174
Views
11
CrossRef citations to date
0
Altmetric
Reviews

Animal models of hyperfunctioning parathyroid diseases for drug development

, MD PhD, , MD PhD, , PhD & , MD PhD
Pages 727-740 | Published online: 25 Jun 2009

Bibliography

  • Ben-Dov IZ, Galitzer H, Lavi-moshayoff V, et al. The parathyroid is a target organ for FGF23 in rats. J Clin Invest 2007;117(12):4003-8
  • Jaeger P, Jones W, Kashgarian M, et al. Animal model of primary hyperparathyroidism. Am J Physiol 1987;252(6 Pt 1):E790-8
  • Wilson JM, Grossman M, Thompson AR, et al. Somatic gene transfer in the development of an animal model for primary hyperparathyroidism. Endocrinology 1992;130(5):2947-54
  • Brown EM. Four-parameter model of the sigmoidal relationship between parathyroid hormone release and extracellular calcium concentration in normal and abnormal parathyroid tissue. J Clin Endocrinol Metab 1983;56(3):572-81
  • Chertow BS, Baylink DJ, Wergedal JE, et al. Decrease in serum immunoreactive parathyroid hormone in rats and in parathyroid hormone secretion in vitro by 1,25-dihydroxycholecalciferol. J Clin Invest 1975;56(3):668-78
  • Imanishi Y, Inaba M, Seki H, et al. Increased biological potency of hexafluorinated analogs of 1, 25-dihydroxyvitamin D3 on bovine parathyroid cells. J Steroid Biochem Mol Biol 1999;70(4-6):243-8
  • Brown EM, Gamba G, Riccardi D, et al. Cloning and characterization of an extracellular Ca2+-sensing receptor from bovine parathyroid. Nature 1993;366(6455):575-80
  • Pollak MR, Brown EM, Chou YH, et al. Mutations in the human Ca2+-sensing receptor gene cause familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Cell 1993;75(7):1297-303
  • Ho C, Conner DA, Pollak MR, et al. A mouse model of human familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Nat Genet 1995;11(4):389-94
  • Kos CH, Karaplis AC, Peng JB, et al. The calcium-sensing receptor is required for normal calcium homeostasis independent of parathyroid hormone. J Clin Invest 2003;111(7):1021-8
  • Kifor O, MacLeod RJ, Diaz R, et al. Regulation of MAP kinase by calcium-sensing receptor in bovine parathyroid and CaR-transfected HEK293 cells. Am J Physiol Renal Physiol 2001;280(2):F291-302
  • Wettschureck N, Lee E, Libutti SK, et al. Parathyroid-specific double knockout of Gq and G11 a-subunits leads to a phenotype resembling germline knockout of the extracellular Ca2+-sensing receptor. Mol Endocrinol 2007;21(1):274-80
  • Libutti SK, Crabtree JS, Lorang D, et al. Parathyroid gland-specific deletion of the mouse Men1 gene results in parathyroid neoplasia and hypercalcemic hyperparathyroidism. Cancer Res 2003;63(22):8022-8
  • Wettschureck N, Rutten H, Zywietz A, et al. Absence of pressure overload induced myocardial hypertrophy after conditional inactivation of Gαq/Gα11 in cardiomyocytes. Nat Med 2001;7(11):1236-40
  • Offermanns S, Zhao LP, Gohla A, et al. Embryonic cardiomyocyte hypoplasia and craniofacial defects in Gαq/Gα11-mutant mice. EMBO J 1998;17(15):4304-12
  • Raisz LG. The hunting of the snark: the elusive calcium receptor(s). J Clin Invest 2003;111(7):945-7
  • Hosokawa Y, Pollak MR, Brown EM, Arnold A. Mutational analysis of the extracellular Ca2+-sensing receptor gene in human parathyroid tumors. J Clin Endocrinol Metab 1995;80(11):3107-10
  • Haussler MR, Whitfield GK, Haussler CA, et al. The nuclear vitamin D receptor: biological and molecular regulatory properties revealed. J Bone Miner Res 1998;13(3):325-49
  • Yoshizawa T, Handa Y, Uematsu Y, et al. Mice lacking the vitamin D receptor exhibit impaired bone formation, uterine hypoplasia and growth retardation after weaning. Nat Genet 1997;16(4):391-6
  • Li YC, Pirro AE, Amling M, et al. Targeted ablation of the vitamin D receptor: an animal model of vitamin D-dependent rickets type II with alopecia. Proc Natl Acad Sci USA 1997;94(18):9831-5
  • Li YC, Amling M, Pirro AE, et al. Normalization of mineral ion homeostasis by dietary means prevents hyperparathyroidism, rickets, and osteomalacia, but not alopecia in vitamin D receptor-ablated mice. Endocrinology 1998;139(10):4391-6
  • Kitanaka S, Takeyama K, Murayama A, et al. Inactivating mutations in the 25-hydroxyvitamin D3 1a-hydroxylase gene in patients with pseudovitamin D-deficiency rickets. N Engl J Med 1998;338(10):653-61
  • Dardenne O, Prud′ homme J, Arabian A, et al. Targeted inactivation of the 25-hydroxyvitamin D3-1α-hydroxylase gene (CYP27B1) creates an animal model of pseudovitamin D-deficiency rickets. Endocrinology 2001;142(7):3135-41
  • Panda DK, Miao D, Tremblay ML, et al. Targeted ablation of the 25-hydroxyvitamin D 1α -hydroxylase enzyme: evidence for skeletal, reproductive, and immune dysfunction. Proc Natl Acad Sci USA 2001;98(13):7498-503
  • Samander EH, Arnold A. Mutational analysis of the vitamin D receptor does not support its candidacy as a tumor suppressor gene in parathyroid adenomas. J Clin Endocrinol Metab 2006;91(12):5019-21
  • Brown SB, Brierley TT, Palanisamy N, et al. Vitamin D receptor as a candidate tumor-suppressor gene in severe hyperparathyroidism of uremia. J Clin Endocrinol Metab 2000;85(2):868-72
  • Lauter K, Arnold A. Analysis of CYP27B1, encoding 25-hydroxyvitamin D-1α-hydroxylase, as a candidate tumor suppressor gene in primary and severe secondary/tertiary hyperparathyroidism. J Bone Miner Res 2009;24(1):102-4
  • Heath H 3rd, Hodgson SF, Kennedy MA. Primary hyperparathyroidism. Incidence, morbidity, and potential economic impact in a community. N Engl J Med 1980;302(4):189-93
  • Silverberg SJ, Lewiecki EM, Mosekilde L, et al. Presentation of asymptomatic primary hyperparathyroidism: proceedings of the third international workshop. J Clin Endocrinol Metab 2009;94(2):351-65
  • Moe S, Drueke T, Cunningham J, et al. Definition, evaluation, and classification of renal osteodystrophy: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int 2006;69(11):1945-53
  • Block GA, Hulbert-Shearon TE, Levin NW, Port FK. Association of serum phosphorus and calcium x phosphate product with mortality risk in chronic hemodialysis patients: a national study. Am J Kidney Dis 1998;31(4):607-17
  • Goodman WG, Goldin J, Kuizon BD, et al. Coronary-artery calcification in young adults with end-stage renal disease who are undergoing dialysis. N Engl J Med 2000;342(20):1478-83
  • Ganesh SK, Stack AG, Levin NW, et al. Association of elevated serum PO4, Ca × PO4 product, and parathyroid hormone with cardiac mortality risk in chronic hemodialysis patients. J Am Soc Nephrol 2001;12(10):2131-8
  • Brown EM, Wilson RE, Eastman RC, et al. Abnormal regulation of parathyroid hormone release by calcium in secondary hyperparathyroidism due to chronic renal failure. J Clin Endocrinol Metab 1982;54(1):172-9
  • Goodman WG, Veldhuis JD, Belin TR, et al. Calcium-sensing by parathyroid glands in secondary hyperparathyroidism. J Clin Endocrinol Metab 1998;83(8):2765-72
  • Arnold A, Brown MF, Urena P, et al. Monoclonality of parathyroid tumors in chronic renal failure and in primary parathyroid hyperplasia. J Clin Invest 1995;95(5):2047-53
  • Imanishi Y, Tahara H, Palanisamy N, et al. Clonal chromosomal defects in the molecular pathogenesis of refractory hyperparathyroidism of uremia. J Am Soc Nephrol 2002;13(6):1490-8
  • Arnold A, Staunton CE, Kim HG, et al. Monoclonality and abnormal parathyroid hormone genes in parathyroid adenomas. N Engl J Med 1988;318(11):658-62
  • Arnold A, Kim HG, Gaz RD, et al. Molecular cloning and chromosomal mapping of DNA rearranged with the parathyroid hormone gene in a parathyroid adenoma. J Clin Invest 1989;83(6):2034-40
  • Arnold A. Genetic basis of endocrine disease 5. Molecular genetics of parathyroid gland neoplasia. J Clin Endocrinol Metab 1993;77(5):1108-12
  • Motokura T, Bloom T, Kim HG, et al. A novel cyclin encoded by a bcl1-linked candidate oncogene. Nature 1991;350(6318):512-5
  • Xiong Y, Connolly T, Futcher B, Beach D. Human D-type cyclin. Cell 1991;65(4):691-9
  • Sherr CJ. Mammalian G1 cyclins. Cell 1993;73(6):1059-65
  • Dowdy SF, Hinds PW, Louie K, et al. Physical interaction of the retinoblastoma protein with human D cyclins. Cell 1993;73(3):499-511
  • Hsi ED, Zukerberg LR, Yang WI, Arnold A. Cyclin D1/PRAD1 expression in parathyroid adenomas: an immunohistochemical study. J Clin Endocrinol Metab 1996;81(5):1736-9
  • Vasef MA, Brynes RK, Sturm M, et al. Expression of cyclin D1 in parathyroid carcinomas, adenomas, and hyperplasias: a paraffin immunohistochemical study. Mod Pathol 1999;12(4):412-6
  • Tominaga Y, Tsuzuki T, Uchida K, et al. Expression of PRAD1/cyclin D1, retinoblastoma gene products, and Ki67 in parathyroid hyperplasia caused by chronic renal failure versus primary adenoma. Kidney Int 1999;55(4):1375-83
  • Hosokawa Y, Tu T, Tahara H, et al. Absence of cyclin D1/PRAD1 point mutations in human breast cancers and parathyroid adenomas and identification of a new cyclin D1 gene polymorphism. Cancer Lett 1995;93(2):165-70
  • Larsson C, Skogseid B, Oberg K, et al. Multiple endocrine neoplasia type 1 gene maps to chromosome 11 and is lost in insulinoma. Nature 1988;332(6159):85-7
  • Chandrasekharappa SC, Guru SC, Manickam P, et al. Positional cloning of the gene for multiple endocrine neoplasia-type 1. Science 1997;276(5311):404-7
  • Guru SC, Goldsmith PK, Burns AL, et al. Menin, the product of the MEN1 gene, is a nuclear protein. Proc Natl Acad Sci USA 1998;95(4):1630-4
  • Knudson AG Jr. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 1971;68(4):820-3
  • Heppner C, Kester MB, Agarwal SK, et al. Somatic mutation of the MEN1 gene in parathyroid tumours. Nat Genet 1997;16(4):375-8
  • Carling T, Correa P, Hessman O, et al. Parathyroid MEN1 gene mutations in relation to clinical characteristics of nonfamilial primary hyperparathyroidism. J Clin Endocrinol Metab 1998;83(8):2960-3
  • Farnebo F, Teh BT, Kytola S, et al. Alterations of the MEN1 gene in sporadic parathyroid tumors. J Clin Endocrinol Metab 1998;83(8):2627-30
  • Imanishi Y, Tahara H. Putative parathyroid tumor suppressor on 1p: independent molecular mechanisms of tumorigenesis from 11q allelic loss. Am J Kidney Dis 2001;38(4 Suppl 1):S165-7
  • Gardner E, Papi L, Easton DF, et al. Genetic linkage studies map the multiple endocrine neoplasia type 2 loci to a small interval on chromosome 10q11.2. Hum Mol Genet 1993;2(3):241-6
  • Mole SE, Mulligan LM, Healey CS, et al. Localisation of the gene for multiple endocrine neoplasia type 2A to a 480 kb region in chromosome band 10q11.2. Hum Mol Genet 1993;2(3):247-52
  • Mulligan LM, Kwok JB, Healey CS, et al. Germ-line mutations of the RET proto-oncogene in multiple endocrine neoplasia type 2A. Nature 1993;363(6428):458-60
  • Mulligan LM, Eng C, Healey CS, et al. Specific mutations of the RET proto-oncogene are related to disease phenotype in MEN 2A and FMTC. Nat Genet 1994;6(1):70-4
  • Chen JD, Morrison C, Zhang C, et al. Hyperparathyroidism-jaw tumour syndrome. J Intern Med 2003;253(6):634-42
  • Carpten JD, Robbins CM, Villablanca A, et al. HRPT2, encoding parafibromin, is mutated in hyperparathyroidism-jaw tumor syndrome. Nat Genet 2002;32(4):676-80
  • Howell VM, Haven CJ, Kahnoski K, et al. HRPT2 mutations are associated with malignancy in sporadic parathyroid tumours. J Med Genet 2003;40(9):657-63
  • Shattuck TM, Valimaki S, Obara T, et al. Somatic and germ-line mutations of the HRPT2 gene in sporadic parathyroid carcinoma. N Engl J Med 2003;349(18):1722-9
  • Palanisamy N, Imanishi Y, Rao PH, et al. Novel chromosomal abnormalities identified by comparative genomic hybridization in parathyroid adenomas. J Clin Endocrinol Metab 1998;83(5):1766-70
  • Tahara H, Smith AP, Gaz RD, et al. Parathyroid tumor suppressor on 1p: analysis of the p18 cyclin-dependent kinase inhibitor gene as a candidate. J Bone Miner Res 1997;12(9):1330-4
  • Carling T, Imanishi Y, Gaz RD, Arnold A. Analysis of the RAD54 gene on chromosome 1p as a potential tumor-suppressor gene in parathyroid adenomas. Int J Cancer 1999;83(1):80-2
  • Carling T, Imanishi Y, Gaz RD, Arnold A. RAD51 as a candidate parathyroid tumour suppressor gene on chromosome 15q: absence of somatic mutations. Clin Endocrinol (Oxf) 1999;51(4):403-7
  • Imanishi Y, Hosokawa Y, Yoshimoto K, et al. Primary hyperparathyroidism caused by parathyroid-targeted overexpression of cyclin D1 in transgenic mice. J Clin Invest 2001;107(9):1093-102
  • Brown EM, Broadus AE, Brennan MF, et al. Direct comparison in vivo and in vitro of suppressibility of parathyroid function by calcium in primary hyperparathyroidism. J Clin Endocrinol Metab 1979;48(4):604-10
  • Cetani F, Picone A, Cerrai P, et al. Parathyroid expression of calcium-sensing receptor protein and in vivo parathyroid hormone-Ca2+set-point in patients with primary hyperparathyroidism. J Clin Endocrinol Metab 2000;85(12):4789-94
  • Imanishi Y, Hall C, Sablosky M, et al. A new method for in vivo analysis of parathyroid hormone-calcium set point in mice. J Bone Miner Res 2002;17(9):1656-61
  • Mallya SM, Gallagher JJ, Wild YK, et al. Abnormal parathyroid cell proliferation precedes biochemical abnormalities in a mouse model of primary hyperparathyroidism. Mol Endocrinol 2005;19(10):2603-9
  • Imanishi Y. Molecular pathogenesis of tumorigenesis in sporadic parathyroid adenomas. J Bone Miner Metab 2002;20(4):190-5
  • Kawata T, Imanishi Y, Kobayashi K, et al. Relationship between parathyroid calcium-sensing receptor expression and potency of the calcimimetic, cinacalcet, in suppressing parathyroid hormone secretion in an in vivo murine model of primary hyperparathyroidism. Eur J Endocrinol 2005;153(4):587-94
  • Crabtree JS, Scacheri PC, Ward JM, et al. A mouse model of multiple endocrine neoplasia, type 1, develops multiple endocrine tumors. Proc Natl Acad Sci USA 2001;98(3):1118-23
  • Bertolino P, Tong WM, Galendo D, et al. Heterozygous Men1 mutant mice develop a range of endocrine tumors mimicking multiple endocrine neoplasia type 1. Mol Endocrinol 2003;17(9):1880-92
  • Michiels FM, Chappuis S, Caillou B, et al. Development of medullary thyroid carcinoma in transgenic mice expressing the RET protooncogene altered by a multiple endocrine neoplasia type 2A mutation. Proc Natl Acad Sci USA 1997;94(7):3330-5
  • Kawai K, Iwashita T, Murakami H, et al. Tissue-specific carcinogenesis in transgenic mice expressing the RET proto-oncogene with a multiple endocrine neoplasia type 2A mutation. Cancer Res 2000;60(18):5254-60
  • Wang P, Bowl MR, Bender S, et al. Parafibromin, a component of the human PAF complex, regulates growth factors and is required for embryonic development and survival in adult mice. Mol Cell Biol 2008;28(9):2930-40
  • Imanishi Y, Koyama H, Inaba M, et al. Phosphorus intake regulates intestinal function and polyamine metabolism in uremia. Kidney Int 1996;49(2):499-505
  • Lameire N, Van Biesen W, Van Landschoot M, et al. Experimental models in peritoneal dialysis: a European experience. Kidney Int 1998;54(6):2194-206
  • Silver J, Russell J, Sherwood LM. Regulation by vitamin D metabolites of messenger ribonucleic acid for preproparathyroid hormone in isolated bovine parathyroid cells. Proc Natl Acad Sci USA 1985;82(12):4270-3
  • Kawata T, Imanishi Y, Kobayashi K, et al. Direct in vitro evidence of the suppressive effect of cinacalcet HCl on parathyroid hormone secretion in human parathyroid cells with pathologically reduced calcium-sensing receptor levels. J Bone Miner Metab 2006;24(4):300-6
  • Fukuda N, Tanaka H, Tominaga Y, et al. Decreased 1,25-dihydroxyvitamin D3 receptor density is associated with a more severe form of parathyroid hyperplasia in chronic uremic patients. J Clin Invest 1993;92(3):1436-43
  • Carling T, Rastad J, Szabo E, et al. Reduced parathyroid vitamin D receptor messenger ribonucleic acid levels in primary and secondary hyperparathyroidism. J Clin Endocrinol Metab 2000;85(5):2000-3
  • Szabo A, Merke J, Beier E, et al. 1,25(OH)2 vitamin D3 inhibits parathyroid cell proliferation in experimental uremia. Kidney Int 1989;35(4):1049-56
  • Fukagawa M, Kaname S, Igarashi T, et al. Regulation of parathyroid hormone synthesis in chronic renal failure in rats. Kidney Int 1991;39(5):874-81
  • Slatopolsky E, Finch J, Ritter C, et al. A new analog of calcitriol, 19-nor-1,25-(OH)2D2, suppresses parathyroid hormone secretion in uremic rats in the absence of hypercalcemia. Am J Kidney Dis 1995;26(5):852-60
  • Slatopolsky E, Cozzolino M, Finch JL. Differential effects of 19-nor-1,25-(OH)2D2 and 1a-hydroxyvitamin D2 on calcium and phosphorus in normal and uremic rats. Kidney Int 2002;62(4):1277-84
  • Nagano N. Pharmacological and clinical properties of calcimimetics: calcium receptor activators that afford an innovative approach to controlling hyperparathyroidism. Pharmacol Ther 2006;109(3):339-65
  • Pollak MR, Brown EM, Estep HL, et al. Autosomal dominant hypocalcaemia caused by a Ca2+-sensing receptor gene mutation. Nat Genet 1994;8(3):303-7
  • Wada M, Furuya Y, Sakiyama J, et al. The calcimimetic compound NPS R-568 suppresses parathyroid cell proliferation in rats with renal insufficiency. Control of parathyroid cell growth via a calcium receptor. J Clin Invest 1997;100(12):2977-83
  • Wada M, Nagano N, Furuya Y, et al. Calcimimetic NPS R-568 prevents parathyroid hyperplasia in rats with severe secondary hyperparathyroidism. Kidney Int 2000;57(1):50-8
  • Wada M, Ishii H, Furuya Y, et al. NPS R-568 halts or reverses osteitis fibrosa in uremic rats. Kidney Int 1998;53(2):448-53
  • Imanishi Y, Kawata T, Kobayashi K, et al. Cinacalcet HCl suppresses parathyroid cell proliferation in vivo in primary hyperparathyroidism. World Congress of Nephrology 2007; Rio Convention & Exhibition Center, Rio de Janeiro, Brazil; 2007. M-PO-0595
  • Block GA, Klassen PS, Lazarus JM, et al. Mineral metabolism, mortality, and morbidity in maintenance hemodialysis. J Am Soc Nephrol 2004;15(8):2208-18
  • Kawata T, Imanishi Y, Kobayashi K, et al. Parathyroid hormone regulates fibroblast growth factor-23 in a mouse model of primary hyperparathyroidism. J Am Soc Nephrol 2007;18(10):2683-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.