965
Views
90
CrossRef citations to date
0
Altmetric
Reviews

In vitro cell culture models for the assessment of pulmonary drug disposition

, &
Pages 333-345 | Published online: 23 Apr 2008

Bibliography

  • Gray H. Anatomy of the human body. Lea & Febiger, Philadelphia, Bartleby, 1918, 2000. Available from: www.bartleby.com/107/ [Last accessed 20 February 2008]
  • Itoh H, Nishino M, Hatabu H. Architecture of the lung: morphology and function. J Thorac Imaging 2004;19:221-7
  • McDowell EM, Barrett LA, Glavin F, et al. The respiratory epithelium. I. Human bronchus. J Natl Cancer Inst 1978;61:539-49
  • Jeffery PK, Reid L. New observations of rat airway epithelium: a quantitative and electron microscopic study. J Anat 1975;120:295-320
  • Plopper CG. Structure and function of the lung. In: Jones TC, Dungworth DL, Mohr U, editors, Respiratory system. 2nd edition. Berlin: Springer Verlag; 1996. p. 135-50
  • Stone KC, Mercer RR, Gehr P, et al. Allometric relationships of cell numbers and size in the mammalian lung. Am J Respir Cell Mol Biol 1992;6:235-43
  • Mason RJ, Crystal RG. Pulmonary cell biology. Am J Respir Crit Care Med 1998;157:S72-81
  • Godfrey RW. Human airways epithelial tight junctions. Microsc Res Tech 1997;38:488-99
  • Schneeberger EE. Heterogeneity of tight junction morphology in extrapulmonary and intrapulmonary airways in the rats. Anat Rec 1980;198:193-208
  • Brown RA, Schanker LS. Absorption of aerosolized drugs from the rat lung. Drug Metab Dispos 1983;11:355-60
  • Schanker LS, Hemberger JA. Relation between molecular weight and pulmonaruy absorption rate of lipid-insoluble compounds in neonatal and adult rats. Biochem Pharmacol 1983;32:2599-601
  • Tronde A. Pulmonary drug absorption: In vitro and in vivo investigations of drug absorption across the lung barrier and its relation to drug physicochemical properties. Doctoral dissertation, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden. Available from: http://publications.uu.se/theses/fulltext/91-554-5373-2.pdf [Last accessed 20 February 2008]
  • Effros RM, Mason GR. Measurements of epithelial permeability in vivo. Am Rev Respir Dis 1983;127:S59-65
  • Schneeberger EE. Airway and alveolar tight junctions. In: Crystal RG, West JB, editors, The lung: scientific foundations. New York: Raven Press; 1991. p. 205-14
  • Bur M, Huwer H, Lehr CM, et al. Assessment of transport rates of proteins and peptides across primary human alveolar epithelial cell monolayers. Eur J Pharm Sci 2006;28:196-203
  • Patton JS Mechanisms of macromolecule absorption by the lungs. Adv Drug Deliv Rev 1996;19:3-36
  • Schanker LS, Burton JA. Absorption of heparin and cyanocobalamin from the rat lung. Proc Soc Exp Biol Med 1976;152:377-80
  • Niven RW. Modulated drug therapy with inhalation aerosols. In: Hickey AJ, editor, Pharmaceutical inhalation aerosol technology. Chicago: IL Marcel Dekker; 1992. p. 321-59
  • Groneberg DA, Eynott PR, Doring F, et al. Distribution and function of the peptide transporter PEPT2 in normal and cystic fibrosis human lung. Thorax 2002;57:55-60
  • van der Deen M, de Vries EG, Timens W, et al. ATP-binding cassette (ABC) transporters in normal and pathological lung. Respir Res 2005;6:59
  • Endter S, Becker U, Daum N, et al. P-glycoprotein (MDR1) functional activity in human alveolar epithelial cell monolayers. Cell Tissue Res 2007;328:77-84
  • Ehrhardt C, Kneuer C, Bies C, et al. Salbutamol is actively absorbed across human bronchial epithelial cell layers. Pulm Pharmacol Ther 2005;18:165-70
  • Horvath G, Schmid N, Fragoso MA, et al. Epithelial organic cation transporters ensure pH-dependent drug absorption in the airway. Am J Respir Cell Mol Biol 2007;36:53-60
  • Artursson P, Borchardt RT. Intestinal drug absorption and metabolism in cell cultures: Caco-2 and beyond. Pharm Res 1997;14:1655-8
  • Hidalgo IJ, Raub TJ, Borchardt RT. Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology 1989;96:736-49
  • Mathias NR, Yamashita F, Lee VH. Respiratory epithelial cell culture models for evaluation of ion and drug transport. Adv Drug Deliv Rev 1996;22:215-49
  • Oreffo VI, Morgan A, Richards RJ Isolation of Clara cells from the mouse lung. Environ Health Perspect 1990;85:51-64
  • Kaufman DG. Biochemical studies of isolated hamster tracheal epithelium. Environ Health Perspect 1976;16:99-110
  • Robison TW, Dorio RJ, Kim KJ. Formation of tight monolayers of guinea pig airway epithelial cells cultured in an air-interface: bioelectric properties. Biotechniques 1993;15:468-73
  • Suda T, Sato A, Sugiura W, et al. Induction of MHC class II antigens on rat bronchial epithelial cells by interferon-gamma and its effect on antigen presentation. Lung 1995;73:127-37
  • Chung Y, Kercsmar CM, Davis PB. Ferret tracheal epithelial cells grown in vitro are resistant to lethal injury by activated neutrophils. Am J Respir Cell Mol Biol 1991;5:125-32
  • Mathias NR, Kim KJ, Robison TW, et al. Development and characterization of rabbit tracheal epithelial cell monolayer models for drug transport studies. Pharm Res 1995;12:1499-505
  • Welsh MJ. Ion transport by primary cultures of canine tracheal epithelium: methodology, morphology, and electrophysiology. J Membr Biol 1985;88:149-63
  • Black PN, Ghatei MA, Takahashi K, et al. Formation of endothelin by cultured airway epithelial cells. FEBS Lett 1989;255:129-32
  • Sisson JH, Tuma DJ, Rennard SI. Acetaldehyde-mediated cilia dysfunction in bovine bronchial epithelial cells. Am J Physiol 1991;260:L29-36
  • Sime A, McKellar Q, Nolan A. Method for the growth of equine airway epithelial cells in culture. Res Vet Sci 1997;62:30-3
  • Lin H, Li H, Cho HJ, et al. Air-liquid interface (ALI) culture of human bronchial epithelial cell monolayers as an in vitro model for airway drug transport studies. J Pharm Sci 2007;96:341-50
  • Galietta LJ, Lantero S, Gazzolo A, et al. An improved method to obtain highly differentiated monolayers of human bronchial epithelial cells. In Vitro Cell Dev Biol Anim 1998;34:478-81
  • Chemuturi NV, Hayden P, Klausner M, et al. Comparison of human tracheal/bronchial epithelial cell culture and bovine nasal respiratory explants for nasal drug transport studies. J Pharm Sci 2005;94:1976-85
  • Forbes B, Ehrhardt C. Human respiratory epithelial cell culture for drug delivery applications. Eur J Pharm Biopharm 2005;60:193-205
  • Sakagami M. In vivo, in vitro and ex vivo models to assess pulmonary absorption and disposition of inhaled therapeutics for systemic delivery. Adv Drug Deliv Rev 2006;58:1030-60
  • Zabner J, Karp P, Seiler M, et al. Development of cystic fibrosis and noncystic fibrosis airway cell lines. Am J Physiol 2003;284:L844-54
  • Fogh J, Trempe G. New human tumor cell lines. In: Fogh J, editor, Human tumor cells in vitro. New York: Plenum Press; 1975. p. 115-59
  • Shen BQ, Finkbeiner WE, Wine JJ, et al. Calu-3: a human airway epithelial cell line that shows cAMP-dependent Cl-secretion. Am J Physiol 1994;266:L493-501
  • Foster KA, Avery ML, Yazdanian M, et al. Characterization of the Calu-3 cell line as a tool to screen pulmonary drug delivery. Int J Pharm 2000;208:1-11
  • Mathias NR, Timoszyk J, Stetsko PI, et al. Permeability characteristics of calu-3 human bronchial epithelial cells: in vitro-in vivo correlation to predict lung absorption in rats. J Drug Target 2002;10:31-40
  • Grainger CI, Greenwell LL, Lockley DJ, et al. Culture of Calu-3 cells at the air interface provides a representative model of the airway epithelial barrier. Pharm Res 2006;23:1482-90
  • Florea BI, Cassara ML, Junginger HE, et al. Drug transport and metabolism characteristics of the human airway epithelial cell line Calu-3. J Control Rel 2003;87:131-8
  • Fiegel J, Ehrhardt C, Schaefer UF, et al. Large porous particle impingement on lung epithelial cell monolayers – toward improved particle characterization in the lung. Pharm Res 2003;20:788-96
  • Cooney D, Kazantseva M, Hickey AJ. Development of a size-dependent aerosol deposition model utilising human airway epithelial cells for evaluating aerosol drug delivery. Altern Lab Anim 2004;32:581-90
  • Amidi M, Romeijn SG, Borchard G, et al. Preparation and characterization of protein-loaded N-trimethyl chitosan nanoparticles as nasal delivery system. J Control Rel 2006;111:107-16
  • Cozens AL, Yezzi MJ, Kunzelmann K, et al. CFTR expression and chloride secretion in polarized immortal human bronchial epithelial cells. Am J Respir Cell Mol Biol 1994;10:38-47
  • Ehrhardt C, Kneuer C, Fiegel J, et al. Influence of apical fluid volume on the development of functional intercellular junctions in the human epithelial cell line 16HBE14o-: implications for the use of this cell line as an in vitro model for bronchial drug absorption studies. Cell Tissue Res 2002;308:391-400
  • Ehrhardt C, Kneuer C, Laue M, et al. 16HBE14o-human bronchial epithelial cell layers express P-glycoprotein, lung resistance-related protein, and caveolin-1. Pharm Res 2003;20:545-51
  • Forbes B, Lim S, Martin GP, et al. An in vitro technique for evaluating inhaled nasal delivery systems. STP Pharma Sci 2002;12:75-9
  • Manford F, Tronde A, Jeppsson AB, et al. Drug permeability in 16HBE14o-airway cell layers correlates with absorption from the isolated perfused rat lung. Eur J Pharm Sci 2005;26:414-20
  • Reddel RR, Ke Y, Gerwin BI, et al. Transformation of human bronchial epithelial cells by infection with SV40 or adenovirus-12 SV40 hybrid virus, or transfection via strontium phosphate coprecipitation with a plasmid containing SV40 early region genes. Cancer Res 1988;48:1904-9
  • Atsuta J, Sterbinsky SA, Plitt J, et al. Phenotyping and cytokine regulation of the BEAS-2B human bronchial epithelial cell: demonstration of inducible expression of the adhesion molecules VCAM-1 and ICAM-1. Am J Respir Cell Mol Biol 1997;17:571-82
  • Sun W, Wu R, Last JA. Effects of exposure to environmental tobacco smoke on a human tracheobronchial epithelial cell line. Toxicology 1995;100:163-74
  • Veranth JM, Kaser EG, Veranth MM, et al. Cytokine responses of human lung cells (BEAS-2B) treated with micron-sized and nanoparticles of metal oxides compared to soil dusts. Part Fibre Toxicol 2007;4:2
  • Odoms K, Shanley TP, Wong HR. Short-term modulation of interleukin-1beta signaling by hyperoxia: uncoupling of IkappaB kinase activation and NF-kappaB-dependent gene expression. Am J Physiol 2004;286:L554-62
  • Noah TL, Yankaskas JR, Carson JL, et al. Tight junctions and mucin mRNA in BEAS-2B cells. In Vitro Cell Dev Biol Anim 1995;31:738-40
  • Eaton EA, Walle UK, Wilson HM, et al. Stereoselective sulphate conjugation of salbutamol by human lung and bronchial epithelial cells. Br J Clin Pharmacol 1996;41:201-6
  • Proud D, Subauste MC, Ward PE. Glucocorticoids do not alter peptidase expression on a human bronchial epithelial cell line. Am J Respir Cell Mol Biol 1994;11:57-65
  • O'Dea S, Harrison DJ. CFTR gene transfer to lung epithelium: on the trail of a target cell. Curr Gene Ther 2002;2:173-81
  • Laube BL. The expanding role of aerosols in systemic drug delivery, gene therapy, and vaccination. Respir Care 2005;50:1161-76
  • Boucher RC. New concepts of the pathogenesis of cystic fibrosis lung. Eur Respir J 2004;23:146-58
  • Gruenert DC, Basbaum CB, Widdicombe JH. Long-term culture of normal and cystic fibrosis epithelial cells grown under serum-free conditions. In Vitro Cell Dev Biol 1990;26:411-8
  • Gruenert DC, Finkbeiner WE, Widdicombe JH. Culture and transformation of human airway epithelial cells. Am J Physiol 1995;268(3 Pt 1):L347-60
  • Gruenert DC, Willems M, Cassiman JJ, et al. Established cell lines used in cystic fibrosis research. J Cyst Fibros 2004;3:191-6
  • Scholte BJ, Kansen M, Hoogeveen AT, et al. Immortalization of nasal polyp epithelial cells from cystic fibrosis patients. Exp Cell Res 1989;182:559-71
  • Olsen JC, Johnson LG, Stutts MJ, et al. Correction of the apical membrane chloride permeability defect in polarized cystic fibrosis airway epithelia following retroviral-mediated gene transfer. Hum Gene Ther 1992;3:253-66
  • Ehrhardt C, Collnot EM, Baldes C, et al. Towards an in vitro model of cystic fibrosis small airway epithelium: characterisation of the human bronchial epithelial cell line CFBE41o-. Cell Tissue Res 2006;323:405-15
  • Demling N, Ehrhardt C, Kasper M, et al. Promotion of cell adherence and spreading: a novel function of RAGE, the highly selective differentiation marker of human alveolar epithelial type I cells. Cell Tissue Res 2006;323:475-88
  • Fuchs S, Hollins AJ, Laue M, et al. Differentiation of human alveolar epithelial cells in primary culture - morphological characterisation and expression of caveolin-1 and surfactant protein-C. Cell Tissue Res 2003;311:31-45
  • Danto SI, Shannon JM, Borok Z, et al. Reversible transdifferentiation of alveolar epithelial cells. Am J Respir Cell Mol Biol 1995;12:497-502
  • Borok Z, Liebler JM, Lubman RL, et al. Na transport proteins are expressed by rat alveolar epithelial type I cells. Am J Physiol 2002;282:L599-608
  • Johnson MD, Widdicombe JH, Allen L, et al. Alveolar epithelial type I cells contain transport proteins and transport sodium, supporting an active role for type I cells in regulation of lung liquid homeostasis. Proc Natl Acad Sci USA 2002;99:1966-71
  • Chen J, Chen Z, Narasaraju T, et al. Isolation of highly pure alveolar epithelial type I and type II cells from rat lungs. Lab Invest 2004;84:727-35
  • Corti M, Brody AR, Harrison JH. Isolation and primary culture of murine alveolar type II cells. Am J Respir Cell Mol Biol 1996;14:309-15
  • Goodman BE, Crandall ED. Dome formation in primary cultured monolayers of alveolar epithelial cells. Am J Physiol 1982;243:C96-100
  • Shen J, Elbert KJ, Yamashita F, et al. Organic cation transport in rabbit alveolar epithelial cell monolayers. Pharm Res 1999;16:1280-7
  • Steimer A, Franke H, Haltner-Ukomado E, et al. Monolayers of porcine alveolar epithelial cells in primary culture as an in vitro model for drug absorption studies. Eur J Pharm Biopharm 2007;66:372-82
  • King LS, Agre P. Man is not a rodent: aquaporins in the airways. Am J Respir Cell Mol Biol 2001;24:221-3
  • Wang J, Edeen K, Manzer R, et al. Differentiated human alveolar epithelial cells and reversibility of their phenotype in vitro. Am J Respir Cell Mol Biol 2007;36:661-8
  • Bingle L, Bull TB, Fox B, et al. Type II pneumocytes in mixed cell culture of human lung: a light and electron microscopic study. Environ Health Perspect 1990;85:71-80
  • Ehrhardt C, Kim KJ, Lehr CM. Isolation and culture of human alveolar epithelial cells. Methods Mol Med 2005;107:207-16
  • Lieber M, Smith B, Szakal A, et al. A continuous tumor-cell line from a human lung carcinoma with properties of type II alveolar epithelial cells. Int J Cancer 1976;17:62-70
  • Kim KJ, Borok Z, Crandall ED. A useful in vitro model for transport studies of alveolar epithelial barrier. Pharm Res 2001;18:253-5
  • Foster KA, Oster CG, Mayer MM, et al. Characterization of the A549 cell line as a type II pulmonary epithelial cell model for drug metabolism. Exp Cell Res 1998;243:359-66
  • Elbert KJ, Schäfer UF, Schäfers HJ, et al. Monolayers of human alveolar epithelial cells in primary culture for pulmonary absorption and transport studies. Pharm Res 1999;16:601-8
  • Kobayashi S, Kondo S, Juni K. Permeability of peptides and proteins in human cultured alveolar A549 cell monolayer. Pharm Res 1995;12:1115-9
  • Wang Z, Zhang Q. Transport of proteins and peptides across human cultured alveolar A549 cell monolayer. Int J Pharm 2004;269:451-6
  • Forbes B, Wilson CG, Gumbleton M. Temporal dependence of ectopeptidase expression in alveolar epithelial cell culture: implications for study of peptide absorption. Int J Pharm 1999;180:225-34
  • Anabousi S, Bakowsky U, Schneider M, et al. In vitro assessment of transferrin-conjugated liposomes as drug delivery systems for inhalation therapy of lung cancer. Eur J Pharm Sci 2006;29:367-74
  • Duncan JE, Whitsett JA, Horowitz AD. Pulmonary surfactant inhibits cationic liposome-mediated gene delivery to respiratory epithelial cells in vitro. Hum Gene Ther 1997;8:431-8
  • Rehan VK, Torday JS, Peleg S, et al. 1 Alpha, 25-dihydroxy-3-epi-vitamin D3, a natural metabolite of 1alpha,25-dihydroxy vitamin D3: production and biological activity studies in pulmonary alveolar type II cells. Mol Genet Metab 2002;76:46-56
  • Newton DA, Rao KM, Dluhy RA, et al. Hemoglobin is expressed by alveolar epithelial cells. J Biol Chem 2006;281:5668-76
  • Zhang L, Whitsett JA, Stripp BR. Regulation of Clara cell secretory protein gene transcription by thyroid transcription factor-1. Biochim Biophys Acta 1997;1350:359-67
  • Shlyonsky V, Goolaerts A, Van Beneden R, et al. Differentiation of epithelial Na+ channel function. An in vitro model. J Biol Chem 2005;280:24181-7
  • Woollhead AM, Baines DL. Forskolin-induced cell shrinkage and apical translocation of functional enhanced green fluorescent protein-human alphaENaC in H441 lung epithelial cell monolayers. J Biol Chem 2006;281:5158-68
  • Wikenheiser KA, Vorbroker DK, Rice WR, et al. Production of immortalized distal respiratory epithelial cell lines from surfactant protein C/simian virus 40 large tumor antigen transgenic mice. Proc Natl Acad Sci USA 1993;90:11029-33
  • Wunderlich S, Gruh I, Winkler ME, et al. Type II pneumocyte-restricted green fluorescent protein expression after lentiviral transduction of lung epithelial cells. Hum Gene Ther 2008;19:39-51
  • Douglas WH, Kaighn ME. Clonal isolation of differentiated rat lung cells. In Vitro 1974;10:230-7
  • Koslowski R, Barth K, Augstein A, et al. A new rat type I-like alveolar epithelial cell line R3/1: bleomycin effects on caveolin expression. Histochem Cell Biol 2004;121:509-19
  • Horálková L, Endter S, Doležal P, et al. Characterisation of the rat alveolar epithelial cell line R3/1 as an in vitro model for drug disposition studies. AAPS J 2007;9:M1216
  • Hilgendorf C, Ahlin G, Seithel A, et al. Expression of thirty-six drug transporter genes in human intestine, liver, kidney, and organotypic cell lines. Drug Metab Dispos 2007;35:1333-40
  • Weibel ER. Principles and methods for the morphometric study of the lung and other organs. Lab Invest 1963;12:131-55
  • Ehrhardt C, Kim KJ, editors. Drug absorption studies: in situ, in vitro and in silico models. Series: Biotechnology: Pharmaceutical Aspects VII. New York: Springer; 2008

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.