1,099
Views
56
CrossRef citations to date
0
Altmetric
Technology Evaluation

GlycoFi's technology to control the glycosylation of recombinant therapeutic proteins

, &
Pages 95-111 | Published online: 01 Dec 2009

Bibliography

  • Walsh G, Jefferis R. Post-translational modifications in the context of therapeutic proteins. Nat Biotechnol 2006;24(10):1241-52
  • Freeze HH. Genetic defects in the human glycome. Nat Rev Genet 2006;7(7):537-51
  • Kanda Y, Yamada T, Mori K, Comparison of biological activity among nonfucosylated therapeutic IgG1 antibodies with three different N-linked Fc oligosaccharides: the high-mannose, hybrid and complex types. Glycobiology 2006;17(1);104-18
  • Jenkins N, Parekh RB, James DC. Getting the glycosylation right: implications for the biotechnology industry. Nat Biotechnol 1996;14(8):975-81
  • Serrato JA, Hernandez V, Estrada-Mondaca S, Differences in the glycosylation profile of a monoclonal antibody produced by hybridomas cultured in serum-supplemented, serum-free or chemically-defined media. Biotechnol Appl Biochem 2007;47(Pt 2):113-24
  • Chartrain M, Chu L. Development and production of commercial therapeutic monoclonal antibodies in Mammalian cell expression systems: an overview of the current upstream technologies. Curr Pharm Biotechnol 2008;9:447-67
  • Beck A, Wagner-Rousset E, Bussat MC, Trends in glycosylation, glycoanalysis and glycoengineering of therapeutic antibodies and Fc-fusion proteins. Curr Pharm Biotechnol 2008;9(6):482-501
  • Jefferis R. Glycosylation as a strategy to improve antibody-based therapeutics. Nat Rev Drug Discov 2009;8(3):226-34
  • Hamilton SR, Gerngross TU. Glycosylation engineering in yeast: the advent of fully humanized yeast. Curr Opin Biotechnol 2007;18(5):387-92
  • Sheridan C. Commercial interest grows in glycan analysis. Nat Biotechnol 2007;25(2):145-6
  • Wagner-Rousset E, Bednarczyk A, Bussat MC, The way forward, enhanced characterization of therapeutic antibody glycosylation: comparison of three level mass spectrometry-based strategies. J Chromatogr B Analyt Technol Biomed Life Sci 2008;872(1-2):23-37
  • Arnold JN, Wormald MR, Sim RB, The impact of glycosylation on the biological function and structure of human immunoglobulins. Annu Rev Immunol 2007;25:21-50
  • Kawasaki N, Ohta M, Hyuga S, Application of liquid chromatography/mass spectrometry and liquid chromatography with tandem mass spectrometry to the analysis of the site-specific carbohydrate heterogeneity in erythropoietin. Anal Biochem 2000;285(1):82-91
  • Hamilton SR, Davidson RC, Sethuraman N, Humanization of yeast to produce complex terminally sialylated glycoproteins. Science 2006;313(5792);1441-43
  • Shriver Z, Raguram S, Sasisekharan R. Glycomics: a pathway to a class of new and improved therapeutics. Nat Rev Drug Discov 2004;3(10):863-73
  • De Schutter K, Lin YC, Tiels P, Genome sequence of the recombinant protein production host Pichia pastoris. Nat Biotechnol 2009;27(6):561-6
  • Stadheim TA, Li H, Kett W, Use of high-performance anion exchange chromatography with pulsed amperometric detection for O-glycan determination in yeast. Nat Protoc 2008;3(6):1026-31
  • Anthony RM, Nimmerjahn F, Ashline DJ, Recapitulation of IVIG anti-inflammatory activity with a recombinant IgG Fc. Science. 2008;320(5874):373-6
  • Schneider CK, Papaluca M, Kurki P. A European perspective on immunogenicity evaluation. Nat Biotechnol 2009;27:507-8
  • Shi X, Jarvis DL. Protein N-glycosylation in the baculovirus-insect cell system. Curr Drug Targets 2007;8(10):1116-25
  • Saint-Jore-Dupas C, Faye L, Gomord V. From planta to pharma with glycosylation in the toolbox. Trends Biotechnol 2007;25(7):317-23
  • Takahashi N, Ishii I, Ishihara H, Comparative structural study of the N-linked oligosaccharides of human normal and pathological immunoglobulin G. Biochemistry 1987;26(4):1137-44
  • Wada Y, Azadi P, Costello CE, Comparison of the methods for profiling glycoprotein glycans – HUPO Human disease glycomics/proteome initiative multi-institutional study. Glycobiology 2007;17(4):411-22
  • Keck R, Nayak N, Lerner L, Characterization of a complex glycoprotein whose variable metabolic clearance in humans is dependent on terminal N-acetylglucosamine content. Biologicals 2008;36(1):49-60
  • Jones AJ, Papac DI, Chin EH, Selective clearance of glycoforms of a complex glycoprotein pharmaceutical caused by terminal N-acetylglucosamine is similar in humans and cynomolgus monkeys. Glycobiology 2007;17(5):529-40
  • Jefferis R. Glycosylation of recombinant antibody therapeutics. Biotechnol Prog 2005;21(1):11-6
  • Hinton PR, Xiong JM, Johlfs MG, An engineered human IgG1 antibody with longer serum half-life. J Immunol 2006;176(1):346-56
  • Millward TA, Heitzmann M, Bill K, Effect of constant and variable domain glycosylation on pharmacokinetics of therapeutic antibodies in mice. Biologicals 2008;36(1):41-7
  • Raju TS, Scallon B. Fc glycan terminated with N-acetylglucosamine residues increase antibody resistance to papain. Biotechnol Prog 2007;23(4):964-71
  • Beck A, Wurch T, Corvaïa N. Therapeutic antibodies and derivatives: from the bench to the clinic. Curr Pharm Biotechnol 2008;9(6):421-2
  • Reichert JM. Monoclonal antibodies as innovative therapeutics. Curr Pharm Biotechnol 2008;9:423-30
  • Seamans TC, Fries S, Beck A, Cell cultivation process transfer and scale up in support of production of early clinical supplies of an anti-IGF-1R antibody. Part 1: materials and methods, process transfer, scale up. Bioprocess Int 2008;6(3):26-36
  • Seamans TC, Fries S, Beck A, Cell cultivation process transfer and scale up in support of production of early clinical supplies of an anti-IGF-1R antibody. Part 2. BioProcess International 2008;6(4):34-42
  • Werner RG, Kopp K, Schlueter M. Glycosylation of therapeutic proteins in different production systems. Acta Paediatr Suppl 2007;96(455):17-22
  • Butler M. Animal cell cultures: recent achievements and perspectives in the production of biopharmaceuticals. Appl Microbiol Biotechnol 2005;68(3):283-91
  • Birch JR, Racher AJ. Antibody production. Adv Drug Deliv Rev 2006;58(5-6):671-85
  • Chiba Y, Jigami Y. Production of humanized glycoproteins in bacteria and yeasts. Curr Opin Chem Biol 2007;11(6):670-76
  • Simmons LC, Reilly D, Klimowski L, Expression of full-length immunoglobulins in Escherichia coli: rapid and efficient production of aglycosylated antibodies. J Immunol Methods 2002;263(1-2):133-47
  • Frey S, Haslbeck M, Hainzl O, Buchner J. Synthesis and characterization of a functional intact IgG in a prokaryotic cell-free expression system. Biol Chem 2008;389(1):37-45
  • Presta LG. Selection, design, and engineering of therapeutic antibodies. J Allergy Clin Immunol 2005;116(4):731-6
  • Mazor Y, Van Blarcom T, Iverson BL, Georgiou G. Isolation of full-length IgG antibodies from combinatorial libraries expressed in Escherichia coli. Methods Mol Biol 2009;525:217-39
  • Jones D, Kroos N, Anema R, High-level expression of recombinant IgG in the human cell line Per.C6. Biotechnol Prog 2003;19(1):163-8
  • Beck A, Bussat MC, Zorn N, Characterization by liquid chromatograpgy combined with mass spectrometry of monoclonal anti-IGF-1 receptor antibodies produced in CHO and NS0 cells. J Chromatogr B Analyt Technol Biomed Life Sci 2005;819(2):203-18
  • Echelard Y, Ziomek CA, Meade HM. Production of recombinant therapeutic proteins in the milk of transgenic animals. BioPharm International 2006;19(8):36-46
  • Edmunds T, Van Patten SM, Pollock J, Transgenically produced human antithrombin: structural and functional comparison to human plasma-derived antithrombin. Blood 1998;91(12):4561-71
  • Hokke CH, Bergwerff AA, van Dedem GW, Sialylated carbohydrate chains of recombinant human glycoproteins expressed in Chinese hamster ovary cells contain traces of N-glycolylneuraminic acid. FEBS Lett 1990;275(1-2):9-14
  • Sheeley DM, Merrill BM, Taylor LC. Characterization of monoclonal antibody glycosylation: comparison of expression systems and identification of terminal α-linked galactose. Anal Biochem 1997;247(1):102-10
  • Beck A, Klinguer-Hamour C, Bussat MC, Peptides as tools and drugs for immunotherapies. J Pept Sci 2007;13(9):588-602
  • Qian J, Liu T, Yang L, Structural characterization of N-linked oligosaccharides on monoclonal antibody cetuximab by the combination of orthogonal matrix-assisted laser desorption/ionization hybrid quadrupole-quadrupole time-of-flight tandem mass spectrometry and sequential enzymatic digestion. Anal Biochem 2007;364(1):8-18
  • Chung CH, Mirakhur B, Chan E, Cetuximab-induced anaphylaxis and IgE specific for galactose-α-1,3-galactose. N Engl J Med 2008;358(11):1109-17
  • Gemmill TR, Trimble RB. Overview of N- and O-linked oligosaccharides structures found in various yeast species. Biochim Biophys Acta 1999;1426:227-37
  • Wildt S, Gerngross TU. The humanization of N-glycosylation pathways in yeast. Nat Rev Microbiol 2005;3(2):119-28
  • Sethuraman N, Stadheim TA. Challenges in therapeutic glycoprotein production. Curr Opin Biotechnol 2006;17(4):341-6
  • Nett JH, Gerngross TU. Cloning and disruption of the PpURA5 gene and construction of a set of integration vectors for the stable genetic modification of Pichia pastoris. Yeast 2003;20(15):1279-90
  • Nett JH, Hodel N, Rausch S, Wildt S. Cloning and disruption of the Pichia pastoris ARG1, ARG2, ARG3, HIS1, HIS2, HIS5, HIS6 genes and their use as auxotrophic markers. Yeast 2005;22(4):295-304
  • Choi BK, Actor JK, Rios S, Recombinant human lactoferrin expressed in glycoengineered Pichia pastoris: effect of terminal N-acetylneuraminic acid on in vitro secondary humoral immune response. Glycoconj J 2008;25(6):581-93
  • Bobrowicz P, Davidson RC, Li H, Engineering of an artificial glycosylation pathway blocked in core oligosaccharide assembly in the yeast Pichia pastoris: production of complex humanized glycoproteins with terminal galactose. Glycobiology 2004;14(9):757-66
  • Li H, Sethuraman N, Stadheim TA, Optimization of humanized IgGs in glycoengineered Pichia pastoris. Nat Biotechnol. 2006;24(2):210-5
  • Kaneko Y, Nimmerjahn F, Ravetch JV. Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. Science 2006;313(5787):670-3
  • Dimitrov JD, Bayry J, Sibéril S, Kaveri SV. Sialylated therapeutic IgG: a sweet remedy for inflammatory diseases? Nephrol Dial Transplant 2007;22:1301-4
  • Umana P, Jean-Mairet J, Moudry R, Engineered glycoforms of an antineuroblastoma IgG1 with optimized antibody-dependent cellular cytotoxicity activity. Nat Biotechnol 1999;17(2):176-80
  • Hodoniczky J, Zheng YZ, James DC. Control of recombinant monoclonal antibody effector functions by Fc N-glycan remodeling in vitro. Biotechnol Prog 2005;21(6):1644-52
  • Ferrara C, Brunker P, Suter T, Modulation of therapeutic antibody effector functions by glycosylation engineering: influence of golgi enzyme localization domain and co-expression of heterologous β1,4-N-acetylglucosaminyltransferase III and golgi α-mannosidase II. Biotechnol Bioeng 2006;93(5):851-61
  • Rouwendal GJ, Wuhrer M, Florack DE, Efficient introduction of a bisecting GlcNAc residue in tobacco N-glycans by expression of the gene encoding human N-acetylglucosaminyltransferase III. Glycobiology 2007;17(3):334-44
  • Kanda Y, Yamane-Ohnuki N, Sakai N, Comparison of cell lines for stable production of fucose-negative antibodies with enhanced ADCC. Biotechnol Bioeng 2006;94(4):680-8
  • Matsumiya S, Yamaguchi Y, Saito J, Structural comparison of fucosylated and nonfucosylated Fc fragments of human immunoglobulin G1. J Mol Biol 2007;368(3):767-79
  • Iida S, Misaka H, Inoue M, Nonfucosylated therapeutic IgG1 antibody can evade the inhibitory effect of serum immunoglobulin G on antibody-dependent cellular cytotoxicity through its high binding to FcγRIIIa. Clin Cancer Res 2006;12(9):2879-87
  • Satoh M, Iida S, Shitara K. Non-fucosylated therapeutic antibodies as next-generation therapeutic antibodies. Expert Opin Biol Ther 2006;6(11):1161-73
  • Suzuki E, Niwa R, Saji S, A nonfucosylated anti-HER2 antibody augments antibody-dependent cellular cytotoxicity in breast cancer patients. Clin Cancer Res 2007;13(6):1875-82
  • Zhou Q, Shankara S, Roy A, Development of a simple and rapid method for producing non-fucosylated oligomannose containing antibodies with increased effector function. Biotechnol Bioeng 2008;99(3):652-65
  • Zhu L, van de Lavoir MC, Albanese J, Production of human monoclonal antibody in eggs of chimeric chickens. Nat Biotechnol 2005;23(9):1159-69
  • Sibéril S, De Romeuf C, Bihoreau N, Selection of a human anti-RhD monoclonal antibody for therapeutic use: impact of IgG glycosylation on activating and inhibitory FcγR functions. Clin Immunol 2006;118(2-3):170-79
  • Cox KM, Sterling JD, Regan JT, Glycan optimization of a human monoclonal antibody in the aquatic plant Lemna minor. Nat Biotechnol 2006;24(12):1591-97
  • Nechansky A, Schuster M, Jost W, Compensation of endogenous IgG mediated inhibition of antibody-dependent cellular cytotoxicity by glyco-engineering of therapeutic antibodies. Mol Immunol 2007;44(7):1815-7
  • Kainz E, Gallmetzer A, Hatzl C, N-glycan modification in Aspergillus species. Appl Environ Microbiol 2008;74(4):1076-86
  • Garcia-Casado G, Sanchez-Monge R, Chrispeels MJ, Role of complex asparagine-linked glycans in the allergenicity of plant glycoproteins. Glycobiology 1996;6(4):471-77
  • Zeitlin L, Olmsted SS, Moench TR, A humanized monoclonal antibody produced in transgenic plants for immunoprotection of the vagina against genital herpes. Nat Biotechnol 1998;16(13):1361-64
  • Ma JK, Vine ND. Plant expression systems for the production of vaccines. Curr Top Microbiol Immunol 1999;236:275-92
  • Tekoah Y, Ko K, Koprowski H, Controlled glycosylation of therapeutic antibodies in plants. Arch Biochem Biophys 2004;426(2):266-78
  • Bardor M, Cabrera G, Rudd P, Analytical strategies to investigate plant N-glycan profiles in the context of plant made pharmaceuticals. Curr Opin Struct Biol 2006;16(5):576-83
  • Schuster M, Jost W, Mudde GC, In vivo glyco-engineered antibodies with improved lytic potential produced by an innovative non-mammalian expression system. Biotechnol J 2007;2(6):700-8
  • Decker EL, Reski R. Moss bioreactors producing improved biopharmaceuticals. Curr Opin Biotechnol 2007;18(5):393-98
  • Kobata A. The N-linked sugar chains of human immunoglobulin G: their unique pattern, and their functional roles. Biochim Biophys Acta 2007;1780(3):472-8
  • Scallon BJ, Tam SH, McCarthy SG, Higher levels of sialylated Fc glycans in immunoglobulin G molecules can adversely impact functionality. Mol Immunol 2007;44(7):1524-34
  • Takeuchi M, Kobata A. Structures and functional roles of the sugar chains of human erythropoietins. Glycobiology 1991;1:337-46
  • Wasley LC, Timony G, Murtha P, The importance of N-linked and O-linked oligosaccharides for the biosynthesis and in vivo and in vitro biological activity of erythropoietin. Blood 1991;77:2624-32
  • Beck A, Iyer H, Reichert JM. European Medicines Agency workshop on biosimilar monoclonal antibodies, July 2, 2009, London UK. MAbs 2009;1(5):394-414. Available from: http://www.landesbioscience.com/journals/mabs
  • Bethencourt V. Merck joins the biotech game. Nat Biotechnol 2009;27:104
  • Gong B, Cukan M, Fisher R, Characterization of N-linked glycosylation on recombinant glycoproteins produced in Pichia pastoris using ESI-MS and MALDI-TOF. Methods Mol Biol 2009;534:213-23
  • Cereghino GP, Cereghino JL, Ilgen C, Cregg JM. Production of recombinant proteins in fermenter cultures of the yeast Pichia pastoris. Curr Opin Biotechnol 2002;13:329-32
  • Gurramkonda C, Adnan A, Gabel T, Simple high-cell density fed-batch technique for high-level recombinant protein production with Pichia pastoris: Application to intracellular production of Hepatitis B surface antigen. Microb Cell Fact 2009;8:13
  • Jahic M, Veide A, Charoenrat T, Process technology for production and recovery of heterologous proteins with Pichia pastoris. Biotechnol Prog 2006;22:1465-73
  • Stratton J, Chiruvolu V, Meagher M. High cell-density fermentation. Methods Mol Biol 1998;103:107-20
  • Ghosalkar A, Sahai V, Srivastava A. Optimization of chemically defined medium for recombinant Pichia pastoris for biomass production. Bioresour Technol 2008;99:7906-10
  • Jahic M, Wallberg F, Bollok M, Temperature limited fed-batch technique forcontrol of proteolysis in Pichia pastoris bioreactor cultures. Microb Cell Fact 2003;2:6
  • Paifer E, Margolles E, Cremata J, Efficient expression and secretion of recombinant alpha amylase in Pichia pastoris using two different signal sequences. Yeast 1994;10:1415-9
  • Werten MW, van den Bosch TJ, Wind RD, High-yield secretion of recombinant gelatins by Pichia pastoris. Yeast 1999;15:1087-96
  • Cunha AE, Clemente JJ, Gomes R, Methanol induction optimization for scFv antibody fragment production in Pichia pastoris. Biotechnol Bioeng 2004;86:458-67
  • Fischer R, Drossard J, Emans N, Towards molecular farming in the future: pichia pastoris-based production of single-chain antibody fragments. Biotechnol Appl Biochem 1999;30(Pt 2):117-20
  • Potgieter TI, Cukan M, Drummond JE, Production of monoclonal antibodies by glycoengineered Pichia pastoris. J Biotechnol 2009;139:318-25
  • Marty C, Scheidegger P, Ballmer-Hofer K, Production of functionalized single-chain Fv antibody fragments binding to the ED-B domain of the B-isoform of fibronectin in Pichia pastoris. Protein Expr Purif 2001;21:156-64
  • Montesino R, Garcia R, Quintero O, Cremata JA. Variation in N-linked oligosaccharide structures on heterologous proteins secreted by the methylotrophic yeast Pichia pastoris. Protein Expr Purif 1998;14:197-207
  • Schenk J, Balazs K, Jungo C, Influence of specific growth rate on specific productivity and glycosylation of a recombinant avidin produced by a Pichia pastoris Mut+ strain. Biotechnol Bioeng 2008;99:368-77
  • Lim HK, Choi SJ, Kim KY, Jung KH. Dissolved-oxygen-stat controlling two variables for methanol induction of rGuamerin in Pichia pastoris and its application to repeated fed-batch. Appl Microbiol Biotechnol 2003;62:342-8
  • Ohi H, Okazaki N, Uno S, Chromosomal DNA patterns and gene stability of Pichia pastoris. Yeast 1998;14:895-903
  • Jahic M, Gustavsson M, Jansen AK, Analysis and control of proteolysis of a fusion protein in Pichia pastoris fed-batch processes. J Biotechnol 2003;102:45-53
  • Higgins DR, Cregg JM. Pichia Protocols. Totowa NJ, Humana Press; 1998
  • Shekhar C. Pichia power: India's biotech industry puts unconventional yeast to work. Chem Biol 2008;15:201-2
  • Jacobs PP, Geysens S, Vervecken W, Engineering complex-type N-glycosylation in Pichia pastoris using GlycoSwitch technology. Nature Protoc 2009;4:58-70
  • Schneider CK, Kalinke U. Toward biosimilar monocolonal antibodies. Nat Biotechnol 2008;26:985-90
  • Lanthier M, Behrman R, Nardinelli C. Economic issues with follow-on protein products. Nat Rev Drug Discov 2008;7:733-7
  • Hughes B. Gearing up for follow-on biologics. Nat Rev Drug Discov 2009;8:181
  • Ferrer-Miralles N, Domingo-Espin J, Corchero JL, Microbial factories for recombinant pharmaceuticals. Microb Cell Fact 2009;8:17
  • Redwan E. Cumulative updating of approved biopharmaceuticals. Hum Antibodies 2007;16:137-58
  • Available from: http://www.shanthabiotech.com/
  • Kobayashi K. Summary of recombinant human serum albumin development. Biologicals 2006;34:55-9
  • Available from: http://www.biocon.com/insugen/index html
  • Lehmann A. Ecallantide (DX-88), a plasma kallikrein inhibitor for the treatment of hereditary angioedema and the prevention of blood loss in on-pump cardiothoracic surgery. Expert Opin Biol Ther 2008;8:1187-99

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.