565
Views
177
CrossRef citations to date
0
Altmetric
Review

Neuroinflammation and microglia: considerations and approaches for neurotoxicity assessment

, PhD & , PhD
Pages 1265-1277 | Published online: 17 Sep 2008

Bibliography

  • Garden GA, Möller T. Microglia biology in health and disease. J Neuroimmune Pharmacol 2006;1:127-37
  • Schwartz M, Butovsky O, Bruck W, Hanisch U-K. Microglial phenotype: is the commitent reversible? Trends Neurosci 2006;29:68-74
  • Farfara D, Lifshitz V, Frenkel D. Neuroprotective and neurotoxic properties of glial cells in the pathogenesis of Alzheimer's disease. J Cell Mol Med 2008;12:762-80
  • Hailer NP. Immunosuppression after traumatic or ischemic CNS damage: it is neuroprotective and illuminates the role of microglial cells. Prog Neurobiol 2008;84:211-33
  • Von Bernhardi R. Glial cell dysregulation: a new perspective on Alzheimer Disease. Neurotox Res 2007;12:215-32
  • Carson MJ, Doose JM, Melchior B, et al. CNS immune privilege: hiding in plain sight. Immunol Rev 2006;213:48-65
  • Galea I, Bechmann I, Perry VH. What is immune privilege (not)? Trends Immunol 2007;28:12-8
  • Pavlov VA, Wang H, Czura CJ, et al. The cholinergic anti-inflammatory pathway: a missing link in neuroimmunomodulation. Mol Med 2003;9:125-34
  • Perry VH. The influence of systemic inflammation on inflammation in the brain: implications for chronic neurodegenerative disease. Brain Behav Immmun 2004;18:407-13
  • Carson MJ, Lo DD. Perspective is everything: an irreverent discussion of CNS-immune system interactions as viewed from different scientific traditions. Brain Behav Immun 2007;21:367-73
  • Perry VH, Cunningham C, Holmes C. Systemic infections and inflammation affect chronic neurodegeneration. Nat Rev 2007;7:161-7
  • Streit WJ, Mrak RE, Griffin WS. Microglia and neuroinflammation: a pathological perspective. J Neuroinflamm 2004;1:14
  • Streit WJ. Microglial senescence: does the brain's immune system have an expiration date? Trends Neurosci 2006;29:506-10
  • Kreutzberg GW. Microglia: a sensor for pathological events in the CNS. Trends Neurosci 1996;19:312-8
  • Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 2005;308:1314-8
  • Davalos D, Grutzendler J, Yang G, et al. ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 2005;8:752-8
  • Raivich G. Like cops on the beat: the active role of resting microglia. Trends Neurosci 2005;28:571-3
  • Bruccoleri A, Harry GJ. Chemical-induced hippocampal neurodegeneration and elevations in TNFalpha, TNFbeta, IL-1alpha, IP-10, and MCP-1 mRNA in osteopetrotic (op/op) mice. J Neurosci Res 2000;62:146-55
  • Lalancette-Hebert M, Gowing G, Simard A, et al. Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain. J Neurosci 2007;27:2596-605
  • Flaris NA, Densmore TL, Molleston MC, Hickey WF. Characterization of microglia and macrophages in the central nervous system of rats: definition of the differential expression of molecules using standard and novel monoclonal antibodies in normal CNS and in four models of parenchymal reaction. Glia 1993;7:34-40
  • Hickey WF, Kimura H. Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo. Science 1988;239:290-2
  • Frei K, Fontana A. Antigen presentation in the CNS. Mol Psychiatry 1997;2:96-8
  • Carson MJ, Sutcliffe JG, Campbell IL. Balancing function vs. self defense: the CNS as an active regulator of immune responses. J Neurosci Res 1999;55:1-8
  • Carson MJ, Reilly CR, Sutcliff JG, Lo D. Mature microglia resemble immature antigen-presenting cells. Glia 1998;22:72-85
  • Flugel A, Labeur MS, Grasbon-Frodl EM, et al. Microglia only weakly present glioma antigen to cytotoxic T cells. Int J Dev Neurosci 1999;17:547-56
  • Carson MJ, Bilousova TV, Puntambekar SS, et al. A rose by any other name? The potential consequences of microglial heterogeneity during CNS health and disease. Neurotherapeutics 2007;4:571-9
  • Nakajima K, Tohyama Y, Kohsaka S, Kurihara T. Ability of rat microglia to uptake extracellular glutamate. Neurosci Lett 2001;307:171-4
  • Magnus T, Chan A, Savill J, et al. Phagocytotic removal of apoptotic, inflammatory lymphocytes in the central nervous system by microglia and its functional implications. J Neuroimmunol 2002;130:1-9
  • Shaw JA, Perry VH, Mellanby J. MHC class II expression by microglia in tetanus toxin-induced experimental epilepsy in the rat. Neuropathol Appl Neurobiol 1994;20:392-8
  • Hoek RM, Ruuls SR, Murphy CA, et al. Down-regulation of the macrophage lineage through interaction with OX2 (CD200). Science 2000;290:1768-71
  • Neumann H. Control of glial immune function by neurons. Glia 2001;36:191-9
  • Billiards SS, Haynes RL, Folkerth RD, et al. Development of microglia in the cerebral white matter of the human fetus and infant. J Comp Neurol 2006;497:199-208
  • Polazzi E, Contestabile A. Reciprocal interactions between microglia and neurons: from survival to neuropathology. Rev Neurosci 2002;13:221-42
  • Marín-Teva JL, Dusart I, Colin C, et al. Microglia promote the death of developing Purkinje cells. Neuron 2004;41:535-47
  • Monier A, Evrard P, Gressens P, Verney C. Distribution and differentiation of microglia in the human encephalon during the first two trimesters of gestation. J Comp Neurol 2006;499:565-82
  • Tanaka S, Suzuki K, Watanabe M, et al. Upregulation of a new microglial gene, mrf-1, in response to programmed neuronal cell death and degeneration. J Neurosci 1998;18:6358-69
  • Finch CE, Morgan TE, Rozovsky I, et al. Microglia and aging in the brain. In: Streit WJ, editor, Microglia in the regenerating and degenerating CNS. New York: Spriner Verlag; 2002. p. 275-305
  • Streit WJ, Sammons NW, Kuhns AJ, Sparks DL. Dystrophic microglia in the aging human brain. Glia 2004;45:208-12
  • Harry GJ, Lefebvre d'Hellencourt C, Bruccoleri A, Schemchel D. Age-dependent cytokine responses: trimethyltin hippocampal injury in wild-type, APOE knockout, and APOE4 mice. Brain Behav Immun 2000;14:288-304
  • Ma L, Morton AJ, Nicholson LF. Microglia density decreases with age in a mouse model of Huntington's disease. Glia 2003;43:274-80
  • Streit WJ, Miller KR, Lopes KO, Njie E. Microglial degeneration in the aging brain – bad news for neurons? Front Biosci 2008;13:3423-38
  • Gaskin F, Finley J, Fang Q, et al. Human antibodies reactive with beta-amyloid protein in Alzheimer's disease. J Exp Med 1993;177:1181-6
  • Hyman BT, Smith C, Buldyrev I, et al. Autoantibodies to amyloid-beta and Alzheimer's disease. Ann Neurol 2001;49:808-10
  • Gasque P, Dean YD, McGreal EP, et al. Complement components of the innate immune system in health and disease in the CNS. Immunopharmacology 2000;49:171-86
  • McGeer PL, McGeer EG. Inflammation, autotoxicity and Alzheimer disease. Neurobiol Aging 2001;22:799-809
  • Husemann J, Loike JD, Anankov R, et al. Scavenger receptors in neurobiology and neuropathology: their role on microglia and other cells of the nervous system. Glia 2002;40:195-205
  • Kielian T, Mayes P, Kielian M. Characterization of microglial responses to Staphylococcus aureus: effects on cytokine, costimulatory molecules, and Toll-like receptor expression. J Neuroimmunol 2002;130:86-99
  • Bsibsi M, Persoon-Deen C, Verwer RW, et al. Toll-like receptor 3 on adult human astrocytes triggers production of neuroprotective mediators. Glia 2006;53:688-95
  • Shen Y, Lue L, Yang L, et al. Complement activation by beta-amyloid in Alzheimer disease. Proc Natl Acad Sci USA 1992;89:10016-20
  • Webster SD, Galvan MD, Ferran E, et al. Antibody-mediated phagocytosis of the amyloid beta-peptide in microglia is differentially modulated by C1q. J Immunol 2001;166:7496-503
  • Fonseca MI, Zhou J, Botto M, Tenner AJ. Absence of C1q leads to less neuropathology in transgenic mouse models of Alzheimer's disease. J Neurosci 2004;24:6457-65
  • Wyss-Coray T, Yan F, Lin AH, et al. Prominent neurodegeneration and increased plaque formation in complement-inhibited Alzheimer's mice. Proc Natl Acad Sci USA 2002;99:10837-42
  • Pawate S, Shen Q, Fan F, Bhat NR. Redox regulation of glial inflammatory response to lipopolysaccharide and interferon-gamma. J Neurosci Res 2004;77:540-51
  • Guix FX, Uribesalgo I, Coma M, Munoz FJ. The physiology and pathophysiology of nitric oxide in the brain. Prog Neurobiol 2005;76:126-52
  • Kaushal V, Schlichter LC. Mechanisms of microglia-mediated neurotoxicity in a new model of the stroke penumbra. J Neurosci 2008;28:2221-30, 281-98
  • Harry GJ, Lefebvre d'Hellencourt C, McPherson CA, et al. Tumor necrosis factor p55 and p75 receptors are involved in chemical-induced apoptosis of dentate granule neurons. J Neurochem 2008;106:281-98
  • Allan SM, Tyrrell PJ, Rothwell NJ. Interleukin-1 and neuronal injury. Nat Rev Immunol 2005;5:629-40
  • Badie B, Schartner J, Vorpahl J, Preston K. Interferon-gamma induces apoptosis and augments the expression of Fas and Fas ligand by microglia in vitro. Exp Neurol 2000;162:290-6
  • Taylor DL, Jones F, Kubota ES, Pocock JM. Stimulation of microglia metabotropic glutamate receptor mGlu2 triggers tumor necrosis factor a-induced neurotoxicity in concert with microglial-derived fas ligand. J Neurosci 2005;25:2945-64
  • Yang L, Lindholm K, Konishi Y, et al. Target depletion of distinct tumor necrosis factor receptor subtypes reveals hippocampal neuron death and survival through different signal transduction pathways. J Neurosci 2002;22:3025-32
  • Gendelman HE, Folks DG. Innate and acquired immunity in neurodegenerative disorders. J Leukoc Biol 1999;65:407-8
  • Matusevicius D, Navikas V, Söderström M, et al. Multiple sclerosis: the proinflammatory cytokines lymphotoxin-alpha and tumour necrosis factor-alpha are upregulated in cerebrospinal fluid mononuclear cells. J Neuroimmunol 1996;66:115-23
  • Lefebvre d'Hellencourt C, Harry GJ. Molecular profiles of mRNA levels in laser capture microdissected murine hippocampal regions differentially responsive to TMT-induced cell death. J Neurochem 2005;93:206-20
  • Harry GJ, Funk JA, Lefebvre d'Hellencourt C, et al. The type 1 interleukin 1 receptor is not required for the death of murine hippocampal dentate granule cells and microglia activation. Brain Res 2008;1194:8-20
  • Pahan K, Namboodiri AM, Sheikh FG, et al. Increasing cAMP attenuates induction of inducible nitric-oxide synthase in rat primary astorcytes. J Biol Chem 1997;272:7786-91
  • Leroith D, Nissley P. Knock your SOCS off! J Clin Invest 2005;115:233-6
  • Park EJ, Park SY, Joe EH, Jou I. 15d-PGJ2 and rosiglitazone suppress Janus kinase-STAT inflammatory signaling through induction of suppressor of cytokine signaling 1 (SOCS1) and SOCS3 in glia. J Biol Chem 2003;278:14747-52
  • Burger D, Dayer JM. Inhibitory cytokines and cytokine inhibitors. Neurology 1995;45:S39-43
  • Tracey KJ. The inflammatory reflex. Nature 2002;420:458-61
  • Schwartz M, Moalem G, Leibowitz-Amit R, Cohen IR. Innate and adaptive immune responses can be beneficial for CNS repair. Trends Neurosci 1999;22:295-9
  • Kurkowska-Jastrzebska I, Joniec I, Zaremba M, et al. Anti-myelin basic protein T cells protect hippocampal neurons against trimethyltin-induced damage. Neuroreport 2007;18:425-9
  • Simard AR, Rivest S. Neuroprotective effects of resident microglia following acute brain injury. J Comp Neurol 2007;504:716-29
  • Fujita T, Yoshimine T, Maruno M, Hayakawa T. Cellular dynamics of macrophages and microglial cells in reaction to stab wounds in rat cerebral cortex. Acta Neurochir (Wien) 1998;140:275-9
  • Hailer NP, Grampp A, Nitsch R. Proliferation of microglia and astrocytes in the dentate gyrus following entorhinal cortex lesion: a quantitative bromodeoxyuridine-labelling study. Eur J Neurosci 1999;11:3359-64
  • Cunningham C, Wilcockston DC, Campion S, et al. Central and systemic endotoxin challenges exacerbate the local inflammaotry response and increase neuronal death during chronic neurodegeneration. J Neurosci 2005;25:9275-84
  • Ajmone-Cat MA, Nicolini A, Minghetti L. Prolonged exposure of microglia to lipopolysaccharide modifies the intracellular signaling pathways and selectively promotes prostaglandin E2 synthesis. J Neurochem 2003;87:1193-203
  • Wright AK, Miller C, Williams M, Arbuthnott G. Microglial activation is not prevented by tacrolimus but dopamine neuron damage is reduced in a rat model of Parkinson's disease progression. Brain Res 2008;1216:78-86
  • Meyer-Luehmann M, Spires-Jones TL, Prada C, et al. Rapid appearance and local toxicity of amyloid-beta plaques in a mouse model of Alzheimer's disease. Nature 2008;451:720-4
  • Schmid CD, Sautkulis LN, Danielson PE, et al. Heterogeneous expression of the triggering receptor expressed on myeloid cells-2 on adult murine microglia. J Neurochem 2002;83:1309-20
  • Melchior B, Puntambekar SS, Carson MJ. Microglia and the control of autoreactive T cell responses. Neurochem Int 2006;49:145-53
  • Re F, Belyanskaya SL, Riese RJ, et al. Granulocyte-macrophage colony-stimulating factor induces an expression program in neonatal microglia that primes them for antigen presentation. J Immunol 2002;169:2264-73
  • Duke DC, Moran LB, Turkheimer FE, et al. Microglia in culture: what genes do they express? Dev Neurosci 2004;26:30-7
  • Inoue H, Sawada M, Ryo A, et al. Serial analysis of gene expression in a microglial cell line. Glia 1999;28:265-71
  • Moran LB, Duke DC, Turkheimer FE, et al. Towards a transcriptome definition of microglial cells. Neurogenetics 2004;5:95-108
  • Paglinawan R, Malipiero U, Schlapbach R, et al. TGFbeta directs gene expression of activated microglia to an anti-inflammatory phenotype strongly focusing on chemokine genes and cell migratory genes. Glia 2003;44:219-31
  • Leonardi-Essmann F, Emig M, Kitamura Y, et al. Fractalkine-upregulated milk-fat globule EGF factor-8 protein in cultured rat microglia. J Neuroimmunol 2005;160:92-101
  • Lund S, Christensen KV, Hedtjärn M, et al. The dynamics of the LPS triggered inflammatory response of murine microglia under different culture and in vivo conditions. J Neuroimmunol 2006;180:71-87
  • Zietlow R, Dunnett SB, Fawcett JW. The effect of microglia on embryonic dopaminergic neuronal survival in vitro: diffusible signals from neurons and glia change microglia from neurotoxic to neuroprotective. Eur J Neurosci 1999;11:1657-67
  • Biber K, Neumann H, Inoue K, Boddeke HW. Neuronal ‘On’ and ‘Off’ signals control microglia. Trends Neurosci 2007;30:596-602
  • Hailer NP, Heppner FL, Haas D, Nitsch R. Fluorescent dye prelabelled microglial cells migrate into organotypic hippocampal slice cultures and ramify. Eur J Neurosci 1997;9:863-6
  • Stence N, Waite M, Dailey ME. Dynamics of microglial activation: a confocal time-lapse analysis in hippocampal slices. Glia 2001;33:256-66
  • Pozzo Miller LD, Mahanty NK, Connor JA, Landis DM. Spontaneous pyramidal cell death in organotypic slice cultures from rat hippocampus is prevented by glutamate receptor antagonists. Neuroscience 1994;63:471-87
  • Del Rio JA, Heimrich B, Soriano E, et al. Proliferation and differentiation of glial fibrillary acidic protein-immunoreactive glial cells in organotypic slice cultures of rat hippocampus. Neuroscience 1991;43:335-47
  • Coltman BW, Ide CF. Temporal characterization of microglia, IL-1 beta-like immunoreactivity and astrocytes in the dentate gyrus of hippocampal organotypic slice cultures. Int J Dev Neurosci 1996;14:707-19
  • Hailer NP, Jarhult JD, Nitsch R. Resting microglial cells in vitro: analysis of morphology and adhesion molecule expression in organotypic hippocampal slice cultures. Glia 1996;18:319-31
  • Huuskonen J, Suuronen T, Miettinen R, et al. A refined in vitro model to study inflammatory responses in organotypic membrane culture of postnatal rat hippocampal slices. J Neuroinflamm 2005;2:25
  • Derouiche A, Heimrich B, Frotscher M. Loss of layer-specific astrocytic glutamine synthetase immunoreactivity in slice cultures of hippocampus. Eur J Neurosci 1993;5:122-7
  • Bernaudin M, Nouvelot A, MacKenzie ET, Petit E. Selective neuronal vulnerability and specific glial reactions in hippocampal and neocortical organotypic cultures submitted to ischemia. Exp Neurol 1998;150:30-9
  • Skibo GG, Nikonenko IR, Savchenko VL, McKanna JA. Microglia in organotypic hippocampal slice culture and effects of hypoxia: ultrastructure and lipocortin-1 immunoreactivity. Neuroscience 2000;96:427-38
  • Morrison B, Eberwine JH, Meaney DF, McIntosh TK. Traumatic injury induces differential expression of cell death genes in organotypic brain slice cultures determined by complementary DNA array hybridization. Neuroscience 2000;96:131-9
  • Hellstrom IC, Danik M, Luheshi GN, Williams S. Chronic LPS exposure produces changes in intrinsic membrane properties and a sustained IL-beta-dependent increase in GABAergic inhibition in hippocampal CA1 pyramidal neurons. Hippocampus 2005;15:656-64
  • Neumann H, Boucraut J, Hahnel C, et al. Neuronal control of MHC class II inducibility in rat astrocytes and microglia. Eur J Neurosci 1996;8:2582-90
  • Bernardino L, Balosso S, Ravissa T, et al. Inflammatory events in hippocampal slice cultures prime neuronal susceptibility to excitotoxic injury: a crucial role of P2X(7) receptor-mediated IL-1beta release. J Neurochem 2008;106:271-80
  • Gajkowska B, Szumanska G, Gadamski R. Ultrastructural alterations of brain cortex in rat following intraperitoneal administration of mercuric chloride. J Hirnforsch 1992;33:471-6
  • Charleston JS, Body RL, Mottet NK, et al. Autometallographic determination of inorganic mercury distribution in the cortex of the calcarine sulcus of the monkey Macaca fascicularis following long-term subclinical exposure to methylmercury and mercuric chloride. Toxicol Appl Pharmacol 1995;132:325-33
  • Monnet-Tschudi F. Induction of apoptosis by mercury compounds depends on maturation and is not associated with microglial activation. J Neurosci Res 1998;53:361-7
  • Eskes C, Honegger P, Juillerat-Jeanneret L, Monnet-Tschudi F. Microglial reaction induced by noncytotoxic methylmercury treatment leads to neuroprotection via interactions with astrocytes and IL-6 release. Glia 2002;37:43-52
  • Monnet-Tschudi F, Zurich MG, Boschat C, et al. Involvement of environmental mercury and lead in the etiology of neurodegenerative diseases. Rev Environ Health 2006;21:105-17
  • Viviani B, Corsini E, Galli CL, Marinovich M. Glia increase degeneration of hippocampal neurons through release of tumor necrosis factor-alpha. Toxicol Appl Pharmacol 1998;150:271-6
  • Little AR, Benkovic SA, Miller DB, O'Callaghan JP. Chemically induced neuronal damage and gliosis: enhanced expression of the proinflammatory chemokine, monocyte chemoattractant protein (MCP)-1, without a corresponding increase in proinflammatory cytokines. Neuroscience 2002;115:307-20
  • Eskes C, Juillerat-Jeanneret L, Leuba G, et al. Involvement of microglia-neuron interactions in the tumor necrosis factor-alpha release, microglial activation, and neurodegeneration induced by trimethyltin. J Neurosci Res 2003;71:583-90
  • Harry GJ, Tyler K, Lefebvre d'Hellencourt C, et al. Morphological alterations and elevations in tumor necrosis factor-alpha, interleukin (IL)-1alpha, and IL-6 in mixed glia cultures following exposure to trimethyltin: modulation by proinflammatory cytokine recombinant proteins and neutralizing antibodies. Toxicol Appl Pharmacol 2002;180:205-18
  • Figiel I, Dzwonek K. TNFalpha and TNF receptor 1 expression in the mixed neuronal-glial cultures of hippocampal dentate gyrus exposed to glutamate or trimethyltin. Brain Res 2007;1131:17-28
  • Sriram K, Matheson JM, Benkovic SA, et al. Deficiency of TNF receptors suppresses microglial activation and alters the susceptibility of brain regions to MPTP-induced neurotoxicity: role of TNF-alpha. FASEB J 2006;20:670-82
  • Rogers J, Mastroeni D, Leonard B, et al. Neuroinflammation in Alzheimer's disease and Parkinson's disease: are microglia pathogenic in either disorder? Int Rev Neurobiol 2007;82:235-46
  • Goodwill MH, Lawrence DA, Seegal RF. Polychlorinated biphenyls induce proinflammatory cytokine release and dopaminergic dysfunction: protection in interleukin-6 knockout mice. J Neuroimmunol 2007;183:125-32

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.