214
Views
6
CrossRef citations to date
0
Altmetric
Reviews

Update on carbohydrate-containing antibacterial agents

&
Pages 315-356 | Published online: 08 Mar 2009

Bibliography

  • Wax RG, Lewis K, Salyers A, editors, Bacterial resistance to antimicrobials. Second edition. Boca Raton, FL: CRC Press LLC; 2008
  • Tolmasky M, Bonomo RA, editors, Enzyme-mediated resistance to antibiotics. Washington: American Society for Antibiotics; 2007
  • Goldstein FW. Combating resistance in a challenging, changing environment. Clin Microbiol Infect 2007;13(s2):2-6
  • Jansen WTM, van der Bruggen JT, Verhoef J, Fluit AC. Bacterial resistance: a sensitive issue complexity of the challenge and containment strategy in Europe. Drug Resist Updat 2006;9(3):123-33
  • Inoue M. Antimicrobial resistance mechanism in bacteria. Nippon Naika Gakkai Zasshi 2006;95:2176-80
  • Lambert PA. Bacterial resistance to antibiotics: modified target sites. Adv Drug Deliv Rev 2005;57(10):1471-85
  • Jimenez-Valera M, Ruiz-Bravo A, Ramos-Cormenzana A. Bacterial resistance to antimicrobial agents: mechanisms and challenges. In: Ramos-Cormenzana A, editor, New Approaches in the Use of Antibiotics. Trivandrum: Research Signpost; 2003. p. 63-81
  • Levy SB. The antibiotic paradox: How the misuse of antibiotic endangers their curative powers. Second edition. Cambridge, MA: Perseus, 2002
  • Ferrier RJ, Blattner R, Field RA, et al. Antibiotics. J Carbohydr Chem 2002;33:257-74
  • Ritter TK, Wong CH. Carbohydrate-based antibiotics: a new approach to tackling the problem of resistance. Angew Chem Int Ed 2001;40(19):3508-33
  • Walsh C. Where will new antibiotics come from? Nat Rev Microbiol 2003;1(1):65-70
  • Welzel P. Syntheses around the transglycosylation step in peptidoglycan biosynthesis. Chem Rev 2005;105(12):4610-60
  • Kahne D, Leimkuhler C, Lu W, Walsh C. Glycopeptide and lipoglycopeptide antibiotics. Chem Rev 2005;105(2):425-48
  • Pace JL, Yang G. Glycopeptides: update on an old successful antibiotic class. Biochem Pharmacol 2006;71(7):968-80
  • Barna JC, Williams DH. The structure and mode of action of glycopeptide antibiotics of the vancomycin group. Annu Rev Microbiol 1984;38:339-57
  • Reynolds PE. Structure, biochemistry and mechanism of action of glycopeptide antibiotics. Eur J Clin Microbiol 1989;8(11):943-50
  • Wolter F, Schoof S, Suessmuth RD. Synopsis of structural, biosynthetic, and chemical aspects of glycopeptide antibiotics. Top Curr Chem 2007;267:143-85
  • Suessmuth RD. The chemistry and biology of vancomycin and other glycopeptide antibiotic derivatives. In: Liang XT, editor, Medical Chemistry of Natural Products. Hoboken, NJ: John Wiley & Sons 2006. p. 35-72
  • Pan A, Lorenzotti S, Zoncada A. Registered and investigational drugs for the treatment of methicillin-resistant Staphylococcus aureus infection. Rec Patents Anti Infect Drug Discov 2008;3(1):10-33
  • Deresinski S. Vancomycin: does it still have a role as an antistaphylococcal agent? Expert Rev Anti Infect Ther 2007;5(3):393-401
  • Courvalin P. Vancomycin resistance in gram-positive cocci. Clin Infect Dis 2006;42 (Suppl 1):S25-34
  • Hubbard BK, Walsh CT. Vancomycin assembly: nature's way. Angew Chem Int Ed 2003;42(7):730-65
  • Kollef MH. Limitations of vancomycin in the management of resistant staphylococcal infections. Clin Infect Dis 2007;45 (Suppl 3):S191-5
  • Kern WV, With K, Gonnermann C, et al. Update on glycopeptide use in German University Hospitals. Infection 2004;32(3):157-62
  • Phillips I. Withdrawal of growth-promoting antibiotics in Europe and its effects in relation to human health. Int J Antimicrob Agents 2007;30(2):101-7
  • McComas CC, Crowley BM, Boger DL. Partitioning the loss in vancomycin binding affinity for D-Ala-D-Lac into lost H-bond and repulsive lone pair contributions. J Am Chem Soc 2003;125(31):9314-5
  • Williams DH, Bardsley B. The Vancomycin group of antibiotics and the fight against resistant bacteria. Angew Chem Int Ed 1999;38(9):1172-93
  • Griffith BR, Krepel C, Fu X, et al. Model for antibiotic optimization via neoglycosylation: synthesis of liponeoglycopeptides active against VRE. J Am Chem Soc 2007;129(26):8150-5
  • Van Bambeke F. Glycopeptides and glycodepsipeptides in clinical development: a comparative review of their antibacterial spectrum, pharmacokinetics and clinical efficacy. Curr Opin Investig Drugs 2006;7(8):740-9
  • Thayer DA, Wong CH. Vancomycin analogues containing monosaccharides exhibit improved antibiotic activity: a combined one-pot enzymatic glycosylation and chemical diversification strategy. Chem Asian J 2006;1(3):445-52
  • Baltz RH. Combinatorial glycosylation of glycopeptide antibiotics. Chem Biol 2002;9(12):1268-70
  • Micek ST. Alternatives to vancomycin for the treatment of methicillin-resistant Staphylococcus aureus infections. Clin Infect Dis 2007;45 (Suppl 3):S184-90
  • Preobrazhenskaya MN, Olsufyeva EN, Miroshnikova OV, et al. N'-(alpha-aminoacyl)- and N'-alpha-(N(alpha)-alkylamino)acyl derivatives of vancomycin and eremomycin. I. Synthesis of N'-(alpha-aminoacyl)- and N'-alpha-(N(alpha)-alkylamino)acyl derivatives of vancomycin and eremomycin by selective aminoacylation of the amino sugar of the disaccharide branch. J Antibiot (Tokyo) 2007;60(4):235-44
  • Plattner JJ, Chu D, Mirchink EP, et al. N'-(alpha-aminoacyl)- and N'-alpha-(N-alkylamino)acyl derivatives of vancomycin and eremomycin. II. Antibacterial activity of N'-(alpha-aminoacyl)- and N'-alpha-(N-alkylamino)acyl derivatives of vancomycin and eremomycin. J Antibiot (Tokyo) 2007;60(4):245-50
  • Bryskier A, Veyssier P. Glycopeptides and lipoglycopeptides. In: Bryskier A, editor, Antimicrobial Agents Washington, USA: ASM Press 2005. p. 880-905
  • Giamarellou H. Treatment options for multidrug-resistant bacteria. Expert Rev Anti Infect Ther 2006;4(4):601-18
  • Barrett JF. Recent developments in Glycopeptide antibacterials. Curr Opin Investig Drugs 2005;6(8):781-90
  • Van Bambeke F. Glycopeptides in clinical development: pharmacological profile and clinical perspectives. Curr Opin Pharmacol 2004;4(5):471-8
  • Nicolaou KC, Cho SY, Hughes R, et al. Solid- and solution-phase synthesis of vancomycin and vancomycin analogues with activity against vancomycin-resistant bacteria. Chem Eur J 2001;7(17):3798-823
  • Kim SJ, Cegelski L, Stueber D, et al. Oritavancin exhibits dual mode of action to inhibit cell-wall biosynthesis in Staphylococcus aureus. J Mol Biol 2008;377(1):281-93
  • De Sarro A, Fera MT. New and investigational antimicrobials for the treatment of severe skin infections. Curr Drug Ther 2008;3:54-69(16)
  • Poulakou G, Giamarellou H. Oritavancin: a new promising agent in the treatment of infections due to Gram-positive pathogens. Expert Opin Investig Drugs 2008;17(2):225-43
  • Ward KE, Mersfelder TL, Laplante KL. Oritavancin-an investigational glycopeptide antibiotic. Expert Opin Investig Drugs 2006;15(4):417-29
  • Mercier RC, Hrebickova L. Oritavancin: a new avenue for resistant Gram-positive bacteria. Expert Rev Anti Infect Ther 2005;3(3):325-32
  • Allen NE, Nicas TI. Mechanism of action of oritavancin and related glycopeptide antibiotics. FEMS Microbiol Rev 2003;26(5):511-32
  • Product-Pipeline: Oritavancin Programme. 2008; Available from: http://www.targanta.com/pipeline/oritavancin.html [Cited 06 July 2008]
  • Leadbetter MR, Adams SM, Bazzini B, et al. Hydrophobic vancomycin derivatives with improved ADME properties: discovery of telavancin (TD-6424). J Antibiot (Tokyo) 2004;57(5):326-36
  • Attwood RJ, LaPlante KL. Telavancin: a novel lipoglycopeptide antimicrobial agent. Am J Health Syst Pharm 2007;64(22):2335-48
  • Knechtel SA, Jacobs C, Klepser ME. Telavancin: a novel lipoglycopeptide antibiotic with dual mechanisms of action. Formulary 2007;42(9):545-7
  • Laohavaleeson S, Kuti JL, Nicolau DP. Telavancin: a novel lipoglycopeptide for serious gram-positive infections. Expert Opin Investig Drugs 2007;16(3):347-57
  • Nannini EC, Stryjewski ME. A new lipoglycopeptide: telavancin. Expert Opin Pharmacother 2008;9(12):2197-207
  • Krause KM, Renelli M, Difuntorum S, et al. In vitro activity of telavancin against resistant gram-positive bacteria. Antimicrob Agents Chemother 2008;52(7):2647-52
  • Zhanel GG, Trapp S, Gin AS, et al. Dalbavancin and telavancin: novel lipoglycopeptides for the treatment of Gram-positive infections. Expert Rev Anti Infect Ther 2008;6(1):67-81
  • Billeter M, Zervos MJ, Chen AY, et al. Dalbavancin: a novel once-weekly lipoglycopeptide antibiotic. Clin Infect Dis 2008;46(4):577-83
  • Kim A, Kuti JL, Nicolau DP. Review of dalbavancin, a novel semisynthetic lipoglycopeptide. Expert Opin Investig Drugs 2007;16(5):717-33
  • Decousser JW, Bourgeois-Nicolaos N, Doucet-Populaire F. Dalbavancin, a long-acting lipoglycopeptide for the treatment of multidrug-resistant Gram-positive bacteria. Expert Rev Anti Infect Ther 2007;5(4):557-71
  • Chen AY, Zervos MJ, Vazquez JA. Dalbavancin: a novel antimicrobial. Int J Clin Pract 2007;61(5):853-63
  • Roecker AM, Pope SD. Dalbavancin: a lipoglycopeptide antibacterial for Gram-positive infections. Expert Opin Pharmacother 2008;9(10):1745-54
  • Cavalleri B, Pagani H, Volpe G, et al. A-16686, a new antibiotic from Actinoplanes. I. Fermentation, isolation and preliminary physico-chemical characteristics. J Antibiot (Tokyo) 1984;37(4):309-17
  • Fang X, Tiyanont K, Zhang Y, et al. The mechanism of action of ramoplanin and enduracidin. Mol Biosyst 2006;2(1):69-76
  • Fulco P, Wenzel RP. Ramoplanin: a topical lipoglycodepsipeptide antibacterial agent. Expert Rev Anti Infect Ther 2006;4(6):939-45
  • Walker S, Chen L, Hu Y, et al. Chemistry and biology of ramoplanin: a lipoglycodepsipeptide with potent antibiotic activity. Chem Rev 2005;105(2):449-76
  • De Voe SE, Kunstmann MP, inventors; American Cyanamid Co., assignee. Antibiotic AC-98 and production thereof. United States. 1970
  • Magarvey NA, Haltli B, He M, et al. Biosynthetic pathway for mannopeptimycins, lipoglycopeptide antibiotics active against drug-resistant gram-positive pathogens. Antimicrob Agents Chemother 2006;50(6):2167-77
  • He H. Mannopeptimycins, a novel class of glycopeptide antibiotics active against gram-positive bacteria. Appl Microbiol Biotechnol 2005;67(4):444-52
  • Ruzin A, Singh G, Severin A, et al. Mechanism of action of the mannopeptimycins, a novel class of glycopeptide antibiotics active against vancomycin-resistant gram-positive bacteria. Antimicrob Agents Chemother 2004;48(3):728-38
  • Dushin RG, Wang TZ, Sum PE, et al. Hydrophobic acetal and ketal derivatives of mannopeptimycin-alpha and desmethylhexahydromannopeptimycin-alpha: semisynthetic glycopeptides with potent activity against Gram-positive bacteria. J Med Chem 2004;47(14):3487-90
  • Davis BG, Robinson MA. Drug delivery systems based on sugar-macromolecule conjugates. Curr Opin Drug Discov Dev 2002;5(2):279-88
  • Jusuf S, Loll PJ, Axelsen PH. Configurational entropy and cooperativity between ligand binding and dimerization in glycopeptide antibiotics. J Am Chem Soc 2003;125(13):3988-94
  • Hermann T. Aminoglycoside antibiotics: old drugs and new therapeutic approaches. Cell Mol Life Sci 2007;64(14):1841-52
  • Kirst HA, Allen NE. Aminoglycosides antibiotics. In: Taylor JB, Triggle DJ, editors, Comprehensive Medicinal Chemistry II. Oxford: Elsevier 2007. p. 629-52
  • Arya DP, editor. Aminoglycoside antibiotics: From Chemical Biology to Drug Discovery. Hoboken, NJ: John Wiley & Sons 2007
  • Jana S, Deb JK. Molecular understanding of aminoglycoside action and resistance. Appl Microbiol Biotechnol 2006;70(2):140-50
  • Busscher GF, Rutjes FPJT, vanDelft FL. 2-Deoxystreptamine: central scaffold of aminoglycoside antibiotics. Chem Rev 2005;105(3):775-92
  • Kondo J, Francois B, Urzhumtsev A, Westhof E. Crystal structure of the Homo sapiens cytoplasmic ribosomal decoding site complexed with apramycin. Angew Chem Int Ed Engl 2006;45(20):3310-4
  • Ogle JM, Ramakrishnan V. Structural insights into translational fidelity. Annu Rev Biochem 2005;74:129-77
  • Lynch SR, Gonzalez RL, Puglisi JD. Comparison of X-ray crystal structure of the 30S subunit-antibiotic complex with NMR structure of decoding site oligonucleotide-paromomycin complex. Structure 2003;11(1):43-53
  • Pilch DS, Kaul M, Barbieri CM. Ribosomal RNA Recognition by aminoglycoside antibiotics. Top Curr Chem 2005;253:179-204
  • Magnet S, Blanchard JS. Molecular insights into aminoglycoside action and resistance. Chem Rev 2005;105(2):477-98
  • Hendrix M, Alper PB, Priestley ES, Wong CH. Hydroxyamines as a new motif for the molecular recognition of phosphodiesters: implications for aminogloycoside-RNA interactions. Angew Chem Int Ed 1997;36(1-2):95-8
  • Borovinskaya MA, Pai RD, Zhang W, et al. Structural basis for aminoglycoside inhibition of bacterial ribosome recycling. Nat Struct Mol Biol 2007;14(8):727-32
  • Vicens Q, Westhof E. Molecular recognition of aminoglycoside antibiotics by ribosomal RNA and resistance enzymes: an analysis of x-ray crystal structures. Biopolymers 2003;70(1):42-57
  • Shakya T, Wright GD. Mechanisms of aminoglycoside antibotics resistance. In: Arya DP, editor, Aminoglycoside antibiotics: from chemical biology to drug discovery. Hoboken: John Wiley & Sons 2007. p. 119-40
  • Wright GD. Mechanisms of aminoglycoside antibiotics resistance. In: Lewis K, Salyers AA, Taber HW, Wax RR, editors, Bacterial resistance to antimicrobials: CRC Press, Boca Raton, FL 2008. p. 71-101
  • Perletti G, Vral A, Patrosso MC, et al. Prevention and modulation of aminoglycoside ototoxicity. Mol Med Rep 2008;1(1):3-13
  • Martínez-Salgado C, López-Hernández FJ, López-Novoa JM. Glomerular nephrotoxicity of aminoglycosides. Top Curr Chem 2007;223(1):86-98
  • Zhou J, Wang G, Zhang LH, Ye XS. Modifications of aminoglycoside antibiotics targeting RNA. Med Res Rev 2007;27(3):279-316
  • Vourloumis D, Winters GC, Takahashi M, et al. Novel acyclic deoxystreptamine mimetics targeting the ribosomal decoding site. Chembiochem 2003;4(9):879-85
  • Barluenga S, Simonsen KB, Littlefield ES, et al. Rational design of azepane-glycoside antibiotics targeting the bacterial ribosome. Bioorg Med Chem Lett 2004;14(3):713-8
  • Thomas JR, Liu X, Hergenrother PJ. Biochemical and thermodynamic characterization of compounds that bind to RNA hairpin loops: toward an understanding of selectivity. Biochemistry 2006;45(36):10928-38
  • Agnelli F, Sucheck SJ, Marby KA, et al. Dimeric aminoglycosides as antibiotics. Angew Chem Int Ed 2004;43(12):1562-6
  • Liang CH, Romero A, Rabuka D, et al. Structure-activity relationships of bivalent aminoglycosides and evaluation of their microbiological activities. Bioorg Med Chem Lett 2005;15(8):2123-8
  • Luedtke NW, Carmichael P, Tor Y. Cellular uptake of aminoglycosides, guanidinoglycosides, and poly-arginine. J Am Chem Soc 2003;125(41):12374-5
  • Kawamoto SA, Sudhahar CG, Hatfield CL, et al. Studies on the mechanism of inhibition of bacterial ribonuclease P by aminoglycoside derivatives. Nucleic Acids Res 2008;36(2):697-704
  • Bera S, Zhanel GG, Schweizer F. Design, synthesis, and antibacterial activities of neomycin-lipid conjugates: polycationic lipids with potent gram-positive activity. J Med Chem 2008;51(19):6160-4
  • Hiraiwa Y, Minowa N, Usui T, et al. Effect of varying the 4′-position of arbekacin derivatives on antibacterial activity against MRSA and Pseudomonas aeruginosa. Bioorg Med Chem Lett 2007;17(22):6369-72
  • Hiraiwa Y, Usui T, Akiyama Y, et al. Synthesis and antibacterial activity of 5-deoxy-5-episubstituted arbekacin derivatives. Bioorg Med Chem Lett 2007;17(13):3540-3
  • Li J, Chiang FI, Chen HN, Chang CWT. Synthesis and antibacterial activity of pyranmycin derivatives with N-1 and O-6 modifications. Bioorg Med Chem 2007;15(24):7711-9
  • da Silva JG, Hyppolito MA, de Oliveira JAA, et al. Aminoglycoside antibiotic derivatives: preparation and evaluation of toxicity on cochlea and vestibular tissues and antimicrobial activity. Bioorg Med Chem 2007;15(11):3624-34
  • Hanessian S, Szychowski J, Adhikari SS, et al. Structure-based design, synthesis, and A-site rRNA cocrystal complexes of functionally novel aminoglycoside antibiotics: C2″ ether analogues of paromomycin. J Med Chem 2007;50(10):2352-69
  • da Silva JG, Carvalho I. New insights into aminoglycoside antibiotics and derivatives. Curr Med Chem 2007;14(10):1101-19
  • Shahid M. Aminoglycosidic aminocyclitol antibiotics-a wonder, but toxic drugs: developments and clinical implications. Anti Infect Agents Med Chem 2007;6(2):107-17
  • Nudelman I, Rebibo-Sabbah A, Shallom-Shezifi D, et al. Redesign of aminoglycosides for treatment of human genetic diseases caused by premature stop mutations. Bioorg Med Chem Lett 2006;16(24):6310-5
  • Vourloumis D, Winters GC, Simonsen KB, et al. Aminoglycoside-hybrid ligands targeting the ribosomal decoding site. Chembiochem 2005;6(1):58-65
  • Bastida A, Hidalgo A, Chiara JL, et al. Exploring the use of conformationally locked aminoglycosides as a new strategy to overcome bacterial resistance. J Am Chem Soc 2006;128(1):100-16
  • Barbieri CM, Kaul M, Bozza-Hingos M, et al. Defining the molecular forces that determine the impact of neomycin on bacterial protein synthesis: importance of the 2′-amino functionality. Antimicrob Agents Chemother 2007;51(5):1760-9
  • Blount KF, Zhao F, Hermann T, Tor Y. Conformational constraint as a means for understanding RNA-Aminoglycoside specificity. J Am Chem Soc 2005;127(27):9818-29
  • Subba B, Kurumbang NP, Jung YS, et al. Production of aminoglycosides in non-aminoglycoside producing Streptomyces lividans TK24. Bioorg Med Chem Lett 2007;17(7):1892-6
  • Thapa LP, Oh TJ, Liou K, Sohng JK. Biosynthesis of spectinomycin: heterologous production of spectinomycin and spectinamine in an aminoglycoside-deficient host, Streptomyces venezuelae YJ003. J Appl Microbiol 2008;105(1):300-8
  • Kurumbang NP, Oh TJ, Liou K, Sohng JK. Heterologous production and detection of recombinant directing 2-deoxystreptamine (DOS) in the non-aminoglycoside-producing host Streptomyces venezuelae YJ003. J Microbiol Biotechnol 2008;18(5):866-73
  • Kim KR, Kim TJ, Suh JW. The gene cluster for spectinomycin biosynthesis and the aminoglycoside-resistance function of spcM in Streptomyces spectabilis. Curr Microbiol 2008;57(4):371-4
  • Flatt PM, Mahmud T. Biosynthesis of aminocyclitol-aminoglycoside antibiotics and related compounds. Nat Prod Rep 2007;24(2):358-92
  • Piepersberg W, Ashab KM, Schmidt-Beißner H, Wehmeier UF. The biochemistry and genetics af aminoglycoside producers. In: Arya DP, editor, aminoglycoside antibiotics: from chemical biology to drug discovery. Hoboken: John Wiley & Sons 2007. p. 15-118
  • Rai R, McAlexander I, Chang CWT. Synthetic glycodiversification from aminosugars to aminoglycoside antibiotics. Org Prep Proced Intal 2005;37(4):337-75
  • Jain S, Bishai W, Nightingale CH. Macrolide, Azalide, and Ketolides. Second edition. Antimicrobial pharmacodynamics in theory and clinical practice. Informa Healthcare 2007. p. 217-30
  • Kaneko T, Dougherty TJ, Magee TV. Macrolide antibiotics. In: Taylor JB, Triggle DJ, editors, Comprehensive medicinal chemistry II. Oxford: Elsevier 2007. p. 519-66
  • Henninger TC. Recent progress in the field of macrolide antibiotics. Expert Opin Ther Pat 2003;13(6):787-805
  • Schlunzen F, Zarivach R, Harms J, et al. Structural basis for the interaction of antibiotics with the peptidyl transferase centre in eubacteria. Nature 2001;413(6858):814-21
  • Pal S. A journey across the sequential development of macrolides and ketolides related to erythromycin. Tetrahedron 2006;62(14):3171-200
  • Sugawara A, Sunazuka T, Hirose T, et al. Design and synthesis via click chemistry of 8,9-anhydroerythromycin A 6,9-hemiketal analogues with anti-MRSA and -VRE activity. Bioorg Med Chem Lett 2007;17(22):6340-4
  • Van Bambeke F, Harms JM, Van Laethem Y, Tulkens PM. Ketolides: pharmacological profile and rational positioning in the treatment of respiratory tract infections. Expert Opin Pharmacother 2008;9(2):267-83
  • Roberts MC. Update on macrolide-lincosamide-streptogramin, ketolide, and oxazolidinone resistance genes. FEMS Microbiol Lett 2008;282(2):147-59
  • Schlunzen F, Harms JM, Franceschi F, et al. Structural basis for the antibiotic activity of ketolides and azalides. Structure 2003;11(3):329-38
  • Hanessian S, Kothakonda KK. Design and synthesis of oxazolidinone ketolide antibiotic segment mimetics. Can J Chem 2005;83(6-7):801-11
  • Zhanel GG, Hisanaga T, Wierzbowski A, Hoban DJ. Telithromycin in the treatment of acute bacterial sinusitis, acute exacerbations of chronic bronchitis, and community-acquired pneumonia. Ther Clin Risk Manag 2006;2(1):59-75
  • Lonks JR, Goldmann DA. Telithromycin: a ketolide antibiotic for treatment of respiratory tract infections. Clin Infect Dis 2005;40(11):1657-64
  • Berisio R, Corti N, Pfister P, et al. 23S rRNA 2058A->G alteration mediates ketolide resistance in combination with deletion in L22. Antimicrob Agents Chemother 2006;50(11):3816-23
  • Hirakata Y, Mizuta Y, Wada A, et al. The first telithromycin-resistant Streptococcus pneumoniae isolate in Japan associated with erm(B) and mutations in 23S rRNA and riboprotein L4. Jpn J Infect Dis 2007;60(1):48-50
  • Hammerschlag MR, Sharma R. Use of cethromycin, a new ketolide, for treatment of community-acquired respiratory infections. Expert Opin Investig Drugs 2008;17(3):387-400
  • Adis International L. Cethromycin: A-195773, A-195773-0, A-1957730, Abbott-195773, ABT 773. Drugs R D 2007;8(2):95-102
  • Capobianco JO, Cao Z, Shortridge VD, et al. Studies of the novel ketolide ABT-773: transport, binding to ribosomes, and inhibition of protein synthesis in Streptococcus pneumoniae. Antimicrob Agents Chemother 2000;44(6):1562-7
  • Bermudez LE, Motamedi N, Chee C, et al. EDP-420, a Bicyclolide (Bridged Bicyclic Macrolide), is active against Mycobacterium avium. Antimicrob Agents Chemother 2007;51(5):1666-70
  • Revill P, Bolós J, Seradell N. EDP-420. Drugs Future 2006;31(6):479-83
  • Tang D, Gai Y, Polemeropoulos A, et al. Design, synthesis, and antibacterial activities of novel 3,6-bicyclolide oximes: length optimization and zero carbon linker oximes. Bioorg Med Chem Lett 2008;18(18):5078-82
  • Miura T, Natsume S, Kanemoto K, et al. Novel azalides derived from sixteen-membered macrolides. J Antibiot (Tokyo) 2007;60(7):407-35
  • Mutak S. Azalides from azithromycin to new azalide derivatives. J Antibiot (Tokyo) 2007;60(2):85-122
  • Gerber M, Ackermann G. OPT-80, a macrocyclic antimicrobial agent for the treatment of Clostridium difficile infections: a review. Expert Opin Investig Drugs 2008;17(4):547-53
  • Sonenshein AL, Alexander HB. Initiation of transcription in vitro inhibited by lipiarmycin. J Mol Biol 1979;127(1):55-72
  • Okujo N, Iinuma H, George A, et al. Bispolides, novel 20-membered ring macrodiolide antibiotics from microbispora. J Antibiot (Tokyo) 2007;60(3):216-9
  • Thibodeaux CJ, Liu HW. Manipulating nature's sugar biosynthetic machineries for glycodiversification of macrolides: recent advances and future prospects. Pure Appl Chem 2007;79(4):785-99
  • Miroshnyk I, Mirza S, Zorky PM, et al. A new insight into solid-state conformation of macrolide antibiotics. Bioorg Med Chem 2008;16(1):232-9
  • Ichikawa S, Matsuda A. Nucleoside natural products and related analogs with potential therapeutic properties as antibacterial and antiviral agents. Expert Opin Ther Pat 2007;17(5):487-98
  • Rachakonda S, Cartee L. Challenges in antimicrobial drug discovery and the potential of nucleoside antibiotics. Curr Med Chem 2004;11(6):775-93
  • Bugg TDH, Lloyd AJ, Roper DI. Phospho-MurNAc-Pentapeptide translocase (MraY) as a target for antibacterial agents and antibacterial proteins. Infect Disord Drug Target 2006;6(2):85-106
  • Kimura KI, Bugg TDH. Recent advances in antimicrobial nucleoside antibiotics targeting cell wall biosynthesis. Nat Prod Rep 2003;20(2):252-73
  • Dini C. MraY inhibitors as novel antibacterial agents. Curr Top Med Chem 2005;5(13):1221-36
  • Price NPJ, Tsvetanova B. Biosynthesis of the tunicamycins: a review. J Antibiot (Tokyo) 2007;60(8):485-91
  • Tamura G, editor, Tunicamycin. Tokyo: Japan Scientific Societies 1982
  • Xu L, Appell M, Kennedy S, et al. Conformational analysis of chirally deuterated tunicamycin as an active site probe of UDP-N-acetylhexosamine:polyprenol-P N-acetylhexosamine-1-P translocases. Biochemistry 2004;43(42):13248-55
  • Koga T, Fukuoka T, Doi N, et al. Activity of capuramycin analogues against Mycobacterium tuberculosis, Mycobacterium avium and Mycobacterium intracellulare in vitro and in vivo. J Antimicrob Chemother 2004;54(4):755-60
  • Reddy VM, Einck L, Nacy CA. In vitro antimycobacterial activities of capuramycin analogues. Antimicrob Agents Chemother 2008;52(2):719-21
  • Hirano S, Ichikawa S, Matsuda A. Synthesis of caprazamycin analogues and their structure-activity relationship for antibacterial activity. J Org Chem 2008;73(2):569-77
  • Dini C, Didier-Laurent S, Drochon N, et al. Synthesis of sub-micromolar inhibitors of MraY by exploring the region originally occupied by the diazepanone ring in the liposidomycin structure. Bioorg Med Chem Lett 2002;12(8):1209-13
  • Igarashi M, Takahashi Y, Shitara T, et al. Caprazamycins, novel lipo-nucleoside antibiotics, from Streptomyces sp. II. Structure elucidation of caprazamycins. J Antibiot (Tokyo) 2005;58(5):327-37
  • Hirano S, Ichikawa S, Matsuda A. Design and synthesis of diketopiperazine and acyclic analogs related to the caprazamycins and liposidomycins as potential antibacterial agents. Bioorg Med Chem 2008;16(1):428-36
  • Miyake T, Takahashi Y, Igarashi M. Synthesis and activity of CPZEN-45, a new antituberculous drug candidate. Abstract of Papers, 235th ACS National Meeting, New Orleans, LA, US, April 6-10 2008
  • Inukai M, Isono F, Takatsuki A. Selective inhibition of the bacterial translocase reaction in peptidoglycan synthesis by mureidomycins. Antimicrob Agents Chemother 1993;37(5):980-3
  • Sun D, Jones V, Carson EI, et al. Solid-phase synthesis and biological evaluation of a uridinyl branched peptide urea library. Bioorg Med Chem Lett 2007;17(24):6899-904
  • Sun D, Lee RE. Solid-phase synthesis of a thymidinyl dipeptide urea library. J Comb Chem 2007;9(3):370-85
  • Sun D, Lee RE. Solid-phase synthesis development of a thymidinyl and 2′-deoxyuridinyl Ugi library for anti-bacterial agent screening. Tetrahedron Lett 2005;46(49):8497-501
  • McDonald LA, Barbieri LR, Carter GT, et al. Structures of the muraymycins, novel peptidoglycan biosynthesis inhibitors. J Am Chem Soc 2002;124(35):10260-1
  • Yamashita A, Norton E, Petersen PJ, et al. Muraymycins, novel peptidoglycan biosynthesis inhibitors: synthesis and SAR of their analogues. Bioorg Med Chem Lett 2003;13(19):3345-50
  • Xie Y, Xu H, Si S, et al. Sansanmycins B and C, new components of sansanmycins. J Antibiot (Tokyo) 2008;61(4):237-40
  • Johar M, Manning T, Tse C, et al. Growth inhibition of Mycobacterium bovis, Mycobacterium tuberculosis and Mycobacterium avium in vitro: effect of 1-beta-D-2′-arabinofuranosyl and 1-(′-deoxy-2′-fluoro-beta-D-2′-ribofuranosyl) pyrimidine nucleoside analogs. J Med Chem 2007;50(15):3696-705
  • Rai D, Johar M, Srivastav NC, et al. Inhibition of Mycobacterium tuberculosis, Mycobacterium bovis, and Mycobacterium avium by novel dideoxy nucleosides. J Med Chem 2007;50(19):4766-74
  • Sriharsha SN, Satish S, Shashikanth S, Raveesha KA. Design, synthesis and antibacterial activity of novel 1,3-thiazolidine pyrimidine nucleoside analogues. Bioorg Med Chem 2006;14(22):7476-81
  • van Daele I, Munier-Lehmann H, Hendrickx PMS, et al. Synthesis and biological evaluation of bicyclic nucleosides as inhibitors of M. tuberculosis thymidylate kinase. ChemMedChem 2006;1(10):1081-90
  • Somu RV, Boshoff H, Qiao C, et al. Rationally designed nucleoside antibiotics that inhibit siderophore biosynthesis of Mycobacterium tuberculosis. J Med Chem 2006;49(1):31-4
  • Vannada J, Bennett EM, Wilson DJ, et al. Design, synthesis, and biological evaluation of beta-ketosulfonamide adenylation inhibitors as potential antitubercular agents. Org Lett 2006;8(21):4707-10
  • Srivastava R, Bhargava A, Singh RK. Synthesis and antimicrobial activity of some novel nucleoside analogues of adenosine and 1,3-dideazaadenosine. Bioorg Med Chem Lett 2007;17(22):6239-44
  • Singh V, Shi W, Almo SC, et al. Structure and inhibition of a quorum sensing target from Streptococcus pneumoniae. Biochemistry 2006;45(43):12929-41
  • Clouet A, Gravier-Pelletier C, Al-Dabbag B, et al. Efficient synthesis of a bacterial translocase MraY inhibitor. Tetrahedron: Asymmetry 2008;19(4):397-400
  • Mayo KH. Novel therapeutic agents against endotoxemia and septic shock. Drugs Future 2008;33(1):65
  • Adachi H, Kondo KI, Kojima F, et al. Synthesis and inhibitory activity of 8-substituted 2-deoxy-beta-KDO against CMP-KDO synthetase. Nat Prod Res 2006;20(4):361-70
  • Kondo KI, Doi H, Adachi H, Nishimura Y. Synergistic effect of CMP/KDO synthase inhibitors with antimicrobial agents on inhibition of production and release of Vero toxin by enterohaemorrhagic Escherichia coli O157:H7. Bioorg Med Chem Lett 2004;14(2):467-70
  • Vasan M, Wolfert MA, Boons GJ. Agonistic and antagonistic properties of a Rhizobium sin-1 lipid A modified by an ether-linked lipid. Org Biomol Chem 2007;5(13):2087-97
  • Brooks CL, Müller-Loennies S, Brade L, et al. Exploration of specificity in germline monoclonal antibody recognition of a range of natural and synthetic epitopes. J Mol Biol 2008;377(2):450-68
  • Sixta G, Hofinger A, Kosma P. Synthesis of spacer-containing chlamydial disaccharides as analogues of the alpha-Kdop-(2->8)-alpha-Kdop-(2->4)-alpha-Kdop trisaccharide epitope. Carbohydr Res 2007;342(3-4):576-85
  • Barb AW, Zhou P. Mechanism and inhibition of LpxC: an essential zinc-dependent deacetylase of bacterial lipid A synthesis. Curr Pharm Biotechnol 2008;9(1):9-15
  • Hernick M, Fierke CA. Catalytic mechanism and molecular recognition of E. coli UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase probed by mutagenesis. Biochemistry 2006;45(51):15240-8
  • Mochalkin I, Knafels JD, Lightle S. Crystal structure of LpxC from Pseudomonas aeruginosa complexed with the potent BB-78485 inhibitor. Protein Sci 2008;17(3):450-7
  • Robinet JJ, Gauld JW. DFT investigation on the mechanism of the deacetylation reaction catalyzed by LpxC. J Phys Chem B 2008;112(11):3462-9
  • McClerren AL, Zhou P, Guan Z, et al. Kinetic analysis of the zinc-dependent deacetylase in the lipid A biosynthetic pathway. Biochemistry 2005;44(4):1106-13
  • Li X, McClerren AL, Raetz CRH, Hindsgaul O. Mapping the active site of the bacterial enzyme LpxC using novel carbohydrate-based hydroxamic acid inhibitors. J Carbohydr Chem 2005;24(4):583-609
  • Coggins BE, Li X, McClerren AL, et al. Structure of the LpxC deacetylase with a bound substrate-analog inhibitor. Nat Struct Mol Biol 2003;10(8):645-51
  • Coggins BE, McClerren AL, Jiang L, et al. Refined solution structure of the LpxC-TU-514 complex and pKa analysis of an active site histidine: insights into the mechanism and inhibitor design. Biochemistry 2005;44(4):1114-26
  • Jackman JE, Fierke CA, Tumey LN, et al. Antibacterial agents that target lipid A biosynthesis in gram-negative bacteria. Inhibition of diverse UDP-3-O-(r-3-hydroxymyristoyl)-n-acetylglucosamine deacetylases by substrate analogs containing zinc binding motifs. J Biol Chem 2000;275(15):11002-9
  • Dong C, Beis K, Giraud MF, et al. A structural perspective on the enzymes that convert dTDP-d-glucose into dTDP-l-rhamnose. Biochem Soc Trans 2003;31(Pt 3):532-6
  • Shilvock JP, Wheatley JR, Nash RJ, et al. Synthesis of homorhamnojirimycins and related trihydroxypipecolic acid derivatives via divergent bicyclic amino lactone intermediates: inhibition of naringinase (L-rhamnosidase) and dTDP-rhamnose biosynthesis. J Chem Soc Perkin Trans 1999;1(19):2735-45
  • Cui Z, Maruyama Y, Mikami B, et al. Crystal structure of glycoside hydrolase family 78 alpha-L-Rhamnosidase from Bacillus sp. GL1. J Mol Biol 2007;374(2):384-98
  • Lucas R, Balbuena P, Errey JC, et al. Glycomimetic inhibitors of mycobacterial glycosyltransferases: targeting the TB cell wall. Chembiochem 2008;9(14):2197-9
  • Bordier A, Compain P, Martin OR, et al. First stereocontrolled synthesis and biological evaluation of 1,6-dideoxy-nojirimycin. Tetrahedron: Asymmetr 2003;14(1):47-51
  • Håkansson AE, van Ameijde J, Horne G, et al. Synthesis of the naringinase inhibitors l-swainsonine and related 6-C-methyl-l-swainsonine analogues: (6R)-C-methyl-l-swainsonine is a more potent inhibitor of l-rhamnosidase by an order of magnitude than l-swainsonine. Tetrahedron Lett 2008;49(1):179-84
  • Calveras J, Casas J, Parella T, et al. Chemoenzymatic synthesis and inhibitory activities of hyacinthacines A(1) and A(2) stereoisomers. Adv Synth Catal 2007;349(10):1661-6
  • Håkansson AE, van Ameijde J, Guglielmini L, et al. Looking glass inhibitors: synthesis of a potent naringinase inhibitor l-DIM [1,4-dideoxy-1,4-imino-l-mannitol], the enantiomer of DIM [1,4-dideoxy-1,4-imino-d-mannitol] a potent [alpha]-d-mannosidase inhibitor. Tetrahedron: Asymmetr 2007;18(2):282-9
  • Kim JH, Curtis-Long MJ, Seo WD, et al. Alpha-rhamnosidase inhibitory activities of polyhydroxylated pyrrolidine. Bioorg Med Chem Lett 2005;15(19):4282-5
  • Painter GF, Eldridge PJ, Falshaw A. Syntheses of tetrahydroxyazepanes from chiro-inositols and their evaluation as glycosidase inhibitors. Bioorg Med Chem 2004;12(1):225-32
  • Mayer A, Tanner ME. Intermediate release by ADP-L-glycero-D-manno-heptose 6-epimerase. Biochemistry 2007;46(20):6149-55
  • Maxwell A, Lawson DM. The ATP-binding site of type II topoisomerases as a target for antibacterial drugs. Curr Top Med Chem 2003;3(3):283-303
  • Tsai FT, Singh OM, Skarzynski T, et al. The high-resolution crystal structure of a 24-kDa gyrase B fragment from E. coli complexed with one of the most potent coumarin inhibitors, clorobiocin. Proteins 1997;28(1):41-52
  • Li SM, Heide L. The biosynthetic gene clusters of aminocoumarin antibiotics. Planta Med 2006;72(12):1093-9
  • Heide L, Gust B, Anderle C, Li SM. Combinatorial biosynthesis, metabolic engineering and mutasynthesis for the generation of new aminocoumarin antibiotics. Curr Top Med Chem 2008;8(8):667-79
  • Anderle C, Stieger M, Burrell M, et al. Biological activities of novel gyrase inhibitors of the aminocoumarin class. Antimicrob Agents Chemother 2008;52(6):1982-90
  • Flatman RH, Howells AJ, Heide L, et al. Simocyclinone D8, an inhibitor of DNA gyrase with a novel mode of action. Antimicrob Agents Chemother 2005;49(3):1093-100
  • Centrone CA, Lowary TL. Synthesis and antituberculosis activity of C-phosphonate analogues of decaprenolphosphoarabinose, a key intermediate in the biosynthesis of mycobacterial arabinogalactan and lipoarabinomannan. J Org Chem 2002;67(25):8862-70
  • Bosco M, Bisseret P, Constant P, Eustache J. Synthesis of 2′,3′-dihydrosolanesyl analogues of [beta]-D-arabinofuranosyl-1-monophosphoryldecaprenol with promising antimycobacterial activity. Tetrahedron Lett 2007;48(1):153-7
  • Pathak AK, Pathak V, Kulshrestha M, et al. Arabinofuranose disaccharide analogs as inhibitors of Mycobacterium tuberculosis. Tetrahedron 2003;59(51):10239-48
  • Pathak AK, Pathak V, Riordan JR, et al. Synthesis of symmetrical C- and pseudo-symmetrical O-linked disaccharide analogs for arabinosyltransferase inhibitory activity in Mycobacterium tuberculosis. Bioorg Med Chem Lett 2007;17(16):4527-30
  • Marotte K, Ayad T, Genisson Y, et al. Synthesis and biological evaluation of imino sugar-oligoarabinofuranoside hybrids, a new class of mycobacterial arabinofuranosyl-transferase inhibitors. Eur J Org Chem 2003;(14):2557-65
  • Chaumontet M, Pons V, Marotte K, Prandi J. Hydrolytically stable arabinofuranoside analogs for the synthesis of arabinosyltransferase inhibitors. Tetrahedron Lett 2006;47(7):1113-6
  • Segraves NL, Crews P. A madagascar sponge batzella sp. as a source of alkylated iminosugars. J Nat Prod 2005;68(1):118-21
  • Al-Fadhli A, Wahidulla S, D'Souza L. Glycolipids from the red alga chondria armata (Kutz) okamura. Glycobiology 2006;16(10):902-15
  • Peoples AJ, Zhang Q, Millett WP, et al. Neocitreamicins I and II, novel antibiotics with activity against methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococci. J Antibiot (Tokyo) 2008;61(7):457-63
  • Banskota AH, McAlpine JB, Sorensen D, et al. Genomic analyses lead to novel secondary metabolites. Part 3. ECO-0501, a novel antibacterial of a new class. J Antibiot (Tokyo) 2006;59(9):533-42
  • O'Dowd H, Lewis JG, Trias J, et al. Novel antibacterial azetidine lincosamides. Bioorg Med Chem Lett 2008;18(8):2645-8
  • Smith A, Nobmann P, Henehan G, et al. Synthesis and antimicrobial evaluation of carbohydrate and polyhydroxylated non-carbohydrate fatty acid ester and ether derivatives. Carbohydr Res 2008;343(15):2557-66
  • Liav A, Angala SK, Brennan PJ, Jackson M. N-D-aldopentofuranosyl-N'-[p-(isoamyloxy)phenyl]-thiourea derivatives: potential anti-TB therapeutic agents. Bioorg Med Chem Lett 2008;18(8):2649-51
  • Welzel P. A long research story culminates in the first total synthesis of moenomycin A. Angew Chem Int Ed 2007;46(26):4825-9
  • Lovering AL, de Castro LH, Lim D, Strynadka NC. Structural insight into the transglycosylation step of bacterial cell-wall biosynthesis. Science 2007;315(5817):1402-5
  • Cheng TJR, Sung MT, Liao HY, et al. Domain requirement of moenomycin binding to bifunctional transglycosylases and development of high-throughput discovery of antibiotics. Proc Natl Acad Sci 2008;105(2):431-6
  • Ohnsmann J, Madalinski M, Kunz H. Carbohydrates as polyfunctional scaffolds in combinatorial synthesis (subscription access). Chimica Oggi 2005;23(1):20-3
  • Manabe S, Ishii K, Ito Y. Synthesis of a natural oligosaccharide antibiotic active against Helicobacter pylori. J Org Chem 2007;72(16):6107-15
  • Bryskier A. Orthosomycins. In: Bryskier A, editor, Antimicrobial agents. Washington, USA: ASM Press 2005. p. 983-90
  • McNicholas PM, Najarian DJ, Mann PA, et al. Evernimicin binds exclusively to the 50S ribosomal subunit and inhibits translation in cell-free systems derived from both gram-positive and gram-negative bacteria. Antimicrob Agents Chemother 2000;44(5):1121-6
  • Hofmann C, Boll R, Heitmann B, et al. Genes encoding enzymes responsible for biosynthesis of L-lyxose and attachment of eurekanate during avilamycin biosynthesis. Chem Biol 2005;12(10):1137-43
  • Abeylath SC, Turos E, Dickey S, Lim DV. Glyconanobiotics: novel carbohydrated nanoparticle antibiotics for MRSA and Bacillus anthracis. Bioorg Med Chem 2008;16(5):2412-8
  • Imberty A, Chabre YM, Roy R. Glycomimetics and glycodendrimers as high affinity microbial anti-adhesins. Chem Eur J 2008;14(25):7490-9
  • Pieters RJ. Intervention with bacterial adhesion by multivalent carbohydrates. Med Res Rev 2007;27(6):796-816
  • Touaibia M, Roy R. Glycodendrimers as anti-adhesion drugs against type 1 fimbriated E. coli uropathogenic infections. Mini Rev Med Chem 2007;7(12):1270-83
  • Heidecke CD, Lindhorst TK. Iterative synthesis of spacered glycodendrons as oligomannoside mimetics and evaluation of their antiadhesive properties. Chem Eur J 2007;13(32):9056-67
  • Branderhorst HM, Kooij R, Salminen A, et al. Synthesis of multivalent Streptococcus suis adhesion inhibitors by enzymatic cleavage of polygalacturonic acid and ‘click’ conjugation. Org Biomol Chem 2008;6(8):1425-34
  • Foucault C, Brouqui P. How to fight antimicrobial resistance. FEMS Immunol Med Microbiol 2007;49(2):173-83
  • Thibodeaux CJ, Melancon CE, Liu HW. Unusual sugar biosynthesis and natural product glycodiversification. Nature 2007;446(7139):1008-16
  • Kozlov IA, Mao S, Xu Y, et al. Synthesis of solid-supported mirror-image sugars: a novel method for selecting receptors for cellular-surface carbohydrates. ChemBioChem 2001;2(10):741-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.