238
Views
30
CrossRef citations to date
0
Altmetric
Reviews

Modifications of human carboxylesterase for improved prodrug activation

, PhD, , PhD, , PhD & , PhD
Pages 1153-1165 | Published online: 24 Aug 2008

Bibliography

  • Potter PM, Wadkins RM. Carboxylesterases – detoxifying enzymes and targets for drug therapy. Curr Med Chem 2006;13:1045-54
  • Redinbo MR, Potter PM. Mammalian carboxylesterases: from drug targets to protein therapeutics. Drug Discov Today 2005;10:313-25
  • Satoh T, Hosokawa M. The mammalian carboxylesterases: from molecules to function. Ann Rev Pharmacol Toxicol 1998;38:257-88
  • Cashman J, Perroti B, Berkman C, et al. Pharmacokinetics and molecular detoxification. Environ Health Perspect 1996;104:23-40
  • Li B, Sedlacek M, Manoharan I, et al. Butyrylcholinesterase, paraoxonase, and albumin esterase, but not carboxylesterase, are present in human plasma. Biochem Pharmacol 2005;70:1673-84
  • Morton CL, Iacono L, Hyatt JL, et al. Metabolism and antitumor activity of CPT-11 in plasma esterase-deficient mice. Cancer Chemother Pharmacol 2005;56:629-36
  • Morton CL, Taylor KR, Iacono L, et al. Metabolism of CPT-11 in esterase deficient mice. Proc Am Assoc Cancer Res 2002;43:248
  • Morton CL, Wierdl M, Oliver L, et al. Activation of CPT-11 in mice: identification and analysis of a highly effective plasma esterase. Cancer Res 2000;60:4206-10
  • Pindel EV, Kedishvili NY, Abraham TL, et al. Purification and cloning of a broad substrate specificity human liver carboxylesterase that catalyzes the hydrolysis of cocaine and heroin. J Biol Chem 1997;272:14769-75
  • Kamendulis LM, Brzezinski MR, Pindel EV, et al. Metabolism of cocaine and heroin is catalyzed by the same human liver carboxylesterases. J Pharmacol Exp Ther 1996;279:713-7
  • Brzezinski MR, Abraham TL, Stone CL, et al. Purification and characterization of a human liver cocaine carboxylesterase that catalyzes the production of benzoylecgonine and the formation of cocaethylene from alcohol and cocaine. Biochem Pharmacol 1994;48:1747-55
  • Brzezinski MR, Spink BJ, Dean RA, et al. Human liver carboxylesterase hCE-1: binding specificity for cocaine, heroin, and their metabolites and analogs. Drug Metab Dispos 1997;25:1089-96
  • Danks MK, Morton CL, Krull EJ, et al. Comparison of activation of CPT-11 by rabbit and human carboxylesterases for use in enzyme/prodrug therapy. Clin Cancer Res 1999;5:917-24
  • Humerickhouse R, Lohrbach K, Li L, et al. Characterization of CPT-11 hydrolysis by human liver carboxylesterase isoforms hCE-1 and hCE-2. Cancer Res 2000;60:1189-92
  • Khanna R, Morton CL, Danks MK, et al. Proficient metabolism of CPT-11 by a human intestinal carboxylesterase. Cancer Res 2000;60:4725-8
  • Quinney SK, Sanghani SP, Davis WI, et al. Hydrolysis of capecitabine to 5′-deoxy-5-fluorocytidine by human carboxylesterases and inhibition by loperamide. J Pharmacol Exp Ther 2005;313:1011-6
  • Crow JA, Borazjani A, Potter PM, et al. Hydrolysis of pyrethroids by human and rat tissues: examination of intestinal, liver and serum carboxylesterases. Toxicol Appl Pharmacol 2007;221:1-12
  • Ross MK, Borazjani A, Edwards CC, et al. Hydrolytic metabolism of pyrethroids by human and other mammalian carboxylesterases. Biochem Pharmacol 2006;71:657-69
  • Ross MK, Potter PM, Borazjani A. Hydrolytic metabolism of pyrethroids by human carboxylesterases and rodent and human liver microsomes. Tox Sci 2005;84(S1):A1569
  • Zhang J, Burnell JC, Dumaual N, et al. Binding and hydrolysis of meperidine by human liver carboxylesterase hCE-1. J Pharmacol Exp Ther 1999;290:314-8
  • Sun Z, Murry DJ, Sanghani SP, et al. Methylphenidate is stereoselectively hydrolyzed by human carboxylesterase CES1A1. J Pharmacol Exp Ther 2004;310:469-76
  • Takai S, Matsuda A, Usami Y, et al. Hydrolytic profile for ester- or amide-linkage by carboxylesterases pI 5.3 and 4.5 from human liver. Biol Pharm Bull 1997;20:869-73
  • Shi D, Yang J, Yang D, et al. Anti-influenza prodrug oseltamivir is activated by carboxylesterase human carboxylesterase 1, and the activation is inhibited by antiplatelet agent clopidogrel. J Pharmacol Exp Ther 2006;319:1477-84
  • Tang M, Mukundan M, Yang J, et al. Antiplatelet agents aspirin and clopidogrel are hydrolyzed by distinct carboxylesterases, and clopidogrel is transesterificated in the presence of ethyl alcohol. J Pharmacol Exp Ther 2006;319:1467-76
  • Bencharit S, Morton CL, Howard-Williams EL, et al. Structural insights into CPT-11 activation by mammalian carboxylesterases. Nat Struct Biol 2002;9:337-42
  • Bencharit S, Morton CL, Hyatt JL, et al. Crystal structure of human carboxylesterase 1 complexed with the Alzheimer's drug tacrine. From binding promiscuity to selective inhibition. Chem Biol 2003;10:341-9
  • Bencharit S, Morton CL, Xue Y, et al. Structural basis of heroin and cocaine metabolism by a promiscuous human drug-processing enzyme. Nat Struct Biol 2003;10:349-56
  • Gillilan R. Acetylcholinesterase molecular dynamics. Available from: http://opendx.sdsc.edu/animations/chemistry/chem-ctc.mpg
  • Potter PM, Pawlik CA, Morton CL, et al. Isolation and partial characterization of a cDNA encoding a rabbit liver carboxylesterase that activates the prodrug Irinotecan (CPT-11). Cancer Res 1998;52:2646-51
  • Wadkins RM, Morton CL, Weeks JK, et al. Structural constraints affect the metabolism of 7-ethyl-10-[4-(1-piperidino)-1-piperidino]carbonyloxycamptothecin (CPT-11) by carboxylesterases. Mol Pharmacol 2001;60:355-62
  • Schwer H, Langmann T, Daig R, et al. Molecular cloning and characterization of a novel putative carboxylesterase, present in human intestine and liver. Biochem Biophys Res Commun 1997;233:117-20
  • Sanghani SP, Quinney SK, Fredenburg TB, et al. Hydrolysis of irinotecan and its oxidative metabolites, 7-ethyl-10-[4-N-(5-aminopentanoic acid)-1-piperidino] carbonyloxycamptothecin and 7-ethyl-10-[4-(1-piperidino)-1-amino]-carbonyloxycamptothecin, by human carboxylesterases CES1A1, CES2, and a newly expressed carboxylesterase isoenzyme, CES3. Drug Metab Dispos 2004;32:505-11
  • Hosokawa M. Structure and catalytic properties of carboxylesterase isozymes involved in metabolic activation of prodrugs. Molecules 2008;13:412-31
  • Morton CL, Potter PM. Comparison of Escherichia coli, Saccharomyces cerevisiae, Pichia pastoris, Spodoptera frugiperda and COS7 cells for recombinant gene expression: application to a rabbit liver carboxylesterase. Mol Biotechnol 2000;16:193-202
  • Danks MK, Potter PM. Enzyme-prodrug systems: carboxylesterase/CPT-11. Methods Mol Med 2004;90:247-62
  • Potter PM, Danks MK. Carboxylesterase-mediated activation of irinotecan. Cancer Res Alert 2000;2:80-3
  • Senter PD, Springer CJ. Selective activation of anticancer prodrugs by monoclonal antibody-enzyme conjugates. Adv Drug Deliv Rev 2001;53:247-64
  • Senter PD, Beam KS, Mixan B, et al. Identification and activities of human carboxylesterases for the activation of CPT-11, a clinically approved anticancer drug. Bioconjug Chem 2001;12:1074-80
  • Senter PD. Activation of prodrugs by antibody-enzyme conjugates: a new approach to cancer therapy. FASEB J 1990;4:188-93
  • Senter PD. Antitumor effects of antibody enzyme conjugates in combination with prodrugs. Front Radiat Ther Oncol 1990;24:132-41; discussion 161-165
  • Meck M, Wierdl M, Wagner L, et al. A VDEPT approach to purging neuroblastoma cells from hematopoeitic cells using adenovirus encoding rabbit carboxylesterase and CPT-11. Cancer Res 2001;61:5083-9
  • Wagner LM, Guichard SM, Burger RA, et al. Efficacy and toxicity of a virus-directed enzyme prodrug therapy purging method: preclinical assessment and application to bone marrow samples from neuroblastoma patients. Cancer Res 2002;62:5001-7
  • Wierdl M, Morton CL, Weeks JK, et al. Sensitization of human tumor cells to CPT-11 via adenoviral-mediated delivery of a rabbit liver carboxylesterase. Cancer Res 2001;61:5078-82
  • Oosterhoff D, Overmeer RM, de Graaf M, et al. Adenoviral vector-mediated expression of a gene encoding secreted, EpCAM-targeted carboxylesterase-2 sensitises colon cancer spheroids to CPT-11. Br J Cancer 2005;92:882-7
  • Oosterhoff D, Pinedo HM, van der Meulen IH, et al. Secreted and tumour targeted human carboxylesterase for activation of irinotecan. Br J Cancer 2002;87:659-64
  • Oosterhoff D, Pinedo HM, Witlox MA, et al. Gene-directed enzyme prodrug therapy with carboxylesterase enhances the anticancer efficacy of the conditionally replicating adenovirus AdDelta24. Gene Ther 2005;12:1011-8
  • Oosterhoff D, Witlox MA, van Beusechem VW, et al. Gene-directed enzyme prodrug therapy for osteosarcoma: sensitization to CPT-11 in vitro and in vivo by adenoviral delivery of a gene encoding secreted carboxylesterase-2. Mol Cancer Ther 2003;2:765-71
  • Wierdl M, Tsurkan L, Hyatt JL, et al. An improved human carboxylesterase for use in enzyme/prodrug therapy with CPT-11. Cancer Gene Ther 2008;15:183-92
  • Yoon KJ, Qi J, Remack JS, et al. An etoposide prodrug for development of a dual prodrug-enzyme approach to antitumor therapy. Mol Cancer Ther 2006;5:1577-84
  • Yoon KJ, Potter PM, Danks MK. Development of prodrugs for enzyme-mediated, tumor-selective therapy. Curr Med Chem Anticancer Agents 2005;5:107-13
  • Lange B, Schroeder U, Huebener N, et al. Rationally designed hydrolytically activated etoposide prodrugs, a novel strategy for the treatment of neuroblastoma. Cancer Lett 2003;197:225-30
  • Jikai J, Shamis M, Huebener N, et al. Neuroblastoma directed therapy by a rational prodrug design of etoposide as a substrate for tyrosine hydroxylase. Cancer Lett 2003;197:219-24
  • Schroeder U, Bernt KM, Lange B, et al. Hydrolytically activated etoposide prodrugs inhibit MDR-1 function and eradicate established MDR-1 multidrug-resistant T-cell leukemia. Blood 2003;102:246-53
  • Wrasidlo W, Schroder U, Bernt K, et al. Synthesis, hydrolytic activation and cytotoxicity of etoposide prodrugs. Bioorg Med Chem Lett 2002;12:557-60
  • Meresse P, Dechaux E, Monneret C, et al. Etoposide: discovery and medicinal chemistry. Curr Med Chem 2004;11:2443-66
  • Senter PD, Marquardt H, Thomas BA, et al. The role of rat serum carboxylesterase in the activation of paclitaxel and camptothecin prodrugs. Cancer Res 1996;56:1471-74
  • Wrasidlo W, Gaedicke G, Guy RK, et al. A novel 2′-(N-methylpyridinium acetate) prodrug of paclitaxel induceds superior antitumor responses in preclinical cancer models. Bioconjug Chem 2002;13:1093-99
  • Bhat L, Liu Y, Victory SF, et al. Synthesis and evaluation of paclitaxel C7 derivatives: solution phase synthesis of combinatorial libraries. Bioorg Med Chem Lett 1998;8:3181-6
  • Boge TC, Wu ZJ, Himes RH, et al. Conformationally restricted paclitaxel analogues: macrocyclic mimics of the “hydrophobic collapse” conformation. Bioorg Med Chem Lett 1999;9:3047-52
  • Liu Y, Ali SM, Boge TC, et al. A systematic SAR study of C10 modified paclitaxel analogues using a combinatorial approach. Comb Chem High Throughput Screen 2002;5:39-48
  • Niethammer A, Gaedicke G, Lode HN, et al. Synthesis and preclinical characterization of a paclitaxel prodrug with improved antitumor activity and water solubility. Bioconjug Chem 2001;12:414-20
  • Seligson AL, Terry RC, Bressi JC, et al. A new prodrug of paclitaxel: synthesis of protaxel. Anticancer Drugs 2001;12:305-13
  • Barthel BL, Torres RC, Hyatt JL, et al. Identification of human intestinal carboxylesterase as the primary enzyme for activation of a doxazolidine carbamate prodrug. J Med Chem 2008;51:298-304
  • Ravel D, Dubois V, Quinonero J, et al. Preclinical toxicity, toxicokinetics, and antitumoral efficacy studies of DTS-201, a tumor-selective peptidic prodrug of doxorubicin. Clin Cancer Res 2008;14:1258-65
  • Cherif A, Farquhar D. N-(5,5-diacetoxypent-1-yl)doxorubicin: a new intensely potent doxorubicin analogue. J Med Chem 1992;35:3208-14
  • Farquhar D, Newman RA, Zuckerman JE, et al. Doxorubicin analogues incorporating chemically reactive substituents. J Med Chem 1991;34:561-4
  • Zwelling LA, Altschuler E, Cherif A, et al. N-(5,5-diacetoxypentyl)doxorubicin: a novel anthracycline producing DNA interstrand cross-linking and rapid endonucleolytic cleavage in human leukemia cells. Cancer Res 1991;51:6704-07
  • Farquhar D, Cherif A, Bakina E, et al. Intensely potent doxorubicin analogues: structure-activity relationship. J Med Chem 1998;41:965-72
  • Munger JS, Shi GP, Mark EA, et al. A serine esterase released by human alveolar macrophages is closely related to liver microsomal carboxylesterases. J Biol Chem 1991;266:18832-8
  • Leamon CP, Reddy JA, Vlahov IR, et al. Synthesis and biological evaluation of EC140: a novel folate-targeted vinca alkaloid conjugate. Bioconjug Chem 2006;17:1226-32
  • Leamon CP, Reddy JA, Vlahov IR, et al. Synthesis and biological evaluation of EC72: a new folate-targeted chemotherapeutic. Bioconjug Chem 2005;16:803-11
  • Leamon CP, Reddy JA, Vlahov IR, et al. Preclinical antitumor activity of a novel folate-targeted dual drug conjugate. Mol Pharm 2007;4:659-67
  • Reddy JA, Dorton R, Westrick E, et al. Preclinical evaluation of EC145, a folate-vinca alkaloid conjugate. Cancer Res 2007;67:4434-42
  • Reddy JA, Westrick E, Santhapuram HK, et al. Folate receptor-specific antitumor activity of EC131, a folate-maytansinoid conjugate. Cancer Res 2007;67:6376-82
  • Kunimoto T, Nitta K, Tanaka T, et al. Antitumor activity of 7-ethyl-10-[4-(1-piperidino)-1-piperidino]carbonyloxy-camptothecin, a novel water-soluble derivative of camptothecin, against murine tumors. Cancer Res 1987;47:5944-7
  • Tsuji T, Kaneda N, Kado K, et al. CPT-11 converting enzyme from rat serum: purification and some properties. J Pharmacobiodyn 1991;14:341-9
  • Pancook JD, Pecht G, D'Arigo K, et al. Optimization of butyrylcholinesterase for the targeted activation of CPT-11. Proc Am Assoc Cancer Res 2004;45:2198
  • Simon M, Argiris A, Murren JR. Progress in the therapy of small cell lung cancer. Crit Rev Oncol Hematol 2004;49:119-33
  • Langer CJ. The global role of irinotecan in the treatment of lung cancer: 2003 update. Oncology 2003;17:30-40
  • Furman WL, Stewart CF, Poquette CA, et al. Direct translation of a protracted irinotecan schedule from a xenograft model to a phase I trial in children. J Clin Oncol 1999;17:1815-24
  • Von Hoff DD, Rothenberg ML, Pitot HC, et al. Irinotecan (CPT-11) therapy for patients with previously treated metastatic colorectal cancer (CRC): overall results of FDA-reviewed pivotal US clinical trials (Meeting abstract). Proc Ann Meet Am Soc Clin Oncol 1997;16:A803
  • Kurita A, Kado S, Kaneda N, et al. Modified irinotecan hydrochloride CPT-11) administration schedule improves induction of delayed-onset diarrhea in rats. Cancer Chemother Pharmacol 2000;46:211-20
  • Ikegami T, Ha L, Arimori K, et al. Intestinal alkalization as a possible preventive mechanism in irinotecan (CPT-11)-induced diarrhea. Cancer Res 2002;62:179-87
  • Takeda Y, Kobayashi K, Akiyama Y, et al. Prevention of irinotecan (CPT-11)-induced diarrhea by oral alkalization combined with control of defecation in cancer patients. Int J Cancer 2001;92:269-75
  • Saliba F, Hagipantelli R, Misset JL, et al. Pathophysiology and therapy of irinotecan-induced delayed-onset diarrhea in patients with advanced colorectal cancer: a prospective assessment. J Clin Oncol 1998;16:2745-51
  • Green NK, Youngs DJ, Neoptolemos JP, et al. Sensitization of colorectal and pancreatic cancer cell lines to the prodrug 5-(aziridin-1-yl)-2,4-dinitrobenzamide (CB1954) by retroviral transduction and expression of the E. coli nitroreductase gene. Cancer Gene Ther 1997;4:229-38
  • Trinh QT, Austin EA, Murray DM, et al. Enzyme/prodrug gene therapy: comparison of cytosine deaminase/5-fluorocytosine versus thymidine kinase/ganciclovir enzyme/prodrug systems in a human colorectal carcinoma cell line. Cancer Res 1995;55:4808-12
  • Fillat C, CarrióM, Cascante A, et al. Suicide gene therapy mediated by the Herpes simplex virus thymidine kinase gene/ganciclovir system: fifteen years of application. Curr Gene Ther 2003;3:13-26
  • Grove JI, Searle PF, Weedon SJ, et al. Virus-directed enzyme prodrug therapy using CB1954. Anticancer Drug Des 1999;14:461-72
  • Searle PF, Weedon SJ, McNeish IA, et al. Sensitisation of human ovarian cancer cells to killing by the prodrug CB1954 following retroviral or adenoviral transfer of the E. coli nitroreductase gene. Adv Exp Med Biol 1998;451:107-13
  • Bridgewater JA, Knox RJ, Pitts JD, et al. The bystander effect of the nitroreductase/CB1954 enzyme/prodrug system is due to a cell-permeable metabolite. Hum Gene Ther 1997;8:709-17
  • Bailey SM, Hart IR. Nitroreductase activation of CB1954–an alternative ‘suicide’ gene system. Gene Ther 1997;4:80-1
  • Bailey SM, Knox RJ, Hobbs SM, et al. Investigation of alternative prodrugs for use with E. coli nitroreductase in ‘suicide gene’ approaches to cancer therapy. Gene Ther 1996;3:1143-50
  • Garcia-Sanchez F, Pizzorno G, Fu SQ, et al. Cytosine deaminase adenoviral vector and 5-fluorocytosine selectively reduce breast cancer cells 1 million-fold when they contaminate hematopoietic cells: a potential purging method for autologous transplantation. Blood 1998;92:672-82
  • Hanna NN, Mauceri HJ, Wayne JD, et al. Virally directed cytosine deaminase/5-fluorocytosine gene therapy enhances radiation response in human cancer xenografts. Cancer Res 1997;57:4205-9
  • Bouali-Benazzouz R, Laine M, Vicat JM, et al. Therapeutic efficacy of the thymidine kinase/ganciclovir system on large experimental gliomas: a nuclear magnetic resonance imaging study. Gene Ther 1999;6:1030-7
  • Hwang HC, Smythe WR, Elshami AA, et al. Gene therapy using adenovirus carrying the herpes simplex-thymidine kinase gene to treat in vivo models of human malignant mesothelioma and lung cancer. Am J Respir Cell Mol Biol 1995;13:7-16
  • Vile RG, Nelson JA, Castleden S, et al. Systemic gene therapy of murine melanoma using tissue specific expression of the HSVtk gene involves an immune component. Cancer Res 1994;54:6228-34
  • Rill D, Santana V, Roberts W, et al. Direct demonstration that autologous bone marrow transplantation for solid tumors can return a multiplicity of tumorigenic cells. Blood 1994;84:380-3
  • Aboody KS, Brown A, Rainov NG, et al. Neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas. Proc Natl Acad Sci USA 2000;97:12846-51
  • Aboody KS, Bush RA, Garcia E, et al. Development of a tumor-selective approach to treat metastatic cancer. PLoS One 2006;1:1-10
  • Aboody KS, Najbauer J, Schmidt NO, et al. Targeting of melanoma brain metastases using engineered neural stem/progenitor cells. Neuro Oncol 2006;8:119-26
  • Aboody KS, Najbauer J, Danks MK. Stem and progenitor cell-mediated tumor selective gene therapy. Gene Ther 2008;15:739-52
  • Danks MK, Yoon KJ, Bush RA, et al. Tumor-targeted enzyme/prodrug therapy mediates long-term disease-free survival of mice bearing disseminated neuroblastoma. Cancer Res 2007;67:22-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.