407
Views
43
CrossRef citations to date
0
Altmetric
Reviews

In silico prediction of substrate properties for ABC-multidrug transporters

, , , , &
Pages 1167-1180 | Published online: 24 Aug 2008

Bibliography

  • Mueller M. Available from: http://nutrigene.4t.com/humanabc.htm
  • Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Drug Discov 2002;2:48-58
  • Ross DD, Doyle LA. Mining our ABCs: pharmacogenomic approach for evaluating transporter function in cancer drug resistance. Cancer Cell 2004;6:105-7
  • Schinkel AH, Jonker JW. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. Adv Drug Deliv Rev 2003;55:3-29
  • van Tellingen O. The importance of drug-transporting P-glycoproteins in toxicology. Toxicol Lett 2001;120:31-41
  • Thiebaut F, Tsuruo T, Hamada H, et al. Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc Natl Acad Sci USA 1987;84:7735-8
  • Schinkel AH, Smit JJM, van Tellingen O, et al. Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell 1994;74:491-502
  • Pal D, Mitra AK. MDR- and CYP3A4-mediated drug–drug interactions. J Neuroimmune Pharmacol 2006;1:323-39
  • Kiani J, Imam SZ. Medicinal importance of grapefruit juice and its interaction with various drugs. Nutr J 2007;6:33
  • Wu C-Y, Benet LZ. Predicting drug disposition via application of BCS: transport/absorption/elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm Res 2005;22:11-33
  • Pauli-Magnus C, Meier PJ. Hepatobiliary transporters and drug-induced cholestasis. Hepatology 2006;44:778-87
  • Szakacs G, Patterson J, et al. Targeting multidrug resistance in cancer. Nat Rev Drug Discov 2006;5:219-33
  • Feng B, Mills J, Davidson R, et al. In vitro P-glycoprotein assays to predict the in vivo interactions of P-glycoprotein with drugs in the central nervous system. Drug Metab Dispos 2008;36(2):268-75
  • Garrigos M, Belehradek J, Mir LM, Orlowski S. Absence of cooperativity for MgATP and verapamil effects on the ATPase activity of P-glycoprotein containing membrane vesicles. Biochem Biophys Res Commun 1993;196:1034-41
  • Polli JW, Wring SA, Humphreys JE, et al. Rational use of in vitro P-glycoprotein assays in drug discovery. J Pharmacol Exp Ther 2001;299:620-8
  • Schmid D, Ecker G, Kopp S, et al. Structure-activity relationship studies of propafenone analogs based on P-glycoprotein ATPase activity measurements. Biochem Pharmacol 1999;58:1447-56
  • Hochman JH, Yamazaki M, Ohe T, JH L. Evaluation of drug interactions with P-glycoprotein in drug discovery: in vitro assessment of the potential for drug-drug interactions with P-glycoprotein. Curr Drug Metab 2002;3:257-73
  • Tiberghien F, Loor F. Ranking of P-glycoprotein substrates and inhibitors by a calcein-AM fluorometry screening assay. Anticancer Drugs 1996;7:568-78
  • Zhou H, Wu S, Zhai S, et al. Design, synthesis, cytoselective toxicity, structure-activity relationships, and pharmacophore of thiazolidinone derivatives targeting drug-resistant lung cancer cells. J Med Chem 2008;51:1242-51
  • Szakacs G, Annereau J-P, Lababidi S, et al. Predicting drug sensitivity and resistance: profiling ABC transporter genes in cancer cells. Cancer Cell 2004;6:129-37
  • Safa AR, Roberts S, Agresti M, Fine RL. Tamoxifen aziridine, a novel affinity probe for P-glycoprotein in multidrug-resistant cells. Biochem Biophys Res Commun 1994;202:606-12
  • Schuetz EG, Beck WT, Schuetz JD. Modulators and substrates of P-glycoprotein and cytochrome P4503A coordinately up-regulate these proteins in human colon carcinoma cells. Mol Pharmacol 1996;49:311-8
  • Zhang X, Ritke M, Yalowich J, et al. P-glycoprotein mediates profound resistance to bisantrene. Oncol Res 1994;6:291-301
  • Humblet C, Marshall GR. Pharmacophore modelling and receptor mapping. Ann Rep Med Chem 1980;15:267-76
  • Wolber G, Seidel T, Bendix F, Langer T. Molecule-pharmacophore superpositioning and pattern matching in computational drug design. Drug Discov Today 2008;13:23-9
  • Chang C, Ekins S, Bahadduri P, Swaan PW. Pharmacophore-based discovery of ligands for drug transporters. Adv Drug Deliv Rev 2006;58:1431-50
  • Pearce HL, Winter MA, Beck WT. Structural characteristics of compounds that modulate P-glycoprotein-associated multidrug resistance. Adv Enzyme Regul 1989;30:357-73
  • Pearce HL, Safa AR, Bach NJ, et al. Essential features of the P-glycoprotein pharmacophore as defined by a series of reserpine analogs that modulate multidrug resistance. Proc Natl Acad Sci USA 1989;86:5128-32
  • Ecker G, Huber M, Schmid D, Chiba P. The importance of a nitrogen atom in modulators of multidrug resistance. Mol Pharmacol 1999;56:791-6
  • Seelig A. A general pattern for substrate recognition by P-glycoprotein. Eur J Biochem 1998;251:252-61
  • Penzotti JE, Lamb ML, Evensen E, Grootenhuis PDJ. A computational ensemble pharmacophore model for identifying substrates of P-glycoprotein. J Med Chem 2002;45:1737-40
  • Ekins S, Kim RB, Leake BF, et al. Application of three-dimensional quantitative structure-activity relationships of P-glycoprotein inhibitors and substrates. Mol Pharmacol 2002;61:974-81
  • Ekins S, Bravi G, Binkley S, et al. Three- and four-dimensional quantitative structure activity relationship analyses of cytochrome P-450 3A4 inhibitors. J Pharmacol Exp Ther 1999;290:429-38
  • Ekins S, Bravi G, Wikel JH, Wrighton SA. Three-dimensional-quantitative structure activity relationship analysis of cytochrome P-450 3A4 substrates. J Pharmacol Exp Ther 1999;291:424-33
  • Pajeva IK, Wiese M. Pharmacophore model of drugs involved in P-glycoprotein multidrug resistance: explanation of structural variety (Hypothesis). J Med Chem 2002;45:5671-86
  • Ekins S, Kim RB, Leake BF, et al. Three-dimensional quantitative structure-activity relationships of inhibitors of P-glycoprotein. Mol Pharmacol 2002;61:964-73
  • Garrigues A, Loiseau N, Delaforge M, et al. Characterization of two pharmacophores on the multidrug transporter P-glycoprotein. Mol Pharmacol 2002;62:1288-98
  • Cianchetta G, Singleton RW, Zhang M, et al. A pharmacophore hypothesis for P-glycoprotein substrate recognition using GRIND-based 3D-QSAR. J Med Chem 2005;48:2927-35
  • Langer T, Eder M, Hoffmann RD, et al. Lead identification for modulators of multidrug resistance based on in silico screening with a pharmacophoric feature model. Arch Pharm (Weinheim) 2004;337(6):317-27
  • Chang C, Bahadduri PM, Polli JE, et al. Rapid identification of P-glycoprotein substrates and inhibitors. Drug Metab Dispos 2006;34:1976-84
  • Chang C, Ekins S, Bahadduri P, Swaan PW. Pharmacophore-based discovery of ligands for drug transporters. Adv Drug Deliv Rev 2006;58(12-13):1431-50
  • Li WX, Li L, Eksterowicz J, et al. Significance analysis and multiple pharmacophore models for differentiating P-glycoprotein substrates. J Chem Inf Model 2007;47:2429-38
  • Cramer J, Kopp S, Bates SE, et al. Multispecificity of drug transporters: probing inhibitor selectivity for the human drug efflux transporters ABCB1 and ABCG2. ChemMedChem 2007;2:1783-8
  • Wang YH, Li Y, Yang SL, Yang L. Classification of substrates and inhibitors of P-glycoprotein using unsupervised machine learning approach. J Chem Inf Model 2005;45:750-7
  • Seelig A, Landwojtowicz E. Structure-activity relationship of P-glycoprotein substrates and modifiers. Eur J Pharm Sci 2000;12:31-40
  • Didziapetris R, Japertas P, Avdeef A, Petrauskas A. Classification analysis of P-glycoprotein substrate specificity. J Drug Target 2003;11(7):391-406
  • Available from: http://pharma-algorithms.com/adme_boxes.htm
  • Didziapetris R, Japertas P, Petrauskas A. classification SAR (C-SAR) in prediction of P-glycoprotein substrate specificity. Proceedings of the 14th EuroQSAR Symposium (EuroQSAR 2002), Bournemouth, UK
  • Gleeson MP. Generation of a set of simple, interpretable ADMET rules of thumb. J Med Chem 2008;51(4):817-34
  • Adenot M, Lahana R. Blood-brain barrier permeation models: discriminating between potential CNS and non-CNS drugs including P-glycoprotein substrates. J Chem Inf Comput Sci 2004;44:239-48
  • Gombar VK, Polli JW, Humphreys JE, et al. Predicting P-glycoprotein substrates by a quantitative structure-activity relationship model. J Pharm Sci 2004;93:957-68
  • Cabrera MA, González I, Fernàndez C, et al. A topological substructural approach for the prediction of P-glycoprotein substrates. J Pharm Sci 2006;95:589-606
  • Xue Y, Yap CW, Sun LZ, et al. Prediction of P-glycoprotein substrates by a support vector machine approach. J Chem Inf Comput Sci 2004;44:1497-505
  • Xue Y, Li ZR, et al. Effect of molecular descriptor feature selection in support vector machine classification of pharmacokinetic and toxicological properties of chemical agents. J Chem Inf Model 2004;44:1630-8
  • De Cerqueira Lima P, Golbraikh A, Oloff S, et al. A combinatorial QSAR modeling of P-glycoprotein substrates. J Chem Inf Model 2006;46(3):1245-54
  • Huang J, Ma G, Muhammad I, Cheng Y. Identifying P-glycoprotein substrates using a support vector machine optimized by a particle swarm. J Chem Inf Model 2007;47:1638-47
  • Chang G, Roth CB. Structure of MsbA from E. coli: a homolog of the multidrug resistance ATP binding cassette (ATP) transporters. Science 2001;293:1793-800
  • Chang G. Structure of MsbA from Vibrio Cholerae: a multidrug resistance ABC transporter in a closed conformation. J Mol Biol 2003;330:419-30
  • Chang G. Retraction. Science 2006;314:1875b
  • Ward A, Reyes CL, Yu J, et al. Flexibility in the ABC transporter MsbA: alternating access with a twist. Proc Natl Acad Sci USA 2007;104:19005-10
  • Dawson RJP, Locher KP. Structure of a bacterial multidrug ABC transporter. Nature 2006;443:180-5
  • Dawson RJP, Locher KP. Structure of the multidrug ABC transporter Sav1866 from Staphylococcus aureus in complex with AMP-PNP. FEBS Lett 2007;581:935-8
  • Ravna AW, Sylte I, Sager G. Molecular model of the outward facing state of the human P-glycoprotein (ABCB1), and comparison to a model of the human MRP5 (ABCC5). TBiomed 2007;4:33
  • Hazai E, Bikádi Z. Homology modeling of breast cancer resistance protein (ABCG2). J Struct Biol 2008;162:63-74
  • Ravna AW, Sylte I, Sager G. A molecular model of a putative substrate releasing conformation of multidrug resistance protein 5 (MRP5). Eur J Med Chem doi:10.1016/j.ejmech.2008.01.015
  • The Innovative Medicines Initiative. Available from: http://imi.europa.eu
  • Vaz R, Klabunde T. Antitargets: prediction and prevention of drug side effects. Edition 1. Weinheim: Wiley-VCH; 2008
  • Zdrazil B, Kaiser D, Kopp S, et al. Similarity-Based Descriptors (SIBAR) as tool for QSAR studies on P-glycoprotein inhibitors: influence of the reference set. QSAR Comb Sci 2007;26:669-78
  • Klein C, Kaiser D, Kopp S, et al. Similarity based SAR (SIBAR) as tool for early ADME profiling. J Comput Aided Mol Des 2002;16:785-93
  • Gregori-Puigjane E, Mestres J. SHED: Shannon Entropy Descriptors from topological feature distributions. J Chem Inf Model 2006;46:1615-22
  • Mestres J, Martin-Couce L, Gregori-Puigjane E, et al. Ligand-based approach to in silico pharmacology: nuclear receptor profiling. J Chem Inf Model 2006;46:2725-36
  • Ekins S, Mestres J, Testa B. In silico pharmacology for drug discovery: methods for virtual ligand screening and profiling. Br J Pharmacol 2007;152:9-20
  • Ekins S, Mestres J, Testa B. In silico pharmacology for drug discovery: applications to targets and beyond. Br J Pharmacol 2007;152:21-37
  • Paolini GV, Shapland R, van Hoorn W, et al. Global mapping of pharmacological space. Nat Biotechnol 2006;24:243-57
  • Keiser MJ, Roth BL, Armbruster BN, et al. Relating protein pharmacology by ligand chemistry. Nat Biotech 2007;25:197-206
  • Klopman G, Shi LM, Ramu A. Quantitative structure-activity relationship of multidrug resistance reversal agents. Mol Pharmacol 1997;52:323-34
  • Raub TJ. P-glycoprotein recognition of substrates and circumvention through rational drug design. Mol Pharm 2006;3:3-25
  • Cox CD, Breslin MJ, Whitman DB, et al. Kinesin spindle protein (KSP) inhibitors. Part V: discovery of 2-propylamino-2,4-diaryl-2,5-dihydropyrroles as potent, water-soluble KSP inhibitors, and modulation of their basicity by [beta]-fluorination to overcome cellular efflux by P-glycoprotein. Bioorg Med Chem Lett 2007;17:2697-702
  • Nanda KK, Brad Nolt M, Cato MJ, et al. Potent antagonists of the Kv1.5 potassium channel: synthesis and evaluation of analogous N,N-diisopropyl-2-(pyridine-3-yl)acetamides. Bioorg Med Chem Lett 2006;16:5897-901

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.