799
Views
74
CrossRef citations to date
0
Altmetric
Review

The role of hepatic transporters in drug elimination

, PhD
Pages 363-379 | Published online: 23 Apr 2008

Bibliography

  • Ayrton A, Morgan P. Role of transport proteins in drug absorption, distribution and excretion. Xenobiotica 2001;31:469-97
  • Evans AM. Membrane transport as a determinant of the hepatic elimination of drugs and metabolites. Clin Exp Pharmacol Physiol 1996;23:970-4
  • Yamazaki M, Suzuki H, Sugiyama Y. Recent advances in carrier-mediated hepatic uptake and biliary excretion of xenobiotics. Pharm Res 1996;13:497-513
  • Shitara Y, Sato H, Sugiyama Y. Evaluation of drug–drug interaction in the hepatobiliary and renal transport of drugs. Ann Rev Pharmacol Toxicol 2005;45:689-723
  • Mizuno N, Niwa T, Yotsumoto Y, Sugiyama Y. Impact of drug transporter studies on drug discovery and development. Pharmacol Rev 2003;55:425-61
  • Shitara Y, Horie T, Sugiyama Y. Transporters as a determinant of drug clearance and tissue distribution. Eur J Pharm Sci 2006;27:425-46
  • Faber KN, Muller M, Jansen PL. Drug transport proteins in the liver. Adv Drug Deliv Rev 2003;55:107-24
  • Kola I, Landis J. Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov 2004;3:711-5
  • Lin JH. Drug–drug interaction mediated by inhibition and induction of P-glycoprotein. Adv Drug Deliv Rev 2003;55:53-81
  • Zhang L, Strong JM, Qiu W, et al. Scientific perspectives on drug transporters and their role in drug interactions. Mol Pharm 2006;3:62-9
  • Leslie EM, Deeley RG, Cole SP. Multidrug resistance proteins: role of P-glycoprotein, MRP1, MRP2, and BCRP (ABCG2) in tissue defense. Toxicol Appl Pharmacol 2005;204:216-37
  • Marchetti S, Mazzanti R, Beijnen JH, Schellens JH. Concise review: clinical relevance of drug drug and herb drug interactions mediated by the ABC transporter ABCB1 (MDR1, P-glycoprotein). Oncologist 2007;12:927-41
  • Nies AT, Keppler D. The apical conjugate efflux pump ABCC2 (MRP2). Pflugers Arch 2007;453:643-59
  • Xia CQ, Yang JJ, Gan LS. Breast cancer resistance protein in pharmacokinetics and drug–drug interactions. Expert Opin Drug Metab Toxicol 2005;1:595-611
  • Chandra P, Brouwer KL. The complexities of hepatic drug transport: current knowledge and emerging concepts. Pharm Res 2004;21:719-35
  • Hagenbuch B, Meier PJ. Organic anion transporting polypeptides of the OATP/SLC21 family: phylogenetic classification as OATP/SLCO superfamily, new nomenclature and molecular/functional properties. Pflugers Arch 2004;447:653-65
  • Koepsell H, Lips K, Volk C. Polyspecific organic cation transporters: structure, function, physiological roles, and biopharmaceutical implications. Pharm Res 2007;24:1227-51
  • Miyazaki H, Sekine T, Endou H. The multispecific organic anion transporter family: properties and pharmacological significance. Trends Pharmacol Sci 2004;25:654-62
  • Funk C, Noé J, Portmann R, et al. Drug-induced intrahepatic cholestasis by interaction with the hepatic bile salt export pump (BSEP). In: Sahu SC, editor, Hepatotoxicity: from genomics to in vitro and in vivo models. Chichester: John Wiley and Sons Ltd; 2007. p. 421-46
  • Funk C, Ponelle C, Scheuermann G, Pantze M. Cholestatic potential of troglitazone as a possible factor contributing to troglitazone-induced hepatotoxicity. In vivo and in vitro interaction at the canalicular bile salt export pump (Bsep) in the rat. Mol Pharmacol 2001;59:627-35
  • Kadmon M, Klünemann C, Böhme M, et al. Inhibition by cyclosporin A of adenosin triphosphate-dependent transport from the hepatocyte into bile. Gastroenterology 1993;104:1507-14
  • Boehme M, Jedlitschky G, Leier I, et al. ATP-dependent export pumps and their inhibition by cyclosporins. Adv Enzyme Regul 1994;34:371-80
  • Stieger B, Fattinger K, Madon J, et al. Drug- and estrogen-induced cholestasis through inhibition of the hepatocellular bile salt export pump (Bsep) of rat liver. Gastroenterology 2000;118:422-30
  • Kostrubsky SE, Strom SC, Kalgutkar AS, et al. Inhibition of hepatobiliary transport as a predictive method for clinical hepatotoxicity of nefazodone. Toxicol Sci 2006;90:451-9
  • Kim RB. Transporters and xenobiotic disposition. Toxicology 2002;181-2:291-7
  • Tucker GT, Houston JB, Huang SM. EUFEPS conference report. Optimising drug development: strategies to assess drug metabolism/transporter interaction potential – towards a consensus. European Federation of Pharmaceutical Sciences. Eur J Pharm Sci 2001;13:417-28
  • Zimniak P, Pikula S, Bandorowicz Pikula J, Awasthi YC. Mechanisms for xenobiotic transport in biological membranes. Toxicol Lett 1999;106:107-18
  • Schuetz EG, Schinkel AH. Drug disposition as determined by the interplay between drug-transporting and drug-metabolizing systems. J Biochem Mol Toxicol 1999;13:219-22
  • Lau YY, Okochi H, Huang Y, Benet LZ. Multiple transporters affect the disposition of atorvastatin and its two active hydroxy metabolites: application of in vitro and ex situ systems. J Pharmacol Exp Ther 2006;316:762-71
  • Kopplow K, Letschert K, Konig J, et al. Human hepatobiliary transport of organic anions analyzed by quadruple-transfected cells. Mol Pharmacol 2005;68:1031-8
  • Sasaki M, Suzuki H, Aoki J, et al. Prediction of in vivo biliary clearance from the in vitro transcellular transport of organic anions across a double-transfected Madin-Darby canine kidney II monolayer expressing both rat organic anion transporting polypeptide 4 and multidrug resistance associated protein 2. Mol Pharmacol 2004;66:450-9
  • Soars MG, McGinnity DF, Grime K, Riley RJ. The pivotal role of hepatocytes in drug discovery. Chem Biol Interact 2007;168:2-15
  • Ghibellini G, Leslie EM, Brouwer KL. Methods to evaluate biliary excretion of drugs in humans: an updated review. Mol Pharm 2006;3:198-211
  • Shitara Y, Sugiyama Y. Pharmacokinetic and pharmacodynamic alterations of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors: drug–drug interactions and interindividual differences in transporter and metabolic enzyme functions. Pharmacol Ther 2006;112:71-105
  • Theil FP, Guentert TW, Haddad S, Poulin P. Utility of physiologically based pharmacokinetic models to drug development and rational drug discovery candidate selection. Toxicol Lett 2003;138:29-49
  • Liu L, Pang KS. An integrated approach to model hepatic drug clearance. Eur J Pharm Sci 2006;29:215-30
  • Smith NF, Figg WD, Sparreboom A. Role of the liver-specific transporters OATP1B1 and OATP1B3 in governing drug elimination. Expert Opin Drug Metab Toxicol 2005;1:429-45
  • Nezasa K, Higaki K, Takeuchi M, et al. Uptake of rosuvastatin by isolated rat hepatocytes: comparison with pravastatin. Xenobiotica 2003;33:379-88
  • Ho RH, Tirona RG, Leake BF, et al. Drug and bile acid transporters in rosuvastatin hepatic uptake: function, expression, and pharmacogenetics. Gastroenterology 2006;130:1793-806
  • Hirano M, Maeda K, Shitara Y, Sugiyama Y. Contribution of OATP2 (OATP1B1) and OATP8 (OATP1B3) to the hepatic uptake of pitavastatin in humans. J Pharmacol Exp Ther 2004;311:139-46
  • Kobayashi D, Nozawa T, Imai K, et al. Involvement of human organic anion transporting polypeptide OATP-B (SLC21A9) in pH-dependent transport across intestinal apical membrane. J Pharmacol Exp Ther 2003;306:703-8
  • Shitara Y, Hirano M, Adachi Y, et al. In vitro and in vivo correlation of the inhibitory effect of cyclosporin A on the transporter-mediated hepatic uptake of cerivastatin in rats. Drug Metab Dispos 2004;32:1468-75
  • Noé J, Portmann R, Brun ME, Funk C. Substrate-dependent drug–drug interactions between gemfibrozil, fluvastatin and other organic anion-transporting peptide (OATP) substrates on OATP1B1, OATP2B1, and OATP1B3. Drug Metab Dispos 2007;35:1308-14
  • Lennernas H. Clinical pharmacokinetics of atorvastatin. Clin Pharmacokinet 2003;42:1141-60
  • Yamashiro W, Maeda K, Hirouchi M, et al. Involvement of transporters in the hepatic uptake and biliary excretion of valsartan, a selective antagonist of the angiotensin ii at1-receptor, in humans. Drug Metab Dispos 2006;34:1247-54
  • Nakagomi-Hagihara R, Nakai D, Kawai K, et al. OATP1B1, OATP1B3, and mrp2 are involved in hepatobiliary transport of olmesartan, a novel angiotensin II blocker. Drug Metab Dispos 2006;34:862-9
  • Treiber A, Schneiter R, Delahaye S, Clozel M. Inhibition of organic anion transporting polypeptide-mediated hepatic uptake is the major determinant in the pharmacokinetic interaction between bosentan and cyclosporin A in the rat. J Pharmacol Exp Ther 2004;308:1121-9
  • Treiber A, Schneiter R, Hausler S, Stieger B. Bosentan is a substrate of human OATP1B1 and OATP1B3: inhibition of hepatic uptake as the common mechanism of its interactions with cyclosporin A, rifampicin, and sildenafil. Drug Metab Dispos 2007;35:1400-7
  • Hagenbuch B, Meier PJ. Sinusoidal (basolateral) bile salt uptake systems of hepatocytes. Semin Liver Dis 1996;16:129-36
  • Meier PJ, Stieger B. Bile salt transporters. Ann Rev Physiol 2002;64:635-61
  • Bolder U, Trang NV, Hagey LR, et al. Sulindac is excreted into bile by a canalicular bile salt pump and undergoes a cholehepatic circulation in rats. Gastroenterology 1999;117:962-71
  • Handschin C, Meyer UA. Regulatory network of lipid-sensing nuclear receptors: roles for CAR, PXR, LXR, and FXR. Arch Biochem Biophys 2005;433:387-96
  • Sekine T, Cha SH, Endou H. The multispecific organic anion transporter (OAT) family. Pflugers Arch 2000;440:337-50
  • Wandel C, Kim RB, Guengerich FP, Wood AJ. Mibefradil is a P-glycoprotein substrate and a potent inhibitor of both P-glycoprotein and CYP3A in vitro. Drug Metab Dispos 2000;28:895-8
  • Silverman JA, Schrenk D. Hepatic canalicular membrane 4: expression of the multidrug resistance genes in the liver. FASEB J 1997;11:308-13
  • Noé J, Kullak-Ublick GA, Jochum W, et al. Impaired expression and function of the bile salt export pump due to three novel ABCB11 mutations in intrahepatic cholestasis. J Hepatol 2005;43:536-43
  • Noé J, Stieger B, Meier PJ. Functional expression of the canalicular bile salt export pump of human liver. Gastroenterology 2002;123:1659-66
  • Byrne JA, Strautnieks SS, Mieli-Vergani G, et al. The human bile salt export pump: characterization of substrate specificity and identification of inhibitors. Gastroenterology 2002;123:1649-58
  • Hirano M, Maeda K, Hayashi H, et al. Bile salt export pump (BSEP/ABCB11) can transport a nonbile acid substrate, pravastatin. J Pharmacol Exp Ther 2005;314:876-82
  • Lecureur V, Courtois A, Payen L, et al. Expression and regulation of hepatic drug and bile acid transporters. Toxicology 2000;153:203-19
  • Borst P, Evers R, Kool M, Wijnholds J. A family of drug transporters: the multidrug resistance-associated proteins. J Natl Cancer Inst 2000;92:1295-302
  • Keppler D, Konig J. Hepatic secretion of conjugated drugs and endogenous substances. Semin Liver Dis 2000;20:265-72
  • Donner MG, Keppler D. Up-regulation of basolateral multidrug resistance protein 3 (Mrp3) in cholestatic rat liver. Hepatology 2001;34:351-9
  • Schuetz EG, Strom S, Yasuda K, et al. Disrupted bile acid homeostasis reveals an unexpected interaction among nuclear hormone receptors, transporters, and cytochrome P450. J Biol Chem 2001;276:39411-8
  • Mao Q, Unadkat JD. Role of the breast cancer resistance protein (ABCG2) in drug transport. AAPS J 2005;7:E118-33
  • Smith NF, Figg WD, Sparreboom A. Pharmacogenetics of irinotecan metabolism and transport: an update. Toxicol In Vitro 2006;20:163-75
  • Hirano M, Maeda K, Matsushima S, et al. Involvement of BCRP (ABCG2) in the biliary excretion of pitavastatin. Mol Pharmacol 2005;68:800-7
  • Merino G, Jonker JW, Wagenaar E, et al. The breast cancer resistance protein (BCRP/ABCG2) affects pharmacokinetics, hepatobiliary excretion, and milk secretion of the antibiotic nitrofurantoin. Mol Pharmacol 2005;67:1758-64
  • Suzuki M, Suzuki H, Sugimoto Y, Sugiyama Y. ABCG2 transports sulfated conjugates of steroids and xenobiotics. J Biol Chem 2003;278:22644-9
  • Zamek-Gliszczynski MJ, Nezasa K, Tian X, et al. The important role of Bcrp (Abcg2) in the biliary excretion of sulfate and glucuronide metabolites of acetaminophen, 4-methylumbelliferone, and harmol in mice. Mol Pharmacol 2006;70:2127-33
  • Zamek-Gliszczynski MJ, Hoffmaster KA, Tian X, et al. Multiple mechanisms are involved in the biliary excretion of acetaminophen sulfate in the rat: role of Mrp2 and Bcrp1. Drug Metab Dispos 2005;33:1158-65
  • Enokizono J, Kusuhara H, Sugiyama Y. Involvement of breast cancer resistance protein (BCRP/ABCG2) in the biliary excretion and intestinal efflux of troglitazone sulfate, the major metabolite of troglitazone with a cholestatic effect. Drug Metab Dispos 2007;35:209-14
  • Launay-Vacher V, Izzedine H, Deray G. Statins dosage in patients with renal failure and cyclosporine drug–drug interactions in transplant recipient patients. Int J Cardiol 2005;101:9-17
  • Tiwari A, Bansal V, Chugh A, Mookhtiar K. Statins and myotoxicity: a therapeutic limitation. Expert Opin Drug Saf 2006;5:651-66
  • Charatan F. Bayer decides to withdraw cholesterol lowering drug. BMJ 2001;323:359
  • Poirier A, Funk C, Lavé T, Noé J. New strategies to address drug–drug interactions involving OATPs. Curr Opin Drug Discov Devel 2007;10:74-83
  • Bottorff MB. Statin safety and drug interactions: clinical implications. Am J Cardiol 2006;97:27C-31C
  • Shitara Y, Itoh T, Sato H, et al. Inhibition of transporter-mediated hepatic uptake as a mechanism for drug–drug interaction between cerivastatin and cyclosporin A. J Pharmacol Exp Ther 2003;304:610-6
  • Mizuno N, Sugiyama Y. Drug transporters: their role and importance in the selection and development of new drugs. Drug Metab Pharmacokinet 2002;17:93-108
  • Shitara Y, Hirano M, Sato H, Sugiyama Y. Gemfibrozil and its glucuronide inhibit the organic anion transporting polypeptide 2 (OATP2/OATP1B1:SLC21A6)-mediated hepatic uptake and CYP2C8-mediated metabolism of cerivastatin: analysis of the mechanism of the clinically relevant drug–drug interaction between cerivastatin and gemfibrozil. J Pharmacol Exp Ther 2004;311:228-36
  • Ismair MG, Stanca C, Ha HR, et al. Interactions of glycyrrhizin with organic anion transporting polypeptides of rat and human liver. Hepatol Res 2003;26:343-7
  • Dresser GK, Bailey DG. The effects of fruit juices on drug disposition: a new model for drug interactions. Eur J Clin Invest 2003;33(Suppl 2):10-6
  • Zhang L, Gorset W, Washington CB, et al. Interactions of HIV protease inhibitors with a human organic cation transporter in a mammalian expression system. Drug Metab Dispos 2000;28:329-34
  • Kerb R. Implications of genetic polymorphisms in drug transporters for pharmacotherapy. Cancer Lett 2006;234:4-33
  • Durr D, Stieger B, Kullak-Ublick GA, et al. St John's Wort induces intestinal P-glycoprotein/MDR1 and intestinal and hepatic CYP3A4. Clin Pharmacol Ther 2000;68:598-604
  • Horikawa M, Kato Y, Tyson CA, Sugiyama Y. The potential for an interaction between MRP2 (ABCC2) and various therapeutic agents: probenecid as a candidate inhibitor of the biliary excretion of irinotecan metabolites. Drug Metab Pharmacokinet 2002;17:23-33
  • Kivisto KT, Niemi M. Influence of drug transporter polymorphisms on pravastatin pharmacokinetics in humans. Pharm Res 2007;24:239-47
  • Jonker JW, Smit JW, Brinkhuis RF, et al. Role of breast cancer resistance protein in the bioavailability and fetal penetration of topotecan. J Natl Cancer Inst 2000;92:1651-6
  • Weiss J, Rose J, Storch CH, et al. Modulation of human BCRP (ABCG2) activity by anti-HIV drugs. J Antimicrob Chemother 2007;59:238-45
  • Gupta A, Zhang Y, Unadkat JD, Mao Q. HIV protease inhibitors are inhibitors but not substrates of the human breast cancer resistance protein (BCRP/ABCG2). J Pharmacol Exp Ther 2004;310:334-41
  • Konig J, Seithel A, Gradhand U, Fromm MF. Pharmacogenomics of human OATP transporters. Naunyn Schmiedebergs Arch Pharmacol 2006;372:432-43
  • Igel M, Arnold KA, Niemi M, et al. Impact of the SLCO1B1 polymorphism on the pharmacokinetics and lipid-lowering efficacy of multiple-dose pravastatin. Clin Pharmacol Ther 2006;79:419-26
  • Morimoto K, Oishi T, Ueda S, et al. A novel variant allele of OATP-C (SLCO1B1) found in a Japanese patient with pravastatin-induced myopathy. Drug Metab Pharmacokinet 2004;19:453-5
  • Niemi M, Neuvonen PJ, Hofmann U, et al. Acute effects of pravastatin on cholesterol synthesis are associated with SLCO1B1 (encoding OATP1B1) haplotype *17. Pharmacogenet Genomics 2005;15:303-9
  • Schwab M, Eichelbaum M, Fromm MF. Genetic polymorphisms of the human MDR1 drug transporter. Ann Rev Pharmacol Toxicol 2003;43:285-307
  • Fromm MF. The influence of MDR1 polymorphisms on P-glycoprotein expression and function in humans. Adv Drug Deliv Rev 2002;54:1295-310
  • Drescher S, Schaeffeler E, Hitzl M, et al. MDR1 gene polymorphisms and disposition of the P-glycoprotein substrate fexofenadine. Br J Clin Pharmacol 2002;53:526-34
  • Lang C, Meier Y, Stieger B, et al. Mutations and polymorphisms in the bile salt export pump and the multidrug resistance protein 3 associated with drug-induced liver injury. Pharmacogenet Genomics 2007;17:47-60
  • Lam P, Wang R, Ling V. Bile acid transport in sister of P-glycoprotein (ABCB11) knockout mice. Biochemistry 2005;44:12598-605
  • Ishikawa T, Tamura A, Saito H, et al. Pharmacogenomics of the human ABC transporter ABCG2: from functional evaluation to drug molecular design. Naturwissenschaften 2005;92:451-63
  • Paulusma CC, Bosma PJ, Zaman GJ, et al. Congenital jaundice in rats with a mutation in a multidrug resistance-associated protein gene. Science 1996;271:1126-8
  • Merino G, van Herwaarden AE, Wagenaar E, et al. Sex-dependent expression and activity of the ATP-binding cassette transporter breast cancer resistance protein (BCRP/ABCG2) in liver. Mol Pharmacol 2005;67:1765-71
  • Lam JL, Benet LZ. Hepatic microsome studies are insufficient to characterize in vivo hepatic metabolic clearance and metabolic drug–drug interactions: studies of digoxin metabolism in primary rat hepatocytes versus microsomes. Drug Metab Dispos 2004;32:1311-6
  • Keppler D. Export pumps for glutathione S-conjugates. Free Radic Biol Med 1999;27:985-91
  • Benet LZ, Izumi T, Zhang Y, et al. Intestinal MDR transport proteins and P-450 enzymes as barriers to oral drug delivery. J Control Rel 1999;62:25-31
  • DuBuske LM. The role of P-glycoprotein and organic anion-transporting polypeptides in drug interactions. Drug Saf 2005;28:789-801
  • Sai Y, Tsuji A. Transporter-mediated drug delivery: recent progress and experimental approaches. Drug Discov Today 2004;9:712-20
  • Hilgendorf C, Ahlin G, Seithel A, et al. Expression of thirty-six drug transporter genes in human intestine, liver, kidney, and organotypic cell lines. Drug Metab Dispos 2007;35:1333-40
  • Kato Y, Suzuki H, Sugiyama Y. Toxicological implications of hepatobiliary transporters. Toxicology 2002;181-182:287-90
  • Briz O, Serrano MA, Rebollo N, et al. Carriers involved in targeting the cytostatic bile acid-cisplatin derivatives cis-diammine-chloro-cholylglycinate-platinum(II) and cis-diammine-bisursodeoxycholate-platinum(II) toward liver cells. Mol Pharmacol 2002;61:853-60
  • Jigorel E, Le Vee M, Boursier-Neyret C, et al. Differential regulation of sinusoidal and canalicular hepatic drug transporter expression by xenobiotics activating drug-sensing receptors in primary human hepatocytes. Drug Metab Dispos 2006;34:1756-63
  • Urquhart BL, Tirona RG, Kim RB. Nuclear receptors and the regulation of drug-metabolizing enzymes and drug transporters: implications for interindividual variability in response to drugs. J Clin Pharmacol 2007;47:566-78
  • Klaassen CD, Slitt AL. Regulation of hepatic transporters by xenobiotic receptors. Curr Drug Metab 2005;6:309-28
  • Eloranta JJ, Kullak-Ublick GA. Coordinate transcriptional regulation of bile acid homeostasis and drug metabolism. Arch Biochem Biophys 2005;433:397-412
  • Kullak-Ublick GA, Beuers U, Paumgartner G. Hepatobiliary transport. J Hepatol 2000;32:3-18
  • Xu C, Li CY, Kong AN. Induction of phase I, II and III drug metabolism/transport by xenobiotics. Arch Pharm Res 2005;28:249-68
  • Gerloff T, Stieger B, Hagenbuch B, et al. The sister P-glycoprotein mediates ATP-dependent taurocholate (TCA) transport. Hepatology 1997;26:358A
  • Trauner M, Meier PJ, Boyer JL. Molecular pathogenesis of cholestasis. N Engl J Med 1998;339:1217-27
  • Kullak-Ublick GA, Meier PJ. Mechanisms of cholestasis. Clin Liver Dis 2000;4:357-85
  • Gores GJ, Miyoshi H, Botla R, et al. Induction of mitochondrial permeability transition as a mechanism of liver injury during cholestasis: a potential role for mitochondrial proteases. Biochim Biophys Acta 1998;1366:167-75
  • Kass GE, Price SC. Role of mitochondria in drug-induced cholestatic injury. Clin Liver Dis 2008;12:27-51
  • Rodrigues CM, Steer CJ. Bile acids and hepatocyte apoptosis: living/leaving life in the Fas lane. Gastroenterology 1999;117:732-6
  • Spreckelsen U, Kirchhoff R, Haacke H. Cholestatic jaundice during lovastatin medication. Dtsch Med Wochenschr 1991;116:739-40
  • Funk C, Pantze M, Scheuermann G, et al. Troglitazone-induced intrahepatic cholestasis by an interference with the hepatobiliary export of bile acids in male and female rats. Correlation with the gender difference in troglitazone-sulfate formation and the inhibition of the canalicular bile salt export pump (Bsep) by troglitazone and troglitazone-sulfate. Toxicology 2001;167:83-98
  • Fattinger K, Funk C, Pantze M, et al. The endothelin antagonist bosentan inhibits the canalicular bile salt export pump: a potential mechanism for hepatic adverse reactions. Clin Pharmacol Ther 2001;69:223-31
  • Bode KA, Donner MG, Leier I, Keppler D. Inhibition of transport across the hepatocyte canalicular membrane by the antibiotic fusidate. Biochem Pharmacol 2002;64:151-8
  • McRae MP, Lowe CM, Tian X, et al. Ritonavir, saquinavir and efavirenz, but not nevirapine, inhibit bile acid transport in human and rat hepatocytes. J Pharmacol Exp Ther 2006;318:1068-75
  • Lin JH. Transporter-mediated drug interactions: clinical implications and in vitro assessment. Expert Opin Drug Metab Toxicol 2007;3:81-92
  • Liu L, Cui Y, Chung AY, et al. Vectorial transport of enalapril by Oatp1a1/Mrp2 and OATP1B1 and OATP1B3/MRP2 in rat and human livers. J Pharmacol Exp Ther 2006;318:395-402
  • Matsushima S, Maeda K, Kondo C, et al. Identification of the hepatic efflux transporters of organic anions using double-transfected Madin-Darby canine kidney II cells expressing human organic anion-transporting polypeptide 1B1 (OATP1B1)/multidrug resistance-associated protein 2, OATP1B1/multidrug resistance 1, and OATP1B1/breast cancer resistance protein. J Pharmacol Exp Ther 2005;314:1059-67
  • Cui Y, Konig J, Keppler D. Vectorial transport by double-transfected cells expressing the human uptake transporter SLC21A8 and the apical export pump ABCC2. Mol Pharmacol 2001;60:934-43
  • Shu Y, Bello CL, Mangravite LM, et al. Functional characteristics and steroid hormone-mediated regulation of an organic cation transporter in Madin-Darby canine kidney cells. J Pharmacol Exp Ther 2001;299:392-8
  • Goh LB, Spears KJ, Yao D, et al. Endogenous drug transporters in in vitro and in vivo models for the prediction of drug disposition in man. Biochem Pharmacol 2002;64:1569-78
  • Williams GC, Liu A, Knipp G, Sinko PJ. Direct evidence that saquinavir is transported by multidrug resistance-associated protein (MRP1) and canalicular multispecific organic anion transporter (MRP2). Antimicrob Agents Chemother 2002;46:3456-62
  • Urakami Y, Kimura N, Okuda M. et al. Transcellular transport of creatinine in renal tubular epithelial cell line LLC-PK1. Drug Metab Pharmacokinet 2005;20:200-5
  • Tamai I, Nozawa T, Koshida M, et al. Functional characterization of human organic anion transporting polypeptide B (OATP-B) in comparison with liver-specific OATP-C. Pharm Res 2001;18:1262-9
  • Taub ME, Podila L, Ely D, Almeida I. Functional assessment of multiple P-glycoprotein (P-gp) probe substrates: influence of cell line and modulator concentration on P-gp activity. Drug Metab Dispos 2005;33:1679-87
  • Zelcer N, Huisman MT, Reid G, et al. Evidence for two interacting ligand-binding sites in human MRP2 (ABCC2). J Biol Chem 2003;17:17
  • Webborn PJ, Parker AJ, Denton RL, Riley RJ. In vitro-in vivo extrapolation of hepatic clearance involving active uptake: theoretical and experimental aspects. Xenobiotica 2007;37:1090-109
  • Lave T, Parrott N, Grimm HP, et al. Challenges and opportunities with modelling and simulation in drug discovery and drug development. Xenobiotica 2007;37:1295-310
  • Ghibellini G, Vasist LS, Leslie EM, et al. In vitro-in vivo correlation of hepatobiliary drug clearance in humans. Clin Pharmacol Ther 2007;81:406-13
  • Bentz J, Tran TT, Polli JW, et al. The steady-state Michaelis-Menten analysis of P-glycoprotein mediated transport through a confluent cell monolayer cannot predict the correct Michaelis constant Km. Pharm Res 2005;22:1667-77
  • Trauner M, Boyer JL. Bile salt transporters: molecular characterization, function, and regulation. Physiol Rev 2003;83:633-71
  • Kullak-Ublick GA, Stieger B, Hagenbuch B, Meier PJ. Hepatic transport of bile salts. Semin Liver Dis 2000;20:273-92
  • Krivoy N, Zaher A, Yaacov B, Alroy G. Fatal toxic intrahepatic cholestasis secondary to glibenclamide. Diabetes care 1996;19:385-6
  • Oswald S, Grube M, Siegmund W, Kroemer HK. Transporter-mediated uptake into cellular compartments. Xenobiotica 2007;37:1171-95

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.