204
Views
19
CrossRef citations to date
0
Altmetric
Reviews

Improvement of cardiac efficacy and safety models in drug discovery by the use of stem cell-derived cardiomyocytes

, , , , &
Pages 357-372 | Published online: 03 Apr 2009

Bibliography

  • Kola I, Landis J. Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov 2004;3(8):711-6
  • Sartipy P, Bjorquist P, Strehl R, Hyllner J. The application of human embryonic stem cell technologies to drug discovery. Drug Discov Today 2007;12(17-18):688-99
  • Cezar GG. Can human embryonic stem cells contribute to the discovery of safer and more effective drugs? Curr Opin Chem Biol 2007;11(4):405-9
  • McNeish J. Embryonic stem cells in drug discovery. Nat Rev Drug Discov 2004;3(1):70-80
  • Pouton CW, Haynes JM. Embryonic stem cells as a source of models for drug discovery. Nat Rev Drug Discov 2007;6(8):605-16
  • Available from: http://www.sc4sm.org/
  • Kimes B, Brandt B. Properties of a clonal muscle cell line from rat heart. Exp Cell Res 1976;98(2):367-81
  • Claycomb W, Lanson N Jr, Stallworth B, et al. HL-1 cells: a cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte. Proc Natl Acad Sci USA 1998;95(6):2979-84
  • Rai M, Padh H. Expression systems for production of heterologous proteins. Curr Sci 2001;80(9):1121-8
  • Nattel S, Duker G, Carlsson L. Model systems for the discovery and development of antiarrhythmic drugs. Prog Biophys Mol Biol; In Press, Corrected Proof
  • Cavero I, Mestre M, Guillon JM, Crumb W. Drugs that prolong QT interval as an unwanted effect: assessing their likelihood of inducing hazardous cardiac dysrhythmias. Expert Opin Pharmacother 2000;1(5):947-73
  • Redfern W, Carlsson L, Davis A, et al. Relationships between preclinical cardiac electrophysiology, clinical QT interval prolongation and torsade de pointes for a broad range of drugs: evidence for a provisional safety margin in drug development. Cardiovasc Res 2003;58(1):32-45
  • Joshi A, Dimino T, Vohra Y, et al. Preclinical strategies to assess QT liability and torsadogenic potential of new drugs: the role of experimental models. J Electrocardiol 2004;37(Suppl 1):7-14
  • Vos MA, Verduyn SC, Gorgels APM, et al. Reproducible induction of early afterdepolarizations and torsade de pointes arrhythmias by d-sotalol and pacing in dogs with chronic atrioventricular block. Circ 1995;91(3):864-72
  • Gintant G, Limberis J, McDermott J, et al. The canine Purkinje fiber: an in vitro model system for acquired long QT syndrome and drug-induced arrhythmogenesis. J Cardiovasc Pharmacol 2001;37(5):607-18
  • Thomsen MB, Matz J, Volders PGA, Vos MA. Assessing the proarrhythmic potential of drugs: current status of models and surrogate parameters of torsades de pointes arrhythmias. Pharmacol Ther 2006;112(1):150-70
  • Zicha S, Moss I, Allen B, et al. Molecular basis of species-specific expression of repolarizing K currents in the heart. Am J Physiol Heart Circ Physiol 2003;285(4):H1641-9
  • Carlsson L, Almgren O, Duker G. QTU-prolongation and torsades de pointes induced by putative class III antiarrhythmic agents in the rabbit: etiology and interventions. J Cardiovasc Pharmacol 1990;16(2):276-85
  • Chézalviel-Guilbert F, Davy JM, Poirier JM, Weissenburger J. Mexiletine antagonizes effects of sotalol on QT interval duration and its proarrhythmic effects in a canine model of torsade de pointes. J Am Coll Cardiol 1995;26(3):787-92
  • Carlsson L. In vitro and in vivo models for testing arrhythmogenesis in drugs. J Intern Med 2006;259(1):70-80
  • Vos MA. Literature-based evaluation of four /‘hard endpoint/’ models for assessing drug-induced torsades de pointes liability. Br J Pharmacol 2008;154(7):1523-27
  • Shih H. Anatomy of the action potential in the heart. Tex Heart Inst J 1994;21(1):30-41
  • Biel M, Schneider A, Wahl C. Cardiac HCN channels: structure, function, and modulation. Trends Cardiovasc Med 2002;12(5):206-13
  • Gaborit N, Le Bouter S, Szuts V, et al. Regional and tissue specific transcript signatures of ion channel genes in the non-diseased human heart. J Physiol 2007;582(2):675-93
  • Schram G, Pourrier M, Melnyk P, Nattel S. Differential distribution of cardiac ion channel expression as a basis for regional specialization in electrical function. Circ Res 2002;90(9):939-50
  • Akar FG, Yan GX, Antzelevitch C, Rosenbaum DS. Unique topographical distribution of M cells underlies reentrant mechanism of torsade de pointes in the long-QT syndrome. Circ 2002;105(10):1247-53
  • Janse MJ, Sosunow EA, Coronel R, et al. Repolarization gradients in the canine left ventricle before and after induction of short-term cardiac memory. Circ 2005 2005;112(12):1711-8
  • Morita ST, Zipes DP, Morita H, Wu J. Analysis of action potentials in the canine ventricular septum: no phenotypic expression of M cells. Cardiovasc Res 2007;74(1):96-103
  • Shah RR. Drug-induced QT dispersion: does it predict the risk of torsade de pointes? J Electrocardiol 2005;38(1):10-8
  • Hondeghem LM. Thorough QT/QTc not so thorough: removes torsadogenic predictors from the T-wave, incriminates safe drugs, and misses profibrillatory drugs. J Cardiovasc Electrophysiol 2006;17(3):337-40
  • Hondeghem LM, Carlsson L, Duker G. Instability and triangulation of the action potential predict serious proarrhythmia, but action potential duration prolongation is antiarrhythmic. Circ 2001;103(15):2004-13
  • Hondeghem LM. TRIad: foundation for proarrhythmia (triangulation, reverse use dependence and instability). Novartis Found Symp 2005;266:235-44
  • Hondeghem LM. Use and abuse of QT and TRIaD in cardiac safety research: Importance of study design and conduct. Eur J Pharmacol 2008;584(1):1-9
  • Yan GX, Wu Y, Liu T, et al. Phase 2 early afterdepolarization as a trigger of polymorphic ventricular tachycardia in acquired long-QT syndrome: direct evidence from intracellular recordings in the intact left ventricular wall. Circulation 2001;103(23):2851-6
  • Antzelevitch CSW, Yan GX, Sicouri S. Cellular basis for QT dispersion. J Electrocardiol 1998;30:168-75
  • Martin R, Su Z, Limberis J, et al. In vitro preclinical cardiac assessment of tolterodine and terodiline: multiple factors predict the clinical experience. J Cardiovasc Pharmacol 2006;48(5):199-206
  • Hondeghem L, Snyders D. Class III antiarrhythmic agents have a lot of potential but a long way to go. Reduced effectiveness and dangers of reverse use dependence. Circulation 1990;81(2):686-90
  • Thomsen MB, Verduyn SC, Stengl M, et al. Increased short-term variability of repolarization predicts d-sotalol-induced torsades de pointes in dogs. Circulation 2004;110(16):2453-9
  • Hinterseer M, Thomsen MB, Beckmann BM, et al. Beat-to-beat variability of QT intervals is increased in patients with drug-induced long-QT syndrome: a case control pilot study. Eur Heart J 2008;29(2):185-90
  • Thomsen MB, Truin M, van Opstal JM, et al. Sudden cardiac death in dogs with remodeled hearts is associated with larger beat–to–beat variability of repolarization. Basic Res Cardiol 2005;100(3):279-87
  • Antzelevitch C. Heterogeneity and cardiac arrhythmias: An overview. Heart Rhythm 2007;4(7):964-72
  • Liu T, Brown BS, Wu Y, et al. Blinded validation of the isolated arterially perfused rabbit ventricular wedge in preclinical assessment of drug-induced proarrhythmias. Heart Rhythm 2006;3(8):948-56
  • Buttner FH. Cell-based assays for high-throughput screening. Expert Opin Drug Discov 2006;1(4):373-8
  • Rees S, Wise A. The industrialisation of cellular screening. Expert Opin Drug Discov 2008;3(7):715-23
  • Kehat I, Kenyagin-Karsenti D, Snir M, et al. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest 2001;108(3):407-14
  • Norstrom A, Akesson K, Hardarson T, et al. Molecular and pharmacological properties of human embryonic stem cell-derived cardiomyocytes. Exp Biol Med 2006;231(11):1753-62
  • Zimmermann WH, Eschenhagen T. Embryonic Stem Cells for Cardiac Muscle Engineering. Trends Cardiovasc Med 2007;17(4):134-40
  • Guo XM, Zhao YS, Chang HX, et al. Creation of engineered cardiac tissue in vitro from mouse embryonic stem cells. Circ 2006;113(18):2229-37
  • Bartosh TJ, Wang Z, Rosales A, et al. 3D-model of adult cardiac stem cells promotes cardiac differentiation and resistance to oxidative stress. J Cell Biochem 2008;105(2):612-23
  • Caspi O, Lesman A, Basevitch Y, et al. Tissue engineering of vascularized cardiac muscle from human embryonic stem cells. Circ Res 2007;100(2):263-72
  • Bongso A, Fong CY, Ng SC, Ratnam S. Fertilization and early embryology: Isolation and culture of inner cell mass cells from human blastocysts. Hum Reprod 1994;9(11):2110-7
  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science 1998;282(5391):1145-7
  • Itskovitz-Eldor J, Schuldiner M, Karsenti D, et al. Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol Med 2000;6(2):88-95
  • He JQ, Ma Y, Lee Y, et al. Human embryonic stem cells develop into multiple types of cardiac myocytes: action potential characterization. Circ Res 2003;93(1):32-9
  • Bigdeli N, Andersson M, Strehl R, et al. Adaptation of human embryonic stem cells to feeder-free and matrix-free culture conditions directly on plastic surfaces. J Biotechnol 2008;133(1):146-53
  • Yoon BS, Yoo SJ, Lee JE, et al. Enhanced differentiation of human embryonic stem cells into cardiomyocytes by combining hanging drop culture and 5-azacytidine treatment. Differentiation 2006;74(4):149-59
  • Burridge PW, Anderson D, Priddle H, et al. Improved human embryonic stem cell embryoid body homogeneity and cardiomyocyte differentiation from a novel V-96 plate aggregation system highlights interline variability. Stem Cells 2007;25(4):929-38
  • Mummery C, Ward-van Oostwaard D, Doevendans, et al. Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation 2003;107(21):2733-40
  • Pera MF, Andrade J, Houssami S, et al. Regulation of human embryonic stem cell differentiation by BMP-2 and its antagonist noggin. J Cell Sci 2004;117(7):1269-80
  • Graichen R, Xu X, Braam S, et al. Enhanced cardiomyogenesis of human embryonic stem cells by a small molecular inhibitor of p38 MAPK. Differentiation 2008;76(4):357-70
  • Klug MG, Soonpaa MH, Koh GY, Field LJ. Genetically selected cardiomyocytes from differentiating embryonic stem cells form stable intracardiac grafts. J Clin Invest 1996;98(1):216-24
  • Kolossov E, Fleischmann BK, Liu Q, et al. Functional characteristics of ES cell-derived cardiac precursor cells identified by tissue-specific expression of the green fluorescent protein. J Cell Biol 1998;143(7):2045-56
  • Anderson D, Self T, Mellor IR, et al. Transgenic enrichment of cardiomyocytes from human embryonic stem cells. Mol Theraphy 2007;15(11):2027-36
  • Gallo P, Grimaldi S, Latronico M, et al. A lentiviral vector with a short troponin-I promoter for tracking cardiomyocyte differentiation of human embryonic stem cells. Gene Ther 2008;15(3):161-70
  • Huber I, Itzhaki I, Caspi O, et al. Identification and selection of cardiomyocytes during human embryonic stem cell differentiation. FASEB J 2007;21(10):2551-63
  • Muller M, Fleischmann BK, Selbert S, et al. Selection of ventricular-like cardiomyocytes from ES cells in vitro. FASEB J 2000;14(15):2540-8
  • Braam SR, Denning C, van den Brink, et al. Improved genetic manipulation of human embryonic stem cells. Nat Meth 2008;(5):389-92
  • Xu C, Police S, Rao N, Carpenter MK. Characterization and enrichment of cardiomyocytes derived from human embryonic stem cells. Circ Res 2002;91(6):501-8
  • Kehat I, Gepstein A, Spira A, et al. High-resolution electrophysiological assessment of human embryonic stem cell-derived cardiomyocytes: A novel in vitro model for the study of conduction. Circ Res 2002;91(8):659-61
  • Xue T, Cho HC, Akar FG, et al. Functional integration of electrically active cardiac derivatives from genetically engineered human embryonic stem cells with quiescent recipient ventricular cardiomyocytes: insights into the development of cell-based pacemakers. Circulation 2005;111(1):11-20
  • Sartiani L, Bettiol E, Stillitano F, et al. Developmental changes in cardiomyocytes differentiated from human embryonic stem cells: a molecular and electrophysiological approach. Stem Cells 2007;25(5):1136-44
  • Wang K, Xue T, Tsang SY, et al. Electrophysiological properties of pluripotent human and mouse embryonic stem cells. Stem Cells 2005;23(10):1526-34
  • Satin J, Kehat I, Caspi O, et al. Mechanism of spontaneous excitability in human embryonic stem cell derived cardiomyocytes. J Physiol 2004;559(2):479-96
  • Caspi O, Itzhaki I, Arbel G, et al. In vitro electrophysiological drug testing using human embryonic stem cell derived cardiomyocytes. Stem Cells Dev 2009;18(1):161-72
  • Laugwitz KL, Moretti A, Lam J, et al. Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature 2005;433(7026):647-53
  • Beltrami AP, Barlucchi L, Torella D, et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 2003;114(6):763-76
  • Oh H, Bradfute S, Gallardo T, et al. Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc Natl Acad Sci USA 2003;100(21):12313-8
  • Messina E, De Angelis L, Frati G, et al. Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res 2004;95(9):911-21
  • Hierlihy AM, Seale P, Lobe CG, et al. The post-natal heart contains a myocardial stem cell population. FEBS Lett 2002;530(1-3):239-43
  • Matsuura K, Nagai T, Nishigaki N, et al. Adult cardiac Sca-1-positive cells differentiate into beating cardiomyocytes. J Biol Chem 2004;279(12):11384-91
  • Linke A, Müller P, Nurzynska D, et al. Stem cells in the dog heart are self-renewing, clonogenic, and multipotent and regenerate infarcted myocardium, improving cardiac function. Proc Natl Acad Sci USA 2005;102(25):8966-71
  • Goumans KJ, de Boer TP, Smits AM, et al. TGF-[beta]1 induces efficient differentiation of human cardiomyocyte progenitor cells into functional cardiomyocytes in vitro. Stem Cell Res 2008;1:138-49
  • Barile L, Messina E, Giacomello A, Marbán E. Endogenous cardiac stem cells. Prog Cardiovasc Dis 2007;50(1):31-48
  • Lyngbaek S, Schneider M, Hansen JL, Sheikh SP. Cardiac regeneration by resident stem and progenitor cells in the adult heart. Basic Res Cardiol200;102(2):101-14
  • van Vliet P, Sluijter JP, Doevendans PA, Goumans MJ.Isolation and expansion of resident cardiac progenitor cells. Expert Rev Cardiovasc Ther 2007;5(1):33-43
  • de Boet T, van Veen A, Jonsson M, et al. The functional electronome of cardiomyocytes differentiated from human cardiac progenitor cells. Heart Rhythm 2007;4:S3
  • Maherali N, Sridharan R, Xie W, et al. Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 2007;1(1):55-70
  • Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature 2007;448(7151):313-7
  • Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006;126(4):663-76
  • Wernig M, Meissner A, Foreman R, et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 2007;448(7151):318-24
  • Okita K, Nakagawa M, Hyenjong H, et al. generation of mouse induced pluripotent stem cells without viral vectors. Science 2008:1164270
  • Lowry W, Richter L, Yachechko R, et al. Generation of human induced pluripotent stem cells from dermal fibroblasts. Proc Natl Acad Sci USA 2008;105(8):2883-8
  • Park IH, Zhao R, West JA, et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature 2008;451(7175):141-6
  • Takahashi K, Tanabe K, Ohnuki M, et al. induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007;131(5):861-72
  • Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007;318(5858):1917-20
  • Yu J, Thomson JA. Pluripotent stem cell lines. Genes Dev 2008;22(15):1987-97
  • Park IH, Arora N, Huo H, et al. Disease-specific induced pluripotent stem cells. Cell 2008;134(5):877-86
  • Stadtfeld M, Nagaya M, Utikal J, et al. Induced pluripotent stem cells generated without viral integration. Science 2008:1162494
  • Huangfu D, Osafune K, Maehr R, et al. Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat Biotech 2008;26:1269-75
  • Tateishi K, He J, Taranova O, et al. Generation of insulin-secreting islet-like clusters from human skin fibroblasts. J Biol Chem 2008;283(46):31601-7
  • Mauritz C, Schwanke K, Reppel M, et al. Generation of functional murine cardiac myocytes from induced pluripotent stem cells. Circulation 2008;118(5):507-17
  • Narazaki G, Uosaki H, Teranishi M, et al. Directed and systematic differentiation of cardiovascular cells from mouse induced pluripotent stem cells. Circulation 2008;118(5):498-506
  • Zhang J, Wilson G, Soerens A, et al. Late-breaking basic science abstracts: human induced pluripotent stem cells give rise to functional cardiomyocytes. Circ Res 2008;103(12):1493-501
  • Menasché P. Skeletal myoblasts as a therapeutic agent. Prog Cardiovasc Dis 2007;50(1):7-17
  • Okamoto K, Miyoshi S, Toyoda M, et al. Working' cardiomyocytes exhibiting plateau action potentials from human placenta-derived extraembryonic mesodermal cells. Exp Cell Res 2007;313(12):2550-62
  • Winston Costa, Pereira IKMMKG. Reproducible methodology for the isolation of mesenchymal stem cells from human umbilical cord and its potential for cardiomyocyte generation. J Tissue Eng and Regenerative Med 2008;2(7):394-9
  • Yoon Y, Lee N, Scadova H. Myocardial regeneration with bone-marrow-derived stem cells. Biol Cell 2005;97(4):253-63
  • Murry CE, Soonpaa MH, Reinecke H, et al. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 2004;428(6983):664-8
  • Guan K, Wagner S, Unsold B, et al. Generation of functional cardiomyocytes from adult mouse spermatogonial stem cells. Circ Res 2007;100(11):1615-25
  • Shimko V, Claycomb W. Effect of mechanical loading on three-dimensional cultures of embryonic stem cell-derived cardiomyocytes. Tissue Eng 2008;14(1):49-58
  • Gwak SJ, Bhang SH, Kim IK, et al. The effect of cyclic strain on embryonic stem cell-derived cardiomyocytes. Biomater 2008;29(7):844-56
  • Cannizzaro C, Tandon N, Figallo E, et al. Practical aspects of cardiac tissue engineering with electrical stimulation. Methods Mol Med 2007;140:291-307
  • Schram G, Pourrier M, Wang Z, et al. Barium block of Kir2 and human cardiac inward rectifier currents: evidence for subunit-heteromeric contribution to native currents. Cardiovasc Res 2003;59(2):328-38
  • Ten Tusscher KHWJ, Noble D, Noble PJ, Panfilow AV. A model for human ventricular tissue. Am J Physiol Heart Circ Physiol 2004;286(4):H1573-89

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.