116
Views
49
CrossRef citations to date
0
Altmetric
Review

Eicosanoids and renal damage in cardiometabolic syndrome

Pages 165-174 | Published online: 05 Feb 2008

Bibliography

  • Bagby SP. Obesity-initiated metabolic syndrome and the kidney: a recipe for chronic kidney disease? J Am Soc Nephrol 2004;15:2775-91
  • Sowers JR, Epstein M, Frohlich ED. Diabetes, hypertension, and cardiovascular disease: an update. Hypertension 2001;37:1053-9
  • Reaven GM. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 1988;37:1595-607
  • Third Report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult treatment panel III) final report. Circulation 2002;106:3143-421
  • Masuo K, Mikami H, Ogihara T, Tuck ML. Weight gain-induced blood pressure elevation. Hypertension 2000;35:1135-40
  • Huang Z, Willett WC, Manson JE, et al. Body weight, weight change, and risk for hypertension in women. Ann Intern Med 1998;128:81-8
  • Juhaeri J, Stevens LE, Chambless HA, et al. Associations between weight gain and incident hypertension in a bi-ethnic cohort: the Atherosclerosis Risk in Communities Study. Int J Obes Relat Metab Disord 2002;26:58-64
  • Dyer AR, Liu K, Walsh M, Kiefe C, Jacobs DR, Bild DE. Ten-year incidence of elevated blood pressure and its predictors: the CARDIA study. Coronary Artery Risk Development in (Young) Adults. J Hum Hypertens 1999;13:13-21
  • Garrison RJ, Kannel WB, Stokes J, Castelli WP. Incidence and precursors of hypertension in young adults: the Framingham Offspring Study. Prev Med 1997;16:235-51
  • Abrass CK. Overview: obesity: what does it have to do with kidney disease? J Am Soc Nephrol 2004;15:2768-72
  • Guerre-Millo M. Adipose tissue hormones. J Endocrinol Invest 2002;25:855-61
  • Diez JJ, Iglesias P. The role of the novel adipocyte-derived hormone adiponectin in human disease. Eur J Endocrinol 2003;148:293-300
  • Cindik N, Baskin E, Agras PI, Kinik ST, Turan M, Saatci U. Effect of obesity on inflammatory markers and renal functions. Acta Paediatr 2005;94:1732-7
  • Hotamisligil GS, Arner P, Caro JF, Atkinson RL, Spiegelman BM. Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J Clin Invest 1995;95:2409-15
  • Kern PA, Ranganathan S, Li C, Wood L. Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance. Am J Physiol Endocrinol Metab 2001;280:E745-51
  • Bastard JP, Jardel C, Bruckert E, et al. Elevated levels of interleukin 6 are reduced in serum and subcutaneous adipose tissue of obese women after weight loss. J Clin Endocrinol Metab 2000;85:3338-42
  • Kielar ML, John R, Bennett M, et al. Maladaptive role of IL-6 in ischemic acute renal failure. J Am Soc Nephrol 2005;16:3315-25
  • Wassmann S, Stumpf M, Strehlow K, et al. Interleukin-6 induces oxidative stress and endothelial dysfunction by overexpression of the angiotensin II type 1 receptor. Circ Res 2004;94:534-41
  • Grimble RF. Inflammatory status and insulin resistance. Curr Opin Clin Nutr Metab Care 2002;5:551-9
  • Kofler S, Nickel T, Weis M. Role of cytokines in cardiovascular diseases: a focus on endothelial responses to inflammation. Clin Sci 2005;108:205-13
  • Schalkwijk CG, Stehouwer CDA. Vascular complications in diabetes mellitus: the role of endothelial dysfunction. Clin Sci 2005;109:143-59
  • Picchi A, Gao X, Belmadani S, et al. Tumor necrosis factor-alpha induces endothelial dysfunction in the prediabetic metabolic syndrome. Circ Res 2006;99:69-77
  • Higuchi Y, Otsu K, Nishida K, et al. Involvement of reactive oxygen species-mediated NF-kappa B activation in TNF-alpha-induced cardiomyocyte hypertrophy. J Mol Cell Cardiol 2002;34:233-40
  • Greenberg AS, Mcdaniel ML. Identifying the links between obesity, insulin resistance and beta-cell function: potential role of adipocyte-derived cytokines in the pathogenesis of type 2 diabetes. Eur J Clin Invest 2002;32:24-34
  • Dominguez H, Storgaard H, Rask-Madsen C, et al. Metabolic and vascular effects of TNF-α blockade with etanercept in obese patients with type 2 diabetes. J Vasc Res 2005;42:517-25
  • Berstein LE, Berry J, Kim S, Canavan B, Grinspoon SK. Effects of etanercept in patients with the metabolic syndrome. Arch Intern Med 2006;166:902-8
  • Weisberg SP, Hunter D, Huber R, et al. CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J Clin Invest 2006;116:115-24
  • Imig JD. Eicosanoids and renal vascular function in diseases. Clin Sci 2006;111:21-34
  • Vivian EM, Rubinstein GB. Pharmacologic management of diabetic nephropathy. Clin Ther 2002;24:1741-56.
  • Chagnac A, Weinstein T, Korzets A, Ramadan E, Hirsch J, Gafter U. Glomerular hemodynamics in severe obesity. Am J Physiol 2000;278:817-22
  • Levine DZ, Iacovitti M, Robertson SJ, Mokhtar GA. Modulation of single-nephron GFR in the db/db mouse model of type 2 diabetes mellitus. Am J Physiol 2006;290:R975-81
  • Dey A, Maric C, Kaesemeyer WH, et al. Rofecoxib decreases renal injury in obese Zucker rats. Clin Sci 2004;107:561-70
  • Lupia E, Elliot SJ, Lenz O, et al. IGF-1 decreases collagen degradation in diabetic NOD mesangial cells: implications for diabetic nephropathy. Diabetes 1999;48:1638-44
  • Morrisey K, Evans RA, Wakefield L, Phillips AO. Translational regulation of renal proximal tubular epithelial cell transforming growth factor-beta1 generation by insulin. Am J Pathol 2001;159:1905-15
  • Anderson PW, Zhang XY, Tian J, et al. Insulin and angiotensin II are additive in stimulating TGF-beta 1 and matrix mRNAs in mesangial cells. Kidney Int 1996;50:745-53
  • Wei P, Lane PH, Lane JT, Padanilam BJ, Sansom SC. Glomerular structural and functional changes in a high-fat diet mouse model of early-stage Type 2 diabetes. Diabetologia 2004;47:1541-9
  • Lee D, Sturgis L, Labazi H, et al. Angiotensin II hypertension is attenuated in interleukin-6 knockout mice. Am J Physiol Heart Circ Physiol 2006;290:H935-40
  • Manhiani MM, Quigley J, Socha MJ, Motamed K, Imig JD. IL-6 suppression provides renal protection independent of blood pressure in a murine model of salt-sensitive hypertension. Kidney Blood Press Res 2007;30:195-202
  • Huber SA, Sakkinen P, Conze D, Hardin N, Tracy R. Interleukin-6 exacerbates early atherosclerosis in mice. Arterioscler Thromb Vasc Biol 1999;19:2364-7
  • Patel NS, Chatterjee PK, Di Paola R, et al. Endogenous interleukin-6 enhances the renal injury, dysfunction, and inflammation caused by ischemia/reperfusion. J Pharmacol Exp Ther 2005;312:1170-8
  • Lyon CJ, Law RE, Hsueh WA. Minireview: adiposity, inflammation, and atherogenesis. Endocrinology 2003;144:2195-200
  • Elmarakby AA, Quigley JE, Pollock DM, Imig JD. TNF-α blockade increases renal Cyp2c23 expression and slows the progression of renal damage in salt-sensitive hypertension. Hypertension 2006;47:557-62
  • Muller DN, Shagdarsuren E, Park JK, et al. Immunosuppresive treatment protects against angiotensin II-induced renal damage. Am J Pathol 2002;161:1679-93
  • Klahr S, Morrissey J. Progression of chronic renal disease. Am J Kidney Dis 2003;41:S3-7
  • Lee FT, Cao Z, Long DM, et al. Interactions between angiotensin II and NF-kappaB-dependent pathways in modulating macrophage infiltration in experimental diabetic nephropathy. J Am Soc Nephrol 2004;15:2139-51
  • Wilson HM, Chettibi S, Jobin C, Walbaum D, Rees AJ, Kluth DC. Inhibition of macrophage nuclear factor-kappaB leads to a dominant anti-inflammatory phenotype that attenuates glomerular inflammation in vivo. Am J Pathol 2005;167:27-37
  • Banba N, Nakamura T, Matsumura M, Kuroda H, Hattori Y, Kasai K. Possible relationship of monocyte chemoattractant protein-1 with diabetic nephropathy. Kidney Int 2000;58:684-90
  • Rollins BJ. Chemokines. Blood 1997;90:909-28
  • Knight SF, Imig JD. Obesity, insulin resistance, and renal function. Microcirculation 2007;14:349-62
  • Mundy AL, Haas E, Bhattacharya I, et al. Fat intake modifies vascular responsiveness and receptor expression of vasoconstrictors: implications for diet-induced obesity. Cardiovas Res 2007;73:368-75
  • Vaziri ND, Ni Z, Oveisi F, Liang K, Pandian R. Enhanced nitric oxide inactivation and protein nitration by reactive oxygen species in renal insufficiency. Hypertension 2002;39:135-41
  • Chinen I, Shimabukuro M, Yamakawa K, et al. Vascular lipotoxicity: endothelial dysfunction via fatty-acid-induced reactive oxygen species overproduction in obese Zucker diabetic fatty rats. Endocrinology 2007;148:160-5
  • Roberts CK, Barnard RJ, Sindhu RK, Jurczak M, Ehdaie A, Vaziri ND. Oxidative stress and dysregulation of NAD(P)H oxidase and antioxidant enzymes in diet-induced metabolic syndrome. Metabol Clin Exp 2006;55:928-34
  • Susztak K, Raff AC, Schiffer M, Bottinger EP. Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy. Diabetes 2006;55:225-33
  • Steinberg HO, Chaker H, Leaming R, Johnson A, Brechtel G, Baron AD. Obesity/insulin resistance is associated with endothelial dysfunction. Implications for the syndrome of insulin resistance. J Clin Invest 1996;97:2601-10
  • Unger RH. Minireview: weapons of lean body mass destruction: the role of ectopic lipids in the metabolic syndrome. Endocrinology 2003;144:5159-65
  • Imig JD, Zhao X, Dey A, Shaw M. CYP450, COX-2 and obesity related renal damage. Toxicol Mech Methods 2005;15:125-36
  • USRDS. The United States renal data system. Am J Kidney Dis 2003;42:1-230
  • Schelling JR, Sedor JR. The metabolic syndrome as a risk factor for chronic kidney disease: more than a fat chance? J Am Soc Nephrol 2004;15:2773-4.
  • Taylor AA. Pathophysiology of hypertension and endothelial dysfunction in patients with diabetes mellitus. Endocrinol Metab Clin North Am 2001;30:983-97
  • Imig JD, Zhao X. Eicosanoid inhibitors as therapeutic targets for metabolic syndrome related kidney disease. Curr Enzyme Inhibition 2006;2:73-7
  • Cheng HF, Wang CJ, Moecel GW, Zhang MZ, Mc Kanna JA, Harris RC. Cyclooxygenase-2 inhibitor blocks expression of mediators of renal injury in a model of diabetes and hypertension. Kidney Int 2002;62:929-39
  • Fujihara CK, Antunes GR, Mattar AL, et al. Cyclooxygenase-2 (COX-2) inhibition limits abnormal COX-2 expression and progressive injury in the remnant kidney. Kidney Int 2003;64:2172-81
  • Komers R, Lindley JN, Oyama TT, et al. Immunohistochemical and functional correlations of renal cyclooxygenase-2 in experimental diabetes. J Clin Invest 2001;107:889-98
  • Okumura M, Imanishi M, Yamashita T, et al. Renal production of thromboxane and prostaglandins in a rat model of type 2 diabetes. Life Sci 2000;66:371-7
  • Umeda F, Kuroki T, Nawata H. Prostaglandins and diabetic nephropathy. J Diabetes Complications 1995;9:334-6
  • Imig JD. Eicosanoid regulation of the renal vasculature. Am J Physiol Renal Physiol 2000;279:F965-81
  • Quilley J. Insulin resistance, oxidative stress and aspirin: therapeutic implications? J Hypertens 2002;20:1279-81
  • Sarubbi D, Mcgiff JC, Quilley J. Renal vascular responses and eicosanoid release in diabetic rats. Am J Physiol 1989;257:F762-8
  • Studer RK, Negrete H, Craven PA, Derubertis FR. Protein kinase C signals thromboxane induced increases in fibronectin synthesis and TGF-beta bioactivity in mesangial cells. Kidney Int 1995;48:422-30
  • Tajiri Y, Umeda F, Inoguchi T, Nawata H. Effects of thromboxane synthetase inhibitor (OKY-046) on urinary prostaglandin excretion and renal function in streptozotocin-induced diabetic rat. J Diabetes Complications 1994;8:126-32
  • Uriu K, Kaizu K, Hashimoto O, Komine N, Etoh S. Acute and chronic effects of thromboxane A2 inhibition on the renal hemodynamics in streptozotocin-induced diabetic rats. Kidney Int 1994;45:794-802
  • Masumura H, Kunitada S, Irie K, Ashida S, Abe Y. A thromboxane A2 synthetase inhibitor retards hypertensive rat diabetic nephropathy. Eur J Pharmacol 1992;210:163-72
  • Tomida T, Numaguchi Y, Nishimoto Y, et al. Inhibition of COX-2 prevents hypertension and proteinuria associated with a decrease of 8-iso-PGF2alpha formation in L-NAME-treated rats. J Hypertens 2003;21:601-9
  • Natarajan R, Nadler JL. Lipid inflammatory mediators in diabetic vascular disease. Arterioscler Thromb Vasc Biol 2004;24:1542-8
  • Antonipillai I, Nadler J, Vu EJ, Bughi S, Natarajan R, Horton R. A 12-lipoxygenase product, 12-hydroxyeicosatetraenoic acid, is increased in diabetics with incipient and early renal disease. J Clin Endocrinol Metab 1996;81:1940-5
  • Hishinuma T, Koseki Y, Murai Y, Yamazaki T, Suzuki K, Mizugaki M. Urinary thromboxane A2/prostacyclin balance reflects the pathological state of a diabetic. Prostaglandins Other Lipid Mediat 1999;58:263-71
  • Hardy G, Stanke-Labesque F, Peoc'h M, et al. Cysteinyl leukotrienes modulate angiotensin II constrictor effects on aortas from streptozotocin-induced diabetic rats. Arterioscler Thromb Vasc Biol 2001;21:1751-8
  • Kang SW, Adler SG, Nast CC, et al. 12-lipoxygenase is increased in glucose-stimulated mesangial cells and in experimental diabetic nephropathy. Kidney Int 2001;59:1354-62
  • Parthasarathy S, Wieland E, Steinberg D. A role for endothelial cell lipoxygenase in the oxidative modification of low density lipoprotein. Proc Natl Acad Sci USA 1989;86:1046-50
  • Hatley ME, Srinivasan S, Reilly KB, Bolick DT, Hedrick CC. Increased production of 12/15 lipoxygenase eicosanoids accelerates monocyte/endothelial interactions in diabetic db/db mice. J Biol Chem 2003;278:25369-75
  • Alpert E, Gruzman A, Totary H, Kaiser N, Reich R, Sasson S. A natural protective mechanism against hyperglycaemia in vascular endothelial and smooth-muscle cells: role of glucose and 12-hydroxyeicosatetraenoic acid. Biochem J 2002;362:413-22
  • Tokuyama Y, Sturis J, Depaoli AM, et al. Evolution of beta-cell dysfunction in the male Zucker diabetic fatty rat. Diabetes 1995;44:1447-57
  • George J, Afek A, Shaish A, et al. 12/15-Lipoxygenase gene disruption attenuates atherogenesis in LDL receptor-deficient mice. Circulation 2001;104:1646-50
  • Reed MJ, Meszaros K, Entes LJ, et al. Effect of masoprocol on carbohydrate and lipid metabolism in a rat model of Type II diabetes. Diabetologia 1999;42:102-6
  • Scribner KA, Gadbois TM, Gowri M, Azhar S, Reaven GM. Masoprocol decreases serum triglyceride concentrations in rats with fructose-induced hypertriglyceridemia. Metabolism 2000;49:1106-10
  • Dey A, Williams RS, Pollock DM, et al. Altered kidney CYP2C and cyclooxygenase-2 levels are associated with obesity-related albuminuria. Obes Res 2004;12:1278-89
  • Wang MH, Smith A, Zhou Y, et al. Downregulation of renal CYP-derived eicosanoid synthesis in rats with diet-induced hypertension. Hypertension 2003;42:594-9
  • Laffer CL, Laniado-Schwartzman M, Nasjletti A, Elijovich F. 20-HETE and circulating insulin in essential hypertension with obesity. Hypertension 2004;43:388-92.
  • Zhao X, Dey A, Romanko OP, et al. Decreased epoxygenase and increased epoxide hydrolase expression in the mesenteric artery of obese Zucker rats. Am J Physiol Regul Integr Comp Physiol 2005;288:R188-96
  • Imig JD. Epoxide hydrolase and epoxygenase metabolites as therapeutic targets for renal diseases. Am J Physiol Renal Physiol 2005;289:F496-503
  • Zeldin DC. Epoxygenase pathways of arachidonic acid metabolism. J Biol Chem 2001;276:36059-62
  • Campbell WB. New role for epoxyeicosatrienoic acids as anti-inflammatory mediators. TiPS 2000;21:125-7
  • Fitzpatrick FA, Ennis MD, Baze ME, Wynalda MA, Mcgee JE, Liggett WF. Inhibition of cyclooxygenase activity and platelet aggregation by epoxyeicosatrienoic acids. Influence of stereochemistry. J Biol Chem 1986;261:15334-8
  • Iber H, Chen Q, Cheng PY, Morgan ET. Suppression of CYP2C11 gene transcription by interleukin-1 mediated by NF-kappaB binding at the transcription start site. Arch Biochem Biophys 2000;377:187-94
  • Morgan ET, Ullrich V, Daiber A, et al. Cytochromes P450 and flavin monooxygenases – targets and sources of nitric oxide. Drug Metab Dispos 2001;29:1366-76
  • Zhao X, Pollock DM, Inscho EW, Zeldin DC, Imig JD. Decreased renal CYP2C enzymes and impaired vasodilation are associated with salt-sensitive hypertension. Hypertension 2003;41:709-14
  • Grandaliano G, Gesualdo L, Ranieri E, et al. Monocyte chemotactic peptide-1 expression in acute and chronic human nephritides: a pathogenic role in interstitial monocytes recruitment. J Am Soc Nephrol 1996;7:906-13
  • Prodjosudjadi W, Gerritsma JS, Es LA, Daha MR, Bruijn JA. Monocyte chemoattractant protein-1 in normal and diseased human kidneys: an immunohistochemical analysis. Clin Nephrol 1995;44:148-55
  • Capers QT, Alexander RW, Lou P, et al. Monocyte chemoattractant protein-1 expression in aortic tissues of hypertensive rats. Hypertension 1997;30:1397-402
  • Elmarakby AA, Quigley JE, Olearczyk JJ, et al. Chemokine receptor CCR2b inhibition provides renal protection in Angiotensin II-salt hypertension. Hypertension 2007;50(6):1069-76
  • Node K, Ruan XL, Dai J, et al. Activation of Gαs mediates induction of tissue-type plasminogen activator gene transcription by epoxyeicosatrienoic acids. J Biol Chem 2001;276:15983-9
  • Node K, Huo Y, Ruan X, et al. Anti-inflammatory properties of cytochrome P450 epoxygenase-derived eicosanoids. Science 1999;285:1276-9
  • Imig JD. Cardiovascular therapeutic aspects of soluble epoxide hydrolase inhibitors. Cardiovasc Drug Rev 2006;24:169-88
  • Imig JD, Zhao X, Capdevila JH, Morisseau C, Hammock BD. Soluble epoxide hydrolase inhibition lowers arterial blood pressure in angiotensin II hypertension. Hypertension 2002;39:690-4
  • Zhao X, Yamamoto T, Newman JW, et al. Soluble epoxide hydrolase inhibition protects the kidney from hypertension induced damage. J Am Soc Nephrol 2004;15:1244-53
  • Dimitropoulou C, West L, Field MB, et al. Protein phosphatase 2A and Ca2+-activated K+ channels contribute to 11,12-epoxyeicosatrienoic acid analog mediated mesenteric arterial relaxation. Prostaglandins Other Lipid Mediat 2007;83:50-61
  • Benson SC, Pershadsingh HA, Ho CI, et al. Identification of telmisartan as a unique angiotensin II receptor antagonist with selective PPARgamma-modulating activity. Hypertension 2004;43:993-1002

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.