91
Views
6
CrossRef citations to date
0
Altmetric
Reviews

Potential application as screening and drug designing tools of cytoarchitectural deficiencies present in three animal models of schizophrenia

, MD PhD, , PhD, , PhD, , PhD & , MD PhD
Pages 257-278 | Published online: 08 Mar 2009

Bibliography

  • Keefe RS, Sweeney JA, Gu H, et al. Effects of olanzapine, quetiapine, and risperidone on neurocognitive function in early psychosis: a randomized, double-blind 52-week comparison. Am J Psychiatry 2007;164(7):1061-71
  • Tamminga CA, Buchanan RW, Gold JM. The role of negative symptoms and cognitive dysfunction in schizophrenia outcome. Int Clin Psychopharmacol 1998;13(Suppl 3):S21-6
  • Harrison PJ. The hippocampus in schizophrenia: a review of the neuropathological evidence and its pathophysiological implications. Psychopharmacology (Berl) 2004;174(1):151-62
  • Arnold SE. Cellular and molecular neuropathology of the parahippocampal region in schizophrenia. Ann NY Acad Sci 2000;911:275-92
  • Selemon LD, Rajkowska G. Cellular pathology in the dorsolateral prefrontal cortex distinguishes schizophrenia from bipolar disorder. Curr Mol Med 2003;3(5):427-36
  • Dalgleish T. The emotional brain. Nat Rev Neurosci 2004;5(7):583-9
  • Harrison PJ. The neuropathological effects of antipsychotic drugs. Schizophr Res 1999;40(2):87-99
  • Scherk H, Falkai P. Effects of antipsychotics on brain structure. Curr Opin Psychiatry 2006;19(2):145-50
  • Marenco S, Weinberger DR. The neurodevelopmental hypothesis of schizophrenia: following a trail of evidence from cradle to grave. Dev Psychopathol 2000;12(3):501-27. Summer
  • Risch N. Linkage strategies for genetically complex traits. I. Multilocus models. Am J Hum Genet 1990;46(2):222-8
  • Javitt DC, Zukin SR. Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 1991;148(10):1301-8
  • Fell MJ, Svensson KA, Johnson BG, Schoepp DD. Evidence for the role of metabotropic glutamate (mGlu)2 not mGlu3 receptors in the preclinical antipsychotic pharmacology of the mGlu2/3 receptor agonist (-)-(1R,4S,5S,6S)-4-amino-2-sulfonylbicyclo[3.1.0]hexane-4,6-dicarboxylic acid (LY404039). J Pharmacol Exp Ther 2008;326(1):209-17
  • Patil ST, Zhang L, Martenyi F, et al. Activation of mGlu2/3 receptors as a new approach to treat schizophrenia: a randomized Phase 2 clinical trial. Nat Med 2007;13(9):1102-7
  • Brown AS, Schaefer CA, Wyatt RJ, et al. Maternal exposure to respiratory infections and adult schizophrenia spectrum disorders: a prospective birth cohort study. Schizophr Bull 2000;26(2):287-95
  • Rosso IM, Cannon TD, Huttunen T, et al. Obstetric risk factors for early-onset schizophrenia in a Finnish birth cohort. Am J Psychiatry 2000;157(5):801-7
  • Susser E, Neugebauer R, Hoek HW, et al. Schizophrenia after prenatal famine. Further evidence. Arch Gen Psychiatry 1996;53(1):25-31
  • Zornberg GL, Buka SL, Tsuang MT. The problem of obstetrical complications and schizophrenia. Schizophr Bull 2000;26(2):249-56
  • Zornberg GL, Buka SL, Tsuang MT. Hypoxic-ischemia-related fetal/neonatal complications and risk of schizophrenia and other nonaffective psychoses: a 19-year longitudinal study. Am J Psychiatry 2000;157(2):196-202
  • Nagata Y, Matsumoto H. Studies on methylazoxymethanol: methylation of nucleic acids in the fetal rat brain. Proc Soc Exp Biol Med 1969;132(1):383-5
  • Balduini W, Lombardelli G, Peruzzi G, Cattabeni F. Treatment with methylazoxymethanol at different gestational days: physical, reflex development and spontaneous activity in the offspring. Neurotoxicology 1991;12(2):179-88. Summer
  • Singh SC. Deformed dendrites and reduced spine numbers on ectopic neurones in the hippocampus of rats exposed to methylazoxymethanol-acetate. A Golgi-Cox study. Acta Neuropathol 1980;49(3):193-8
  • Hoffman JR, Boyne LJ, Levitt P, Fischer I. Short exposure to methylazoxymethanol causes a long-term inhibition of axonal outgrowth from cultured embryonic rat hippocampal neurons. J Neurosci Res 1996;46(3):349-59
  • Bayer SA, Wills KV, Triarhou LC, Ghetti B. Time of neuron origin and gradients of neurogenesis in midbrain dopaminergic neurons in the mouse. Exp Brain Res 1995;105(2):191-9
  • Ceranik K, Deng J, Heimrich B, et al. Hippocampal Cajal-Retzius cells project to the entorhinal cortex: retrograde tracing and intracellular labelling studies. Eur J Neurosci 1999;11(12):4278-90
  • Kalsbeek A, Voorn P, Buijs RM, et al. Development of the dopaminergic innervation in the prefrontal cortex of the rat. J Comp Neurol 1988;269(1):58-72
  • Talamini LM, Koch T, Ter Horst GJ, Korf J. Methylazoxymethanol acetate-induced abnormalities in the entorhinal cortex of the rat; parallels with morphological findings in schizophrenia. Brain Res 1998;789(2):293-306
  • Gourevitch R, Rocher C, Le Pen G, et al. Working memory deficits in adult rats after prenatal disruption of neurogenesis. Behav Pharmacol 2004;15(4):287-92
  • Park S, Holzman PS. Schizophrenics show spatial working memory deficits. Arch Gen Psychiatry 1992;49(12):975-82
  • Flagstad P, Glenthoj BY, Didriksen M. Cognitive deficits caused by late gestational disruption of neurogenesis in rats: a preclinical model of schizophrenia. Neuropsychopharmacology 2005;30(2):250-60
  • Fagerlund B, Mackeprang T, Gade A, Glenthoj BY. Effects of low-dose risperidone and low-dose zuclopenthixol on cognitive functions in first-episode drug-naive schizophrenic patients. CNS Spectr 2004;9(5):364-74
  • Moore H, Jentsch JD, Ghajarnia M, et al. A neurobehavioral systems analysis of adult rats exposed to methylazoxymethanol acetate on E17: implications for the neuropathology of schizophrenia. Biol Psychiatry 2006;60(3):253-64
  • Featherstone RE, Rizos Z, Nobrega JN, et al. Gestational methylazoxymethanol acetate treatment impairs select cognitive functions: parallels to schizophrenia. Neuropsychopharmacology 2007;32(2):483-92
  • Elliott R, McKenna PJ, Robbins TW, Sahakian BJ. Neuropsychological evidence for frontostriatal dysfunction in schizophrenia. Psychol Med 1995;25(3):619-30
  • Pantelis C, Barber FZ, Barnes TR, et al. Comparison of set-shifting ability in patients with chronic schizophrenia and frontal lobe damage. Schizophr Res 1999;37(3):251-70
  • Waltz JA, Gold JM. Probabilistic reversal learning impairments in schizophrenia: further evidence of orbitofrontal dysfunction. Schizophr Res 2007;93(1-3):296-303
  • Murray GK, Cheng F, Clark L, et al. Reinforcement and reversal learning in first-episode psychosis. Schizophr Bull 2008;34(5):848-55
  • Egan MF, Goldberg TE, Kolachana BS, et al. Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proc Natl Acad Sci USA 2001;98(12):6917-22
  • Jody D, Lieberman JA, Geisler S, et al. Behavioral response to methylphenidate and treatment outcome in first episode schizophrenia. Psychopharmacol Bull 1990;26(2):224-30
  • Flagstad P, Mork A, Glenthoj BY, et al. Disruption of neurogenesis on gestational day 17 in the rat causes behavioral changes relevant to positive and negative schizophrenia symptoms and alters amphetamine-induced dopamine release in nucleus accumbens. Neuropsychopharmacology 2004;29(11):2052-64
  • Le Pen G, Gourevitch R, Hazane F, et al. Peri-pubertal maturation after developmental disturbance: a model for psychosis onset in the rat. Neuroscience 2006;143(2):395-405
  • Braff DL, Geyer MA, Swerdlow NR. Human studies of prepulse inhibition of startle: normal subjects, patient groups, and pharmacological studies. Psychopharmacology (Berl) 2001;156(2-3):234-58
  • Moore H, Giracello D, Grace AA, Geyer MA. Sensory gating deficits in rats with early disruption of limic cortical development : relevance to schizophrenia. 1999;25:1580
  • Matricon J, Bellon A, Le Pen G, et al. Adult rats exposed to methylazoxymethanol (MAM) at embryonic day 17 reproduce neuropathological findings from the entorhinal cortex and hippocampal subfields CA3 and CA4 of patients with schizophrenia. In preparation
  • Selemon LD, Goldman-Rakic PS. The reduced neuropil hypothesis: a circuit based model of schizophrenia. Biol Psychiatry 1999;45(1):17-25
  • Wallace CS, Reitzenstein J, Withers GS. Diminished experience-dependent neuroanatomical plasticity: evidence for an improved biomarker of subtle neurotoxic damage to the developing rat brain. Environ Health Perspect 2003;111(10):1294-8
  • Lawrie SM, Abukmeil SS. Brain abnormality in schizophrenia. A systematic and quantitative review of volumetric magnetic resonance imaging studies. Br J Psychiatry 1998;172:110-20
  • Van Horn JD, McManus IC. Ventricular enlargement in schizophrenia. A meta-analysis of studies of the ventricle:brain ratio (VBR). Br J Psychiatry 1992;160:687-97
  • Penschuck S, Flagstad P, Didriksen M, et al. Decrease in parvalbumin-expressing neurons in the hippocampus and increased phencyclidine-induced locomotor activity in the rat methylazoxymethanol (MAM) model of schizophrenia. Eur J Neurosci 2006;23(1):279-84
  • Nesvag R, Lawyer G, Varnas K, et al. Regional thinning of the cerebral cortex in schizophrenia: effects of diagnosis, age and antipsychotic medication. Schizophr Res 2008;98(1-3):16-28
  • Baiano M, Perlini C, Rambaldelli G, et al. Decreased entorhinal cortex volumes in schizophrenia. Schizophr Res 2008;102(1-3):171-80
  • Falkai P, Bogerts B, Rozumek M. Limbic pathology in schizophrenia: the entorhinal region–a morphometric study. Biol Psychiatry 1988;24(5):515-21
  • Turetsky BI, Moberg PJ, Roalf DR, et al. Decrements in volume of anterior ventromedial temporal lobe and olfactory dysfunction in schizophrenia. Arch Gen Psychiatry 2003;60(12):1193-200
  • Selemon LD, Rajkowska G, Goldman-Rakic PS. Abnormally high neuronal density in the schizophrenic cortex. A morphometric analysis of prefrontal area 9 and occipital area 17. Arch Gen Psychiatry 1995;52(10):805-18; discussion 19-20
  • Selemon LD, Rajkowska G, Goldman-Rakic PS. Elevated neuronal density in prefrontal area 46 in brains from schizophrenic patients: application of a three-dimensional, stereologic counting method. J Comp Neurol 1998;392(3):402-12
  • Benes FM, McSparren J, Bird ED, et al. Deficits in small interneurons in prefrontal and cingulate cortices of schizophrenic and schizoaffective patients. Arch Gen Psychiatry 1991;48(11):996-1001
  • Pakkenberg B. Total nerve cell number in neocortex in chronic schizophrenics and controls estimated using optical disectors. Biol Psychiatry 1993;34(11):768-72
  • Akbarian S, Kim JJ, Potkin SG, et al. Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics. Arch Gen Psychiatry 1995;52(4):258-66
  • Cotter D, Mackay D, Chana G, et al. Reduced neuronal size and glial cell density in area 9 of the dorsolateral prefrontal cortex in subjects with major depressive disorder. Cereb Cortex 2002;12(4):386-94
  • Jakob H, Beckmann H. Circumscribed malformation and nerve cell alterations in the entorhinal cortex of schizophrenics. Pathogenetic and clinical aspects. J Neural Transm Gen Sect 1994;98(2):83-106
  • Arnold SE, Franz BR, Gur RC, et al. Smaller neuron size in schizophrenia in hippocampal subfields that mediate cortical-hippocampal interactions. Am J Psychiatry 1995;152(5):738-48
  • Jakob H, Beckmann H. Prenatal developmental disturbances in the limbic allocortex in schizophrenics. J Neural Transm 1986;65(3-4):303-26
  • Arnold SE, Hyman BT, Van Hoesen GW, Damasio AR. Some cytoarchitectural abnormalities of the entorhinal cortex in schizophrenia. Arch Gen Psychiatry 1991;48(7):625-32
  • Casanova MF, Carosella N, Kleinman JE. Neuropathological findings in a suspected case of childhood schizophrenia. J Neuropsychiatry Clin Neurosci 1990;2(3):313-9. Summer
  • Krimer LS, Herman MM, Saunders RC, et al. A qualitative and quantitative analysis of the entorhinal cortex in schizophrenia. Cereb Cortex 1997;7(8):732-9
  • Heckers S, Heinsen H, Geiger B, Beckmann H. Hippocampal neuron number in schizophrenia. A stereological study. Arch Gen Psychiatry 1991;48(11):1002-8
  • Kovelman JA, Scheibel AB. A neurohistological correlate of schizophrenia. Biol Psychiatry 1984;19(12):1601-21
  • Benes FM, Sorensen I, Bird ED. Reduced neuronal size in posterior hippocampus of schizophrenic patients. Schizophr Bull 1991;17(4):597-608
  • Jeste DV, Lohr JB. Hippocampal pathologic findings in schizophrenia. A morphometric study. Arch Gen Psychiatry 1989;46(11):1019-24
  • Zaidel DW, Esiri MM, Harrison PJ. The hippocampus in schizophrenia: lateralized increase in neuronal density and altered cytoarchitectural asymmetry. Psychol Med 1997;27(3):703-13
  • Zaidel DW, Esiri MM, Harrison PJ. Size, shape, and orientation of neurons in the left and right hippocampus: investigation of normal asymmetries and alterations in schizophrenia. Am J Psychiatry 1997;154(6):812-8
  • Jonsson SA, Luts A, Guldberg-Kjaer N, Ohman R. Pyramidal neuron size in the hippocampus of schizophrenics correlates with total cell count and degree of cell disarray. Eur Arch Psychiatry Clin Neurosci 1999;249(4):169-73
  • Lauer M, Beckmann H, Senitz D. Increased frequency of dentate granule cells with basal dendrites in the hippocampal formation of schizophrenics. Psychiatry Res 2003;122(2):89-97
  • Senitz D, Beckmann H. Granule cells of the dentate gyrus with basal and recurrent dendrites in schizophrenic patients and controls. A comparative Golgi study. J Neural Transm 2003;110(3):317-26
  • Goldsmith SK, Joyce JN. Alterations in hippocampal mossy fiber pathway in schizophrenia and Alzheimer's disease. Biol Psychiatry 1995;37(2):122-6
  • Adams CE, DeMasters BK, Freedman R. Regional zinc staining in postmortem hippocampus from schizophrenic patients. Schizophr Res 1995;18(1):71-7
  • Cullen TJ, Walker MA, Parkinson N, et al. A postmortem study of the mediodorsal nucleus of the thalamus in schizophrenia. Schizophr Res 2003;60(2-3):157-66
  • Dorph-Petersen KA, Pierri JN, Sun Z, et al. Stereological analysis of the mediodorsal thalamic nucleus in schizophrenia: volume, neuron number, and cell types. J Comp Neurol 2004;472(4):449-62
  • Danos P, Schmidt A, Baumann B, et al. Volume and neuron number of the mediodorsal thalamic nucleus in schizophrenia: a replication study. Psychiatry Res 2005;140(3):281-9
  • Kreczmanski P, Heinsen H, Mantua V, et al. Volume, neuron density and total neuron number in five subcortical regions in schizophrenia. Brain 2007;130(Pt 3):678-92
  • Andreasen NC, Arndt S, Swayze V 2nd, et al. Thalamic abnormalities in schizophrenia visualized through magnetic resonance image averaging. Science 1994;266(5183):294-8
  • Buchsbaum MS. Neuroimaging, VII: PET and the averaging of brain images. Am J Psychiatry 1996;153(4):456
  • Gur RE, Maany V, Mozley PD, et al. Subcortical MRI volumes in neuroleptic-naive and treated patients with schizophrenia. Am J Psychiatry 1998;155(12):1711-7
  • Gilbert AR, Rosenberg DR, Harenski K, et al. Thalamic volumes in patients with first-episode schizophrenia. Am J Psychiatry 2001;158(4):618-24
  • Byne W, Buchsbaum MS, Mattiace LA, et al. Postmortem assessment of thalamic nuclear volumes in subjects with schizophrenia. Am J Psychiatry 2002;159(1):59-65
  • Konick LC, Friedman L. Meta-analysis of thalamic size in schizophrenia. Biol Psychiatry 2001;49(1):28-38
  • Thune JJ, Pakkenberg B. Stereological studies of the schizophrenic brain. Brain Res Brain Res Rev 2000;31(2-3):200-4
  • Popken GJ, Bunney WE Jr, Potkin SG, Jones EG. Subnucleus-specific loss of neurons in medial thalamus of schizophrenics. Proc Natl Acad Sci USA 2000;97(16):9276-80
  • Young KA, Manaye KF, Liang C, et al. Reduced number of mediodorsal and anterior thalamic neurons in schizophrenia. Biol Psychiatry 2000;47(11):944-53
  • Pakkenberg B. Pronounced reduction of total neuron number in mediodorsal thalamic nucleus and nucleus accumbens in schizophrenics. Arch Gen Psychiatry 1990;47(11):1023-8
  • Reynolds GP, Abdul-Monim Z, Neill JC, Zhang ZJ. Calcium binding protein markers of GABA deficits in schizophrenia--postmortem studies and animal models. Neurotox Res 2004;6(1):57-61
  • Andressen C, Blumcke I, Celio MR. Calcium-binding proteins: selective markers of nerve cells. Cell Tissue Res 1993;271(2):181-208
  • Woo TU, Miller JL, Lewis DA. Schizophrenia and the parvalbumin-containing class of cortical local circuit neurons. Am J Psychiatry 1997;154(7):1013-5
  • Beasley CL, Zhang ZJ, Patten I, Reynolds GP. Selective deficits in prefrontal cortical GABAergic neurons in schizophrenia defined by the presence of calcium-binding proteins. Biol Psychiatry 2002;52(7):708-15
  • Hashimoto T, Volk DW, Eggan SM, et al. Gene expression deficits in a subclass of GABA neurons in the prefrontal cortex of subjects with schizophrenia. J Neurosci 2003;23(15):6315-26
  • Sakai T, Oshima A, Nozaki Y, et al. Changes in density of calcium-binding-protein-immunoreactive GABAergic neurons in prefrontal cortex in schizophrenia and bipolar disorder. Neuropathology 2008;28(2):143-50
  • Cotter D, Landau S, Beasley C, et al. The density and spatial distribution of GABAergic neurons, labelled using calcium binding proteins, in the anterior cingulate cortex in major depressive disorder, bipolar disorder, and schizophrenia. Biol Psychiatry 2002;51(5):377-86
  • Tooney PA, Chahl LA. Neurons expressing calcium-binding proteins in the prefrontal cortex in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2004;28(2):273-8
  • Daviss SR, Lewis DA. Local circuit neurons of the prefrontal cortex in schizophrenia: selective increase in the density of calbindin-immunoreactive neurons. Psychiatry Res 1995;59(1-2):81-96
  • Reynolds GP, Beasley CL. GABAergic neuronal subtypes in the human frontal cortex–development and deficits in schizophrenia. J Chem Neuroanat 2001;22(1-2):95-100
  • Zhang Z, Sun J, Reynolds GP. A selective reduction in the relative density of parvalbumin-immunoreactive neurons in the hippocampus in schizophrenia patients. Chin Med J (Engl) 2002;115(6):819-23
  • Zhang ZJ, Reynolds GP. A selective decrease in the relative density of parvalbumin-immunoreactive neurons in the hippocampus in schizophrenia. Schizophr Res 2002;55(1-2):1-10
  • Impagnatiello F, Guidotti AR, Pesold C, et al. A decrease of reelin expression as a putative vulnerability factor in schizophrenia. Proc Natl Acad Sci USA 1998;95(26):15718-23
  • Fatemi SH, Earle JA, McMenomy T. Reduction in Reelin immunoreactivity in hippocampus of subjects with schizophrenia, bipolar disorder and major depression. Mol Psychiatry 2000;5(6):654-63, 571
  • Guidotti A, Auta J, Davis JM, et al. Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder: a postmortem brain study. Arch Gen Psychiatry 2000;57(11):1061-9
  • Tueting P, Costa E, Dwivedi Y, et al. The phenotypic characteristics of heterozygous reeler mouse. Neuroreport 1999;10(6):1329-34
  • Liu WS, Pesold C, Rodriguez MA, et al. Down-regulation of dendritic spine and glutamic acid decarboxylase 67 expressions in the reelin haploinsufficient heterozygous reeler mouse. Proc Natl Acad Sci USA 2001;98(6):3477-82
  • Brigman JL, Padukiewicz KE, Sutherland ML, Rothblat LA. Executive functions in the heterozygous reeler mouse model of schizophrenia. Behav Neurosci 2006;120(4):984-8
  • Slotnick B. Animal cognition and the rat olfactory system. Trends Cogn Sci 2001;5(5):216-22
  • Eichenbaum H. Using olfaction to study memory. Ann NY Acad Sci 1998;855:657-69
  • Brewer WJ, Pantelis C, Anderson V, et al. Stability of olfactory identification deficits in neuroleptic-naive patients with first-episode psychosis. Am J Psychiatry 2001;158(1):107-15
  • Hudry J, Saoud M, D'Amato T, et al. Ratings of different olfactory judgements in schizophrenia. Chem Senses 2002;27(5):407-16
  • Wu J, Buchsbaum MS, Moy K, et al. Olfactory memory in unmedicated schizophrenics. Schizophr Res 1993;9(1):41-7
  • Larson J, Hoffman JS, Guidotti A, Costa E. Olfactory discrimination learning deficit in heterozygous reeler mice. Brain Res 2003;971(1):40-6
  • Carboni G, Tueting P, Tremolizzo L, et al. Enhanced dizocilpine efficacy in heterozygous reeler mice relates to GABA turnover downregulation. Neuropharmacology 2004;46(8):1070-81
  • Qiu S, Korwek KM, Pratt-Davis AR, et al. Cognitive disruption and altered hippocampus synaptic function in Reelin haploinsufficient mice. Neurobiol Learn Mem 2006;85(3):228-42
  • Podhorna J, Didriksen M. The heterozygous reeler mouse: behavioural phenotype. Behav Brain Res 2004;153(1):43-54
  • Salinger WL, Ladrow P, Wheeler C. Behavioral phenotype of the reeler mutant mouse: effects of RELN gene dosage and social isolation. Behav Neurosci 2003;117(6):1257-75
  • Tueting P, Doueiri MS, Guidotti A, et al. Reelin down-regulation in mice and psychosis endophenotypes. Neurosci Biobehav Rev 2006;30(8):1065-77
  • Barr AM, Fish KN, Markou A, Honer WG. Heterozygous reeler mice exhibit alterations in sensorimotor gating but not presynaptic proteins. Eur J Neurosci 2008;27(10):2568-74
  • Krueger DD, Howell JL, Hebert BF, et al. Assessment of cognitive function in the heterozygous reeler mouse. Psychopharmacology (Berl) 2006;189(1):95-104
  • Badea A, Nicholls PJ, Johnson GA, Wetsel WC. Neuroanatomical phenotypes in the reeler mouse. Neuroimage 2007;34(4):1363-74
  • Akbarian S, Bunney WE Jr, Potkin SG, et al. Altered distribution of nicotinamide-adenine dinucleotide phosphate-diaphorase cells in frontal lobe of schizophrenics implies disturbances of cortical development. Arch Gen Psychiatry 1993;50(3):169-77
  • Akbarian S, Kim JJ, Potkin SG, et al. Maldistribution of interstitial neurons in prefrontal white matter of the brains of schizophrenic patients. Arch Gen Psychiatry 1996;53(5):425-36
  • Akbarian S, Vinuela A, Kim JJ, et al. Distorted distribution of nicotinamide-adenine dinucleotide phosphate-diaphorase neurons in temporal lobe of schizophrenics implies anomalous cortical development. Arch Gen Psychiatry 1993;50(3):178-87
  • Buxhoeveden DP, Switala AE, Roy E, Casanova MF. Quantitative analysis of cell columns in the cerebral cortex. J Neurosci Methods 2000;97(1):7-17
  • Selemon LD, Mrzljak J, Kleinman JE, et al. Regional specificity in the neuropathologic substrates of schizophrenia: a morphometric analysis of Broca's area 44 and area 9. Arch Gen Psychiatry 2003;60(1):69-77
  • Garey LJ, Ong WY, Patel TS, et al. Reduced dendritic spine density on cerebral cortical pyramidal neurons in schizophrenia. J Neurol Neurosurg Psychiatry 1998;65(4):446-53
  • Glantz LA, Lewis DA. Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch Gen Psychiatry 2000;57(1):65-73
  • Kolluri N, Sun Z, Sampson AR, Lewis DA. Lamina-specific reductions in dendritic spine density in the prefrontal cortex of subjects with schizophrenia. Am J Psychiatry 2005;162(6):1200-2
  • Rosoklija G, Toomayan G, Ellis SP, et al. Structural abnormalities of subicular dendrites in subjects with schizophrenia and mood disorders: preliminary findings. Arch Gen Psychiatry 2000;57(4):349-56
  • Kolomeets NS, Orlovskaya DD, Rachmanova VI, Uranova NA. Ultrastructural alterations in hippocampal mossy fiber synapses in schizophrenia: a postmortem morphometric study. Synapse 2005;57(1):47-55
  • Niu S, Renfro A, Quattrocchi CC, et al. Reelin promotes hippocampal dendrite development through the VLDLR/ApoER2-Dab1 pathway. Neuron 2004;41(1):71-84
  • Arnold SE, Lee VM, Gur RE, Trojanowski JQ. Abnormal expression of two microtubule-associated proteins (MAP2 and MAP5) in specific subfields of the hippocampal formation in schizophrenia. Proc Natl Acad Sci USA 1991;88(23):10850-4
  • Cotter D, Kerwin R, Doshi B, et al. Alterations in hippocampal non-phosphorylated MAP2 protein expression in schizophrenia. Brain Res 1997;765(2):238-46
  • Cotter D, Wilson S, Roberts E, et al. Increased dendritic MAP2 expression in the hippocampus in schizophrenia. Schizophr Res 2000;41(2):313-23
  • Bakker CB, Amini FB. Observations on the psychotomimetic effects of Sernyl. Compr Psychiatry 1961;2:269-80
  • Krystal JH, Karper LP, Seibyl JP, et al. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry 1994;51(3):199-214
  • Luby ED, Cohen BD, Rosenbaum G, et al. Study of a new schizophrenomimetic drug; sernyl. AMA Arch Neurol Psychiatry 1959;81(3):363-9
  • Sturgeon RD, Fessler RG, London SF, Meltzer HY. Behavioral effects of chronic phencyclidine administration in rats. Psychopharmacology (Berl) 1982;76(1):52-6
  • Leccese AP, Marquis KL, Mattia A, Moreton JE. The anticonvulsant and behavioral effects of phencyclidine and ketamine following chronic treatment in rats. Behav Brain Res 1986;22(3):257-64
  • Hesselink MB, Smolders H, De Boer AG, et al. Modifications of the behavioral profile of non-competitive NMDA receptor antagonists, memantine, amantadine and (+)MK-801 after chronic administration. Behav Pharmacol 1999;10(1):85-98
  • Sams-Dodd F. Automation of the social interaction test by a video-tracking system: behavioural effects of repeated phencyclidine treatment. J Neurosci Methods 1995;59(2):157-67
  • Snigdha S, Neill JC. Efficacy of antipsychotics to reverse phencyclidine-induced social interaction deficits in female rats--a preliminary investigation. Behav Brain Res 2008;187(2):489-94
  • Snigdha S, Neill JC. Improvement of phencyclidine-induced social behaviour deficits in rats: involvement of 5-HT1A receptors. Behav Brain Res 2008;191(1):26-31
  • Egerton A, Reid L, McGregor S, et al. Subchronic and chronic PCP treatment produces temporally distinct deficits in attentional set shifting and prepulse inhibition in rats. Psychopharmacology (Berl) 2008;198(1):37-49
  • Becker A, Peters B, Schroeder H, et al. Ketamine-induced changes in rat behaviour: A possible animal model of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2003;27(4):687-700
  • Porsolt RD, Bertin A, Jalfre M. Behavioral despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther 1977;229(2):327-36
  • Turgeon SM, Lin T, Subramanian M. Subchronic phencyclidine exposure potentiates the behavioral and c-Fos response to stressful stimuli in rats. Pharmacol Biochem Behav 2007;88(1):73-81
  • Garcia LS, Comim CM, Valvassori SS, et al. Acute administration of ketamine induces antidepressant-like effects in the forced swimming test and increases BDNF levels in the rat hippocampus. Prog Neuropsychopharmacol Biol Psychiatry 2008;32(1):140-4
  • Maj J, Rogoz Z, Skuza G, Sowinska H. Effects of MK-801 and antidepressant drugs in the forced swimming test in rats. Eur Neuropsychopharmacol 1992;2(1):37-41
  • Abdul-Monim Z, Neill JC, Reynolds GP. Sub-chronic psychotomimetic phencyclidine induces deficits in reversal learning and alterations in parvalbumin-immunoreactive expression in the rat. J Psychopharmacol 2007;21(2):198-205
  • Wood SJ, Proffitt T, Mahony K, et al. Visuospatial memory and learning in first-episode schizophreniform psychosis and established schizophrenia: a functional correlate of hippocampal pathology? Psychol Med 2002;32(3):429-38
  • O'Donnell BF, Swearer JM, Smith LT, et al. Selective deficits in visual perception and recognition in schizophrenia. Am J Psychiatry 1996;153(5):687-92
  • Jentsch JD, Anzivino LA. A low dose of the alpha2 agonist clonidine ameliorates the visual attention and spatial working memory deficits produced by phencyclidine administration to rats. Psychopharmacology (Berl) 2004;175(1):76-83
  • McLean SL, Beck JP, Woolley ML, Neill JC. A preliminary investigation into the effects of antipsychotics on sub-chronic phencyclidine-induced deficits in attentional set-shifting in female rats. Behav Brain Res 2008;189(1):152-8
  • Rodefer JS, Murphy ER, Baxter MG. PDE10A inhibition reverses subchronic PCP-induced deficits in attentional set-shifting in rats. Eur J Neurosci 2005;21(4):1070-6
  • Deschenes A, Goulet S, Dore FY. Rule shift under long-term PCP challenge in rats. Behav Brain Res 2006;167(1):134-40
  • Fletcher PJ, Tenn CC, Rizos Z, et al. Sensitization to amphetamine, but not PCP, impairs attentional set shifting: reversal by a D1 receptor agonist injected into the medial prefrontal cortex. Psychopharmacology (Berl) 2005;183(2):190-200
  • Stefani MR, Moghaddam B. Systemic and prefrontal cortical NMDA receptor blockade differentially affect discrimination learning and set-shift ability in rats. Behav Neurosci 2005;119(2):420-8
  • Jentsch JD, Tran A, Le D, et al. Subchronic phencyclidine administration reduces mesoprefrontal dopamine utilization and impairs prefrontal cortical-dependent cognition in the rat. Neuropsychopharmacology 1997;17(2):92-9
  • Stefani MR, Moghaddam B. Effects of repeated treatment with amphetamine or phencyclidine on working memory in the rat. Behav Brain Res 2002;134(1-2):267-74
  • Didriksen M, Skarsfeldt T, Arnt J. Reversal of PCP-induced learning and memory deficits in the Morris' water maze by sertindole and other antipsychotics. Psychopharmacology (Berl) 2007;193(2):225-33
  • Li Z, Kim CH, Ichikawa J, Meltzer HY. Effect of repeated administration of phencyclidine on spatial performance in an eight-arm radial maze with delay in rats and mice. Pharmacol Biochem Behav 2003;75(2):335-40
  • Marquis JP, Goulet S, Dore FY. Schizophrenia-like syndrome inducing agent phencyclidine failed to impair memory for temporal order in rats. Neurobiol Learn Mem 2003;80(2):158-67
  • Mansbach RS, Geyer MA. Effects of phencyclidine and phencyclidine biologs on sensorimotor gating in the rat. Neuropsychopharmacology 1989;2(4):299-308
  • Geyer MA, Krebs-Thomson K, Braff DL, Swerdlow NR. Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: a decade in review. Psychopharmacology (Berl) 2001;156(2-3):117-54
  • Schwabe K, Brosda J, Wegener N, Koch M. Clozapine enhances disruption of prepulse inhibition after sub-chronic dizocilpine- or phencyclidine-treatment in Wistar rats. Pharmacol Biochem Behav 2005;80(2):213-9
  • Mansbach RS, Geyer MA. Parametric determinants in pre-stimulus modification of acoustic startle: interaction with ketamine. Psychopharmacology (Berl) 1991;105(2):162-8
  • Mansbach RS, Carver J, Zorn SH. Blockade of drug-induced deficits in prepulse inhibition of acoustic startle by ziprasidone. Pharmacol Biochem Behav 2001;69(3-4):535-42
  • Swerdlow NR, Bakshi V, Waikar M, et al. Seroquel, clozapine and chlorpromazine restore sensorimotor gating in ketamine-treated rats. Psychopharmacology (Berl) 1998;140(1):75-80
  • Abel KM, Allin MP, Hemsley DR, Geyer MA. Low dose ketamine increases prepulse inhibition in healthy men. Neuropharmacology 2003;44(6):729-37
  • Duncan EJ, Madonick SH, Parwani A, et al. Clinical and sensorimotor gating effects of ketamine in normals. Neuropsychopharmacology 2001;25(1):72-83
  • Kalus P, Bondzio J, Federspiel A, et al. Cell-type specific alterations of cortical interneurons in schizophrenic patients. Neuroreport 2002;13(5):713-7
  • Braun I, Genius J, Grunze H, et al. Alterations of hippocampal and prefrontal GABAergic interneurons in an animal model of psychosis induced by NMDA receptor antagonism. Schizophr Res 2007;97(1-3):254-63
  • Benes FM, Davidson J, Bird ED. Quantitative cytoarchitectural studies of the cerebral cortex of schizophrenics. Arch Gen Psychiatry 1986;43(1):31-5
  • Keilhoff G, Becker A, Grecksch G, et al. Repeated application of ketamine to rats induces changes in the hippocampal expression of parvalbumin, neuronal nitric oxide synthase and cFOS similar to those found in human schizophrenia. Neuroscience 2004;126(3):591-8
  • Gulyas AI, Hajos N, Freund TF. Interneurons containing calretinin are specialized to control other interneurons in the rat hippocampus. J Neurosci 1996;16(10):3397-411
  • Dawson TM, Snyder SH. Gases as biological messengers: nitric oxide and carbon monoxide in the brain. J Neurosci 1994;14(9):5147-59
  • Snyder SH, Ferris CD. Novel neurotransmitters and their neuropsychiatric relevance. Am J Psychiatry 2000;157(11):1738-51
  • Oliveira RM, Guimaraes FS, Deakin JF. Expression of neuronal nitric oxide synthase in the hippocampal formation in affective disorders. Braz J Med Biol Res 2008;41(4):333-41
  • Silva AJ. Molecular and cellular cognitive studies of the role of synaptic plasticity in memory. J Neurobiol 2003;54(1):224-37
  • Toni N, Buchs PA, Nikonenko I, et al. LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite. Nature 1999;402(6760):421-5
  • Hajszan T, Leranth C, Roth RH. Subchronic phencyclidine treatment decreases the number of dendritic spine synapses in the rat prefrontal cortex. Biol Psychiatry 2006;60(6):639-44
  • Flores C, Wen X, Labelle-Dumais C, Kolb B. Chronic phencyclidine treatment increases dendritic spine density in prefrontal cortex and nucleus accumbens neurons. Synapse 2007;61(12):978-84
  • Uranova NA. Structural changes in the neuropil of the frontal cortex in schizophrenia. Zh Nevropatol Psikhiatr Im S S Korsakova 1988;88(7):52-8
  • Lee CJ, Mannaioni G, Yuan H, et al. Astrocytic control of synaptic NMDA receptors. J Physiol 2007 Jun 15;581(Pt 3):1057-81
  • Lippman JJ, Lordkipanidze T, Buell ME, et al. Morphogenesis and regulation of Bergmann glial processes during Purkinje cell dendritic spine ensheathment and synaptogenesis. Glia 2008;56(13):1463-77
  • Murai KK, Nguyen LN, Irie F, et al. Control of hippocampal dendritic spine morphology through ephrin-A3/EphA4 signaling. Nat Neurosci 2003;6(2):153-60
  • Kalus P, Muller TJ, Zuschratter W, Senitz D. The dendritic architecture of prefrontal pyramidal neurons in schizophrenic patients. Neuroreport 2000;11(16):3621-5
  • Gilbert CD, Kelly JP. The projections of cells in different layers of the cat's visual cortex. J Comp Neurol 1975;163(1):81-105
  • Kelly JP, Gilbert CD. The projections of different morphological types of ganglion cells in the cat retina. J Comp Neurol 1975;163(1):65-80
  • Lund JS, Lund RD, Hendrickson AE, et al. The origin of efferent pathways from the primary visual cortex, area 17, of the macaque monkey as shown by retrograde transport of horseradish peroxidase. J Comp Neurol 1975;164(3):287-303
  • Dehmelt L, Smart FM, Ozer RS, Halpain S. The role of microtubule-associated protein 2c in the reorganization of microtubules and lamellipodia during neurite initiation. J Neurosci 2003;23(29):9479-90
  • Rosoklija G, Keilp JG, Toomayan G, et al. Altered subicular MAP2 immunoreactivity in schizophrenia. Prilozi 2005;26(2):13-34
  • Arnold SE, Han LY, Rioux L, Falke E. Abnormal MAP2 neuron representation in subiculum and entorhinal cortex in poor-outcome schizophrenia. Soc Neurosci Abst 1999;25:575
  • Jones LB, Johnson N, Byne W. Alterations in MAP2 immunocytochemistry in areas 9 and 32 of schizophrenic prefrontal cortex. Psychiatry Res 2002;114(3):137-48
  • Oifa AI, Uranova NA. Electron-microscopic analysis of cytoarchitectonic disorders in the cerebral cortex in schizophrenia. Zh Nevropatol Psikhiatr Im S S Korsakova 1991;91(10):48-52
  • Uranova NA, Aganova EA. Ultrastructure of the synapses of the anterior limbic cortex in schizophrenia. Zh Nevropatol Psikhiatr Im S S Korsakova 1989;89(7):56-9
  • Bellon A. New genes associated with schizophrenia in neurite formation: a review of cell culture experiments. Mol Psychiatry 2007;12(7):620-9
  • Jordan JD, He JC, Eungdamrong NJ, et al. Cannabinoid receptor-induced neurite outgrowth is mediated by Rap1 activation through G(alpha)o/i-triggered proteasomal degradation of Rap1GAPII. J Biol Chem 2005;280(12):11413-21
  • He JC, Gomes I, Nguyen T, et al. The G alpha(o/i)-coupled cannabinoid receptor-mediated neurite outgrowth involves Rap regulation of Src and Stat3. J Biol Chem 2005;280(39):33426-34
  • Kozlovsky N, Shanon-Weickert C, Tomaskovic-Crook E, et al. Reduced GSK-3beta mRNA levels in postmortem dorsolateral prefrontal cortex of schizophrenic patients. J Neural Transm 2004;111(12):1583-92
  • Kozlovsky N, Regenold WT, Levine J, et al. GSK-3beta in cerebrospinal fluid of schizophrenia patients. J Neural Transm 2004;111(8):1093-8
  • Weickert CS, Hyde TM, Lipska BK, et al. Reduced brain-derived neurotrophic factor in prefrontal cortex of patients with schizophrenia. Mol Psychiatry 2003;8(6):592-610
  • Weickert CS, Ligons DL, Romanczyk T, et al. Reductions in neurotrophin receptor mRNAs in the prefrontal cortex of patients with schizophrenia. Mol Psychiatry 2005;10(7):637-50
  • Takahashi M, Shirakawa O, Toyooka K, et al. Abnormal expression of brain-derived neurotrophic factor and its receptor in the corticolimbic system of schizophrenic patients. Mol Psychiatry 2000;5(3):293-300
  • Hashimoto T, Bergen SE, Nguyen QL, et al. Relationship of brain-derived neurotrophic factor and its receptor TrkB to altered inhibitory prefrontal circuitry in schizophrenia. J Neurosci 2005;25(2):372-83
  • Cotter D, Kerwin R, al-sarraji S, et al. Abnormalities of Wnt signalling in schizophrenia–evidence for neurodevelopmental abnormality. Neuroreport 1998;9(7):1379-83
  • Miyaoka T, Seno H, Ishino H. Increased expression of Wnt-1 in schizophrenic brains. Schizophr Res 1999;38(1):1-6
  • Katsu T, Ujike H, Nakano T, et al. The human frizzled-3 (FZD3) gene on chromosome 8p21, a receptor gene for Wnt ligands, is associated with the susceptibility to schizophrenia. Neurosci Lett 2003;353(1):53-6
  • Miyoshi K, Honda A, Baba K, et al. Disrupted-In-Schizophrenia 1, a candidate gene for schizophrenia, participates in neurite outgrowth. Mol Psychiatry 2003;8(7):685-94
  • Kamiya A, Kubo K, Tomoda T, et al. A schizophrenia-associated mutation of DISC1 perturbs cerebral cortex development. Nat Cell Biol 2005;7(12):1167-78
  • Hillier SL, Witkin SS, Krohn MA, et al. The relationship of amniotic fluid cytokines and preterm delivery, amniotic fluid infection, histologic chorioamnionitis, and chorioamnion infection. Obstet Gynecol 1993;81(6):941-8
  • Fortunato SJ, Menon RP, Swan KF, Menon R. Inflammatory cytokine (interleukins 1, 6 and 8 and tumor necrosis factor-alpha) release from cultured human fetal membranes in response to endotoxic lipopolysaccharide mirrors amniotic fluid concentrations. Am J Obstet Gynecol 1996;174(6):1855-61; discussion 61-2
  • Yoon BH, Romero R, Moon J, et al. Differences in the fetal interleukin-6 response to microbial invasion of the amniotic cavity between term and preterm gestation. J Matern Fetal Neonatal Med 2003;13(1):32-8
  • Gilmore JH, Jarskog LF, Vadlamudi S. Maternal poly I: c exposure during pregnancy regulates TNF alpha, BDNF, and NGF expression in neonatal brain and the maternal-fetal unit of the rat. J Neuroimmunol 2005;159(1-2):106-12
  • Hoffman RE, McGlashan TH. Synaptic elimination, neurodevelopment, and the mechanism of hallucinated “voices” in schizophrenia. Am J Psychiatry 1997;154(12):1683-9
  • Thompson PM, Vidal C, Giedd JN, et al. Mapping adolescent brain change reveals dynamic wave of accelerated gray matter loss in very early-onset schizophrenia. Proc Natl Acad Sci USA 2001;98(20):11650-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.