (2007) 75:1055-1061.
  • LEBRUN LA, HOCH U, ORTIZ DE MONTELLANO PR: Autocatalytic mechanism and consequences of covalent heme attachment in the cytochrome P4504A family. J. Biol. Chem. (2002) 277:12775-12761.
  • MAURER SC, SCHULZE H, SCMID RD, URLACHER VB: Immobilisation of P450BM-3 and an NADP(+) cofactor recycling system: Towards a technical application of heme-containing monooxygenases in fine chemical synthesis. Adv. Synth. Catal. (2003) 345:802-810.
  • AXARLI I, PRIGIPAKI A, LABROU NE: Engineering the substrate specificity of cytochrome P450 CYP102A2 by directed evolution: production of an efficient enzyme for bioconversion of fine chemicals. Biomol. Eng. (2005) 22:81-88.
  • CHEFSON A, AUCLAIR K: Progress towards the easier use of P450 enzymes. Mol. Biosyst. (2006) 2:462-469.
  • LU Y, MEI L: Co-expression of P450 BM3 and glucose dehydrogenase by recombinant Escherichia coli and its application in an NADPH-dependent indigo production system. J. Ind. Microbiol. Biotechnol. (2007) 34:247-253.
  • NEELI R, ROITEL O, SCUTTON NS, MUNRO AW: Switching pyridine nucleotide specificity in P450 BM3: mechanistic analysis of the W1046H and W1046A enzymes. J. Biol. Chem. (2005) 280:17634-17644.
  • ESTABROOK RW, FAULKNER KM, SHET MS, FISHER CW: Application of electrochemistry for P450-catalyzed reactions. Methods Enzymol. (1996) 272:44-51.
  • SHIMADA T, FUJII-KURIYAMA Y: Metabolic activation of polycyclic aromatic hydrocarbons to carcinogens by cytochromes P450 1A1 and 1B1. Cancer Sci. (2004) 95:1-6.
  • MINERS JO, BIRKETT DJ: Cytochrome P4502C9: an enzyme of major importance in human drug metabolism. Br. J. Clin. Pharmacol. (1998) 45:525-538.
  • WIENKERS LC, WURDEN CJ, STORCH E et al.: Formation of (R)-8-hydroxywarfarin in human liver microsomes. A new metabolic marker for the (S)-mephenytoin hydroxylase P4502C19. Drug Metab. Dispos. (1996) 24:610-614.
  • WILLIAMS PA, COSME J, WARD A et al.: Crystal structure of human cytochrome P450 2C9 with bound warfarin. Nature (2003) 424:464-468.
  • CAO PR, BULOW H, DUMAS B, BERNHARDT R: Construction and characterization of a catalytic fusion protein system: P-450(11β)-adrenodoxin reductase-adrenodoxin. Biochim. Biophys. Acta (2000) 1476:253-264.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.