575
Views
22
CrossRef citations to date
0
Altmetric
Reviews

Small-molecule affinity chromatography coupled mass spectrometry for drug target deconvolution

, , &
Pages 701-714 | Published online: 09 Jun 2009

Bibliography

  • Imming P, Sinning C, Meyer A. Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov 2006;5:821-34
  • Hale JE, Ou W, Shiyanov P, et al. Proteomics technologies for identification and validation of protein targets. In: Figeys D, Ross MM (Eds), Industrial Proteomics: Applications for Biotechnology and Pharmaceuticals. J Wiley & Sons, Inc., Hoboken, NJ, USA; 2005. p. 159-80
  • Saxena C, Zhen E, Higgs RE, Hale JE. An immuno-chemo-proteomics method for drug target deconvolution. J Proteome Res 2008;7:3490-97
  • Terstappen GC, Schlüpen C, Raggiaschi R, Gaviraghi G. Target deconvolution strategies in drug discovery. Nat Rev Drug Discov 2007;6:891-903
  • Sams-Dodd F. Target-based drug discovery: is something wrong? Drug Discov Today 2005;10:139-47
  • Bharucha N, Kumar A. Yeast genomics and drug target identification. Comb Chem High Throughput Screen 2007;10:618-34
  • Wang Y, Chiu JF, He QY. Proteomics approach to illustrate drug action mechanisms. Curr Drug Discov Technol 2006;3:199-209
  • Hart CP. Finding the target after screening the phenotype. Drug Discov Today 2005;10:513-19
  • Wang S, Sim TB, Kim YS, Chang YT. Tools for target identification and validation. Curr Opin Chem Biol 2004;8:371-77
  • Kassner PD. Discovery of novel targets with high throughput RNA interference screening. Comb Chem High Throughput Screen 2008;11:175-84
  • Loo JA, DeJohn DE, Du P, et al. Application of mass spectrometry for target identification and characterization. Med Res Rev 1999;19:307-19
  • Deng G, Sanyal G. Applications of mass spectrometry in early stages of target based drug discovery. J Pharm Biomed Anal 2006;40:528-38
  • Glish GL, Vachet RW. The basics of mass spectrometry in the twenty-first century. Nat Rev Drug Discov 2003;2:140-50
  • Peterson JR, Lebensohn AM, Pelish HE, Kirschner MW. Biochemical suppression of small-molecule inhibitors: a strategy to identify inhibitor targets and signaling pathway components. Chem Biol 2006;13:443-52
  • Lee JC, Laydon JT, McDonnell PC, et al. A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature 1994;372:739-46
  • Eriksen JL, Sagi SA, Smith TE, et al. NSAIDs and enantiomers of flurbiprofen target gamma-secretase and lower Aβ 42 in vivo. J Clin Invest 2003;112:440-49
  • Kukar T, Prescott S, Eriksen JL, et al. Chronic administration of R-flurbiprofen attenuates learning impairments in transgenic amyloid precursor protein mice. BMC Neurosci 2007;8:54
  • Wolfe MS. γ-Secretase modulators. Curr Alzheimer Res 2007;4:571-3
  • Kukar TL, Ladd TB, Bann MA, et al. Substrate-targeting γ-secretase modulators. Nature 2008;453:925-930
  • Shim JS, Lee J, Park HJ, et al. A new curcumin derivative, HBC, interferes with the cell cycle progression of colon cancer cells via antagonization of the Ca2 + /calmodulin function. Chem Biol 2004;11:1455-63
  • Licitra EJ, Liu JO. A three-hybrid system for detecting small ligand-protein receptor interactions. Proc Natl Acad Sci USA 1996;93:12817-21
  • Henthorn DC, Jaxa-Chamiec AA, Meldrum E. A GAL4-based yeast three-hybrid system for the identification of small molecule-target protein interactions. Biochem Pharmacol 2002;63:1619-28
  • Lin H, Abida WM, Sauer RT, et al. Dexamethasone−Methotrexate: an efficient chemical inducer of protein dimerization in vivo. J Am Chem Soc 2000;122:4247-8
  • Becker F, Murthi K, Smith C. A three-hybrid approach to scanning the proteome for targets of small molecule kinase inhibitors. Chem Biol 2004;11:211-23
  • Sun H, Chattopadhaya S, Wang J, Yao SQ. Recent developments in microarray-based enzyme assays: from functional annotation to substrate/inhibitor fingerprinting. Anal Bioanal Chem 2006;386:416-26
  • Bertone P, Snyder M. Advances in functional protein microarray technology. FEBS Journal 2005;272:5400-11
  • Huang J, Zhu H, Haggarty SJ, et al. Finding new components of the target of rapamycin (TOR) signaling network through chemical genetics and proteome chips. Proc Natl Acad Sci USA 2004;101:16594-99
  • Ziauddin J, Sabatini DM. Microarrays of cells expressing defined cDNAs. Nature 2001;411:107-10
  • Brissette R, Prendergast JK, Goldstein NI. Identification of cancer targets and therapeutics using phage display. Curr Opin Drug Discov Devel 2006;9:363-39
  • Caligiuri M, Molz L, Liu Q, et al. MASPIT: three-hybrid trap for quantitative proteome fingerprinting of small molecule-protein interactions in mammalian cells. Chem Biol 2006;13:711-22
  • Stoll D, Templin MF, Bachmann J, Joos TO. Protein microarrays: applications and future challenges. Curr Opin Drug Discov Devel 2005;8:239-52
  • Karas M, Hillenkamp F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem 1988;60:2299-2301
  • Fenn JB, Mann M, Meng CK, et al. Electrospray ionization for mass spectrometry of large biomolecules. Science 1989;246:64-71
  • Cottrell JS. Protein identification by peptide mass fingerprinting. Pept Res 1994;7:115-24
  • Dass C. Principles and Practices of Biological Mass Spectrometry. Wiley-Interscience, 2001
  • Gygi SP, Rist B, Gerber SA, et al. Quantitative analysis of complex protein mixturesusing isotope-coded affinity tags. Nat Biotechnol 1999;17:994-9
  • Krause E, Wenschcuh H, Jungblut PR. The dominance of arginine-containing peptides in MALDI-derived tryptic mass fingerprints of proteins. Anal Chem 1999;71:4160-5
  • Oda Y, Huang K, Croos FR, et al. Accurate quantitation of protein expression and site specific phosphorylation. Proc Natl Acad Sci USA 1999;96:6591-6
  • Mirgorodskaya OA, Kozmin YP, Titov MI, et al. Quantitation of peptides and proteins by matrix-assisted laser desorption/ionisation mass spectrometry using 18O-labeled internal standards. Rapid Commun Mass Spectrom 2000;14:1226-32
  • Yao X, Freas A, Ramirez J, et al. Proteolytic 18O labeling for comparative proteomics: Model studies with two serotypes of adenovirus. Anal Chem 2001;73:2836-42
  • Goodlett DR, Keller A, Watts JD, et al. Differential stable isotope labeling of peptides for quantitation and de novo sequence derivation. Rapid Commun Mass Spectrom 2001;15:1214-21
  • Ong S-E, Blagoev B, Kratchmarova I, et al. Stable isotop labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 2002;1:376-86
  • Chakraborty A, Regnier F. Global internal standard technology for comparative proteomics. J Chromatogr A 2002;949:173-84
  • Wang S, Zhang X, Regnier FE. Quantitative proteomics strategy involving the selection of peptides containing both cysteine and histidine from tryptic digests of cell lysates. J Chromatogr A 2002;949:153-62
  • Zhang R, Regnier FE. Controlling deuterium isotop effects in comparative proteomics. Anal Chem 2002;74:3662-9
  • Bondarenko PV, Chelius D, Shaler TA. Identification and relative quantitation of protein mixtures by enzymatic digestion followed by capillary reversed-phase liquid chromatography−tandem mass spectrometry. Anal Chem 2002;74:4741-9
  • Higgs RE, Knierman MD, Gelfanova V, et al. Comprehensive label-free method for the relative quantification of proteins from biological samples. J Proteome Res 2005;4:1441-50
  • Hamdan M, Righetti PG. Modern strategies for protein quantification in proteome analysis: advantages and limitations. Mass Spectrom Rev 2002;21:287-302
  • Pütz S, Reinders J, Reinders Y, Sickmann A. Mass spectrometry-based peptide quantification: applications and limitations. Expert Rev Proteomics 2005;2:381-92
  • Kiernan UA. Quantitation of target proteins and post-translational modifications in affinity-based proteomics approaches. Expert Rev Proteomics 2007;4:421-8
  • Bach S, Knockaert M, Reinhardt J, et al. Roscovitine Targets, Protein Kinases and Pyridoxal Kinase. J Biol Chem 2005;280:31208-19
  • Snyder J, Hall A, Ni-Komatsu L, et al. Dissection of Melanogenesis with Small Molecules Identifies Prohibitin as a Regulator. Chem Biol 2005;12:477-84
  • Hantschel O, Rix U, Schmidt U, et al. The Btk tyrosine kinase is a major target of the Bcr-Abl inhibitor dasatinib. Proc Natl Acad Sci USA 2007;104:13282-8
  • Remsing Rix LL, Rix U, Colinge J, et al. Global target profile of the kinase inhibitor bosutinib in primary chronic myeloid leukemia cells. Leukemia 2009;23:477-85
  • Bantscheff M, Eberhard D, Abraham Y, et al. Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors. Nat Biotechnol 2007;25:1035-44
  • Godl K, Wissing J, Kurtenbach A, et al. An efficient proteomics method to identify the cellular targets of protein kinase inhibitors. Proc Natl Acad Sci USA 2007;100:15434-39
  • Hahn R, Berger E, Pflegerl K, et al. Directed immobilization of peptide ligands to accessible pore sites by conjugation with a placeholder molecule. Anal Chem 2003;75:543-48
  • Graves PR, Kwiek JJ, Fadden P, et al. Discovery of novel targets of quinoline drugs in the human purine binding proteome. Mol Pharmacol 2002;62:1364-72
  • Hall SE. Chemoproteomics-driven drug discovery: addressing high attrition rates. Drug Discov Today 2006;11:495-502
  • Bertinetti D, Schweinsberg S, Hanke SE, et al. Chemical tools selectively target components of the PKA system. BMC Chem Biol 2009;9:3
  • von Rechenberg M, Blake BK, Ho YS, et al. Ampicillin/penicillin-binding protein interactions as a model drug-target system to optimize affinity pull-down and mass spectrometric strategies for target and pathway identification. Proteomics 2005;5:1764-73
  • Sato S, Kwon Y, Kamisuki S, et al. Polyproline-rod approach to isolating protein targets of bioactive small molecules: isolation of a new target of indomethacin. J Am Chem Soc 2007;129:873-80
  • Kosaka T, Okuyama R, Sun W, et al. Identification of molecular target of AMP-activated protein kinase activator by affinity purification and mass spectrometry. Anal Chem 2005;77:2050-55
  • Oda Y, Owa T, Sato T, et al. Quantitative chemical proteomics for identifying candidate drug targets. Anal Chem 2003;75:2159-65
  • Ong SE, Schenone M, Margolin AA, et al. Identifying the proteins to which small-molecule probes and durgs bind in cells. Proc Natl Acad Sci USA 2009 [Epub ahead of print]
  • Käll L, Storey JD, Maccoss MJ, Noble WS. Assigning significance to peptides identified by tandem mass spectrometry using decoy databases. J Proteome Res 2008;7:29-34
  • Käll L, Canterbury JD, Weston J, et al. Semi-supervised learning for peptide identification from shotgun proteomics datasets. Nat Meth 2007;4:923-5
  • Sleno L, Emili A. Proteomic methods for drug target discovery. Curr Opin Chem Biol 2008;12:46-54
  • Bumol TF, Watanabe AM. Genetic information, genomic technologies, and the future of drug discovery. JAMA 2001;285:551-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.