96
Views
19
CrossRef citations to date
0
Altmetric
Reviews

Quantum mechanical effect in protein–ligand interaction

& (Professor)
Pages 33-49 | Published online: 19 Dec 2009

Bibliography

  • Raha K, Peters MB, Wang B, The role of quantum mechanics in structure-based drug design. Drug Discov Today 2007;12(17-18):725-31
  • Davidson ER. Quantum-theory of matter–introduction. Chem Rev 1991;91(5):649
  • Beguin P, Aubert JP. The biological degradation of cellulose. Fems Microbiol Rev 1994;13(1):25-58
  • Divne C, Stahlberg J, Reinikainen T, The 3-dimensional crystal-structure of the catalytic core of cellobiohydrolase-I from trichoderma-reesei. Science 1994;265(5171):524-8
  • Bakowies D, Thiel W. Hybrid models for combined quantum mechanical and molecular mechanical approaches. J Phys Chem 1996;100(25):10580-94
  • Zhang YK, Lee TS, Yang WT. A pseudobond approach to combining quantum mechanical and molecular mechanical methods. J Phys Chem 1999;110(1):46-54
  • Warshel A. Computer simulations of enzyme catalysis: Methods, progress, and insights. Ann Rev Biophys Biomole Struct 2003;32:425-43
  • Mackerell AD, Feig M, Brooks CL. Extending the treatment of backbone energetics in protein force fields: Limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J Comput Chem 2004;25(11):1400-15
  • Ogliaro F, Harris N, Cohen S, A model “rebound” mechanism of hydroxylation by cytochrome P450: Stepwise and effectively concerted pathways, and their reactivity patterns. J Am Chem Soc 2000;122(37):8977-89
  • Ogliaro F, de Visser SP, Cohen S, Searching for the second oxidant in the catalytic cycle of cytochrome P450: A theoretical investigation of the iron(III)-hydroperoxo species and its epoxidation pathways. J Am Chem Soc 2002;124(11):2806-17
  • Meunier B, de Visser SP, Shaik S. Mechanism of oxidation reactions catalyzed by cytochrome P450 enzymes. Chem Rev 2004;104(9):3947-80
  • Shaik S, Kumar D, de Visser SP, Theoretical perspective on the structure and mechanism of cytochrome P450 enzymes. Chem Rev 2005;105(6):2279-328
  • Guallar V, Gherman BF, Lippard SJ, Friesner RA. Quantum chemical studies of methane monooxygenase: comparision with P450. Curr Opin Chem Biol 2002;6(2):236-42
  • Nilsson K, Ryde U. Protonation status of metal-bound ligands can be determined by quantum refinement. J Inorg Biochem 2004;98(9):1539-46
  • Ryde U. Combined quantum and molecular mechanics calculations on metalloproteins. Curr Opin Chem Biol 2003;7(1):136-42
  • Ryde U, Nilsson K. Quantum chemistry can locally improve protein crystal structures. J Am Chem Soc 2003;125(47):14232-3
  • van der Kamp MW, Shaw KE, Woods CJ, Mulholland AJ. Biomolecular simulation and modelling: status, progress and prospects. J R Soc Interface 2008;5:S173-S90
  • Schoneboom JC, Lin H, Reuter N, The elusive oxidant species of cytochrome P450 enzymes: Characterization by combined quantum mechanical/molecular mechanical (QM/MM) calculations. J Am Chem Soc 2002;124(27):8142-51
  • Schoneboom JC, Cohen S, Lin H, Quantum mechanical/molecular mechanical investigation of the mechanism of C-H hydroxylation of camphor by cytochrome P450(cam): Theory supports a two-state rebound mechanism. J Am Chem Soc 2004;126(12):4017-34
  • Schoneboom JC, Neese F, Thiel W. Toward identification of the Compound I reactive intermediate in cytochrome P450 chemistry: a QM/MM study of its EPR and Mossbauer parameters. J Am Chem Soc 2005;127(16):5840-53
  • Murphy RB, Philipp DM, Friesner RA. A mixed quantum mechanics/molecular mechanics (QM/MM) method for large-scale modeling of chemistry in protein environments. J Comput Chem 2000;21(16):1442-57
  • Friesner RA, Guallar V. Ab initio quantum chemical and mixed quantum mechanics/molecular mechanics (QM/MM) methods for studying enzymatic catalysis. Ann Rev Phys Chem 2005;56:389-427
  • Altun A, Guallar V, Friesner RA, The effect of heme environment on the hydrogen abstraction reaction of camphor in P450(cam) catalysis: a QM/MM study. J Am Chem Soc 2006;128(12):3924-5
  • Bathelt CM, Zurek J, Mulholland AJ, Harvey JN. Electronic structure of compound I in human isoforms of cytochrome P450 from QM/MM modeling. J Am Chem Soc 2005;127(37):12900-8
  • Harvey JN, Bathelt CM, Mulholland AJ. QM/MM modeling of compound I active species in cytochrome P450, cytochrome c peroxidase, and ascorbate peroxidase. J Comput Chem 2006;27(12):1352-62
  • Mulholland AJ. Chemical accuracy in QM/MM calculations on enzyme-catalysed reactions. Chem Cent J 2007;1:19
  • Sauer J, Sierka M. Combining quantum mechanics and interatomic potential functions in ab initio studies of extended systems. J Comput Chem 2000;21(16):1470-93
  • Zhang YK, Liu HY, Yang WT. Free energy calculation on enzyme reactions with an efficient iterative procedure to determine minimum energy paths on a combined ab initio QM/MM potential energy surface. J Chem Phys 2000;112(8):3483-92
  • Bruice TC. Computational approaches: reaction trajectories, structures, and atomic motions. Enzyme reactions and proficiency. Chem Rev 2006;106(8):3119-39
  • Elstner M. The SCC-DFTB method and its application to biological systems. Theor Chem Acc 2006;116:316-25
  • Mulholland AJ. Modelling enzyme reaction mechanisms, specificity and catalysis. Drug Discov Today 2005;10(20):1393-402
  • Schramm VL. Enzymatic transition states: thermodynamics, dynamics and analogue design. Arch Biochem Biophys 2005;433(1):13-26
  • Senn HM, Thiel W. QM/MM methods for biological systems in Topics in Current Chemistry, Reiher M (Ed.),Springer, Berlin,2007;268:173-290
  • Warshel A, Sharma PK, Kato M, Electrostatic basis for enzyme catalysis. Chem Rev 2006;106(8):3210-35
  • Khandelwal A, Lukacova V, Comez D, A combination of docking, QM/MM methods, and MD simulation for binding affinity estimation of metalloprotein ligands. J Med Chem 2005;48(17):5437-47
  • Klahn M, Rosta E, Warshel A. On the mechanism of hydrolysis of phosphate monoesters dianions in solutions and proteins. J Am Chem Soc 2006;128(47):15310-23
  • Konig PH, Hoffmann M, Frauenheim T, Cui Q. A critical evaluation of different QM/MM frontier treatments with SCC-DFTB as the QM method. J Phys Chem B 2005;109(18):9082-95
  • Lin H, Truhlar DG. Redistributed charge and dipole schemes for combined quantum mechanical and molecular mechanical calculations. J Phys Chem A 2005;109(17):3991-4004
  • Riccardi D, Schaefer P, Cui Q. pK(a) calculations in solution and proteins with QM/MM free energy perturbation simulations: a quantitative test of QM/MM protocols. J Phys Chem B 2005;109(37):17715-33
  • Senn HM, Thiel W. QM/MM studies of enzymes. Curr Opin Chem Biol 2007;11:182-7
  • Li SH, Li W, Fang T. An efficient fragment-based approach for predicting the ground-state energies and structures of large molecules. J Am Chem Soc 2005;127(19):7215-26
  • Zhang DW, Xiang Y, Zhang JZH. New advance in computational chemistry: Full quantum mechanical ab initio computation of streptavidin-biotin interaction energy. J Phys Chem B 2003;107(44):12039-41
  • Zhang DW, Zhang JZH. Molecular fractionation with conjugate caps for full quantum mechanical calculation of protein-molecule interaction energy. J Chem Phys 2003;119(7):3599-605
  • Zhang DW, Zhang JZH. Full ab initio computation of protein-water interaction energies. J Theor Comput Chem 2004;3(1):43-9
  • Nakano T, Kaminuma T, Sato T, Fragment molecular orbital method: application to polypeptides. Chem Phys Lett 2000;318(6):614-8
  • Soderhjelm P, Ryde U. How Accurate Can a Force Field Become? A Polarizable Multipole Model Combined with Fragment-wise Quantum-Mechanical Calculations. J Phys Chem A 2009;113(3):617-27
  • Gadre SR, Shirsat RN, Limaye AC. Molecular tailoring approach for simulation of electrostatic properties. J Phys Chem 1994;98(37):9165-9
  • Dixon SL, Merz KM. Semiempirical molecular orbital calculations with linear system size scaling. J Phys Chem 1996;104(17):6643-9
  • Raha K, Merz KM. Large-scale validation of a quantum mechanics based scoring function: Predicting the binding affinity and the binding mode of a diverse set of protein-ligand complexes. J Med Chem 2005;48(14):4558-75
  • Cavalli A, Carloni P, Recanatini M. Target-related applications of first principles quantum chemical methods in drug design. Chem Rev 2006;106(9):3497-519
  • Wu EL, Wong KY, Zhang X, Determination of the structure form, of the fourth ligand of zinc in acutolysin a using combined quantum mechanical and molecular mechanical simulation. J Phys Chem B 2009;113(8):2477-85
  • Mei Y, Wu EL, Han KL, Zhang JZH. Treating hydrogen bonding in ab initio calculation of biopolymers. Int J Quantum Chem 2006;106(5):1267-76
  • Wang Y, Wang HM, Wang YH, Theoretical study of the mechanism of acetaldehyde hydroxylation by compound I of CYP2E1. J Phys Chem B 2006;110(12):6154-9
  • Liu XJ, Wang Y, Han K. Systematic study on the mechanism of aldehyde oxidation to carboxylic acid by cytochrome P450. J Biol Inorg Chem 2007;12(7):1073-81
  • Wang Y, Yang CL, Wang HM, A new mechanism for ethanol oxidation mediated by cytochrome P450 2E1: bulk polarity of the active site makes a difference. Chembiochem 2007;8(3):277-81
  • Wu EL, Mei Y, Han KL, Zhang JZH. Quantum and molecular dynamics study for binding of macrocyclic inhibitors to human alpha-thrombin. Biophys J 2007;92(12):4244-53
  • Wu EL, Han KL, Zhang JZH. Selectivity of Neutral/Weakly Basic P1 Group Inhibitors of Thrombin and Trypsin by a Molecular Dynamics Study. Chem-Eur J 2008;14(28):8704-14
  • Zhao GJ, Han KL. Effects of hydrogen bonding on tuning photochemistry: concerted hydrogen-bond strengthening and weakening. Chemphyschem 2008;9(13):1842-6
  • Li D, Wang Y, Yang C, Han K. Theoretical study of N-dealkylation of N-cyclopropyl-N-methylaniline catalyzed by cytochrome P450: insight into the origin of the regioselectivity. Dalton Trans 2009;2:291-7. [Epub 19 Nov 2008]
  • Hu H, Yang WT. Development and application of ab initio QM/MM methods for mechanistic simulation of reactions in solution and in enzymes. J Mol Struct Theochem 2009;898(1-3):17-30
  • Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys Rev B 1964;136(3B):B864-B71
  • Kohn W, Sham LJ. Self-consistent equations including exchange and correlation effects. Phys Rev 1965;140(4A):1133-8
  • Yang WT. Direct calculation of electron-density in density-functional theory. Phys Rev Lett 1991;66(11):1438-41
  • Lee CT, Yang WT, Parr RG. Development of the colle-salvetti correlation-energy formula into a functional of the electron-density. Phys Rev B 1988;37(2):785-9
  • Becke AD. Density-functional exchange-energy approximation with correct asymptotic-behavior. Phys Rev A 1988;38(6):3098-100
  • Hobza P, Sponer J. Structure, energetics, and dynamics of the nucleic acid base pairs: Nonempirical ab initio calculations. Chem Rev 1999;99(11):3247-76
  • Johnson BG, Gill PMW, Pople JA. Preliminary-results on the performance of a family of density functional methods. J Chem Phys 1992;97(10):7846-8
  • Johnson BG, Gill PMW, Pople JA. The performance of a family of density functional methods. J Phys Chem 1993;98(7):5612-26
  • Johnson BG. The performance of a family of density-functional methods (vol 98, PG 5612, 1993). J Phys Chem 1994;101(10):9202
  • Civalleri B, Doll K, Zicovich-Wilson CM. Ab Initio Investigation of Structure and Cohesive Energy of Crystalline Urea. J Phys Chem 2006;111(1):26-33
  • Warshel A, Levitt M. Theoretical studies of enzymic reactions–dielectric, electrostatic and steric stabilization of carbonium-ion in reaction of lysozyme. J Mol Biol 1976;103(2):227-49
  • Singh UC, Kollman PA. A combined abinitio quantum-mechanical and molecular mechanical method for carrying out simulations on complex molecular-systems - applications to the CH3CL + CL- exchange-reaction and gas-phase protonation of polyethers. J Comput Chem 1986;7(6):718-30
  • Zhang YK. Pseudobond ab initio QM/MM approach and its applications to enzyme reactions. Theor Chem Acc 2006;116(1-3):43-50
  • Zhang YK. Improved pseudobonds for combined ab initio quantum mechanical/molecular mechanical methods. J Chem Phys 2005;122(2)
  • Antes I, Thiel W. Adjusted connection atoms for combined quantum mechanical and molecular mechanical methods. J Phys Chem A 1999;103(46):9290-5
  • DiLabio GA, Hurley MM, Christiansen PA. Simple one-electron quantum capping potentials for use in hybrid QM/MM studies of biological molecules. J Chem Phys 2002;116(22):9578-84
  • Bessac F, Alary F, Carissan Y, Effective group potentials: a powerful tool for hybrid QM/MM methods? J Mol Struct Theochem 2003;632:43-59
  • Yasuda K, Yamaki D. Simple minimum principle to derive a quantum-mechanical/molecular-mechanical method. J Chem Phys 2004;121(9):3964-72
  • Kairys V, Jensen JH. QM/MM boundaries across covalent bonds: A frozen localized molecular orbital-based approach for the effective fragment potential method. J Phys Chem A 2000;104(28):6656-65
  • Assfeld X, Rivail JL. Quantum chemical computations on parts of large molecules: The ab initio local self consistent field method. Chem Phys Lett 1996;263(1-2):100-6
  • Thery V, Rinaldi D, Rivail JL, Quantum-mechanical computations on very large molecular-systems–the local self-consistent-field method. J Comput Chem 1994;15(3):269-82
  • Ferenczy GG, Rivail JL, Surjan PR, Narayszabo G. NDDO fragment self-consistent field approximation for large electronic systems. J Comput Chem 1992;13(7):830-7
  • Monard G, Loos M, Thery V, Hybrid classical quantum force field for modeling very large molecules. Int J Quantum Chem 1996;58(2):153-9
  • Ferre N, Assfeld X, Rivail JL. Specific force field parameters determination for the hybrid ab initio QM/MM LSCF method. J Comput Chem 2002;23(6):610-24
  • Pu JZ, Gao JL, Truhlar DG. Combining self-consistent-charge density-functional tight-binding (SCC-DFTB) with molecular mechanics by the generalized hybrid orbital (GHO) method. J Phys Chem A 2004;108(25):5454-63
  • Gao JL, Amara P, Alhambra C, Field MJ. A generalized hybrid orbital (GHO) method for the treatment of boundary atoms in combined QM/MM calculations. J Phys Chem A 1998;102(24):4714-21
  • Lin H, Truhlar DG. QM/MM: what have we learned, where are we, and where do we go from here? Theor Chem Acc 2007;117(2):185-99
  • Pu JZ, Gao JL, Truhlar DG. Generalized hybrid orbital (GHO) method for combining ab initio Hartree-Fock wave functions with molecular mechanics. J Phys Chem A 2004;108(4):632-50
  • Rinaldo D, Philipp DM, Lippard SJ, Friesner RA. Intermediates in dioxygen activation by methane monooxygenase: a QM/MM study. J Am Chem Soc 2007;129(11):3135-47
  • Philipp DM, Friesner RA. Mixed ab initio QM/MM modeling using frozen orbitals and tests with alanine dipeptide and tetrapeptide. J Comput Chem 1999;20(14):1468-94
  • Yang WT. Direct calculation of electron-density in density-functional theory–implementation for benzene and a tetrapeptide. Phys Rev A 1991;44(11):7823-6
  • Exner TE, Mezey PG. Ab initio quality properties for macromolecules using the ADMA approach. J Comput Chem 2003;24(16):1980-6
  • Li W, Li SH, Jiang YS. Generalized energy-based fragmentation approach for computing the ground-state energies and properties of large molecules. J Phys Chem A 2007;111(11):2193-9
  • Dahlke EE, Truhlar DG. Assessment of the pairwise additive approximation and evaluation of many-body terms for water clusters. J Phys Chem B 2006;110:10595-601
  • Chen XH, Zhang DW, Zhang JZH. Fractionation of peptide with disulfide bond for quantum mechanical calculation of interaction energy with molecules. J Chem Phys 2004;120(2):839-44
  • Coon MJ. Cytochrome P450: nature's most versatile biological catalyst. Annu Rev Pharmacol Toxicol 2005;45:1-25
  • Porter TD, Coon MJ. Cytochrome-P-450–multiplicity of isoforms, substrates, and catalytic and regulatory mechanisms. J Biol Chem 1991;266(21):13469-72
  • Chen H, Hirao H, Derat E, Quantum mechanical/molecular mechanical study on the mechanisms of compound I formation in the catalytic cycle of chloroperoxidase: An overview on heme enzymes. J Phys Chem B 2008;112(31):9490-500
  • Shaik S, Cohen S, de Visser SP, The “Rebound controversy”: An overview and theoretical modeling of the rebound step in C-H hydroxylation by cytochrome P450. European J Inorg Chem 2004(2):207-26
  • Shaik S, de Visser SP, Ogliaro F, Two-state reactivity mechanisms of hydroxylation and epoxidation by cytochrome P-450 revealed by theory. Curr Opin Chem Biol 2002;6(5):556-67
  • Shaik S, Hirao H, Kumar D. Reactivity of high-valent iron-oxo species in enzymes and synthetic reagents: a tale of many states. Acc Chem Res 2007;40(7):532-42
  • Shaik S, Hirao H, Kumar D. Reactivity patterns of cytochrome P450 enzymes: multifunctionality of the active species, and the two states-two oxidants conundrum. Nat Prod Rep 2007;24(3):533-52
  • Olsen L, Rydberg P, Rod TH, Ryde U. Prediction of activation energies for hydrogen abstraction by cytochrome P450. J Med Chem 2006;49(22):6489-99
  • Rydberg P, Sigfridsson E, Ryde U. On the role of the axial ligand in heme proteins: a theoretical study. J Biol Inorg Chem 2004;9(2):203-23
  • Shaik S, Cohen S, Wang Y, P450 Enzymes: their structure, reactivity, and selectivity–modeled by QM/MM calculations. Chem Rev 2009
  • Lieber CS. The discovery of the microsomal ethanol oxidizing system and its physiologic and pathologic role. Drug Metab Rev 2004;36(3-4):511-29
  • Lieber CS. Cytochrome P-4502E1: its physiological and pathological role. Physiol Rev 1997 77(2):517-44
  • Lieber CS, DeCarli LM. Ethanol oxidation by hepatic microsomes–adaptive increase after ethanol feeding. Science 1968;162(3856):917-18
  • Ekstrom G, Norsten C, Cronholm T, Ingelmansundberg M. Cytochrome-P-450 dependent ethanol oxidation–kinetic isotope effects and absence of stereoselectivity. Biochemistry 1987;26(23):7348-54
  • Wood AW, Swinney DC, Thomas PE, Mechanism of androstenedione formation from testosterone and epitestosterone catalyzed by purified cytochrome-P-450B. J Biol Chem 1988;263(33):17322-32
  • Vaz ADN, Coon MJ. On the mechanism of action of cytochrome-P450–evaluation of hydrogen abstraction in oxygen-dependent alcohol oxidation. Biochemistry 1994;33(21):6442-9
  • Bell LC, Guengerich FP. Oxidation kinetics of ethanol by human cytochrome P450 2E1–Rate-limiting product release accounts for effects of isotopic hydrogen substitution and cytochrome b(5) on steady-state kinetics. J Biol Chem 1997;272(47):29643-51
  • Bell-Parikh LC, Guengerich FP. Kinetics of cytochrome P450 2E1-catalyzed oxidation of ethanol to acetic acid via acetaldehyde. J Biol Chem 1999;274(34):23833-40
  • Guengerich FP. Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity. Chem Res Toxicol 2001;14(6):611-50
  • Hackett JC, Brueggemeier RW, Hadad CM. The final catalytic step of cytochrome P450 aromatase: a density functional theory study. J Am Chem Soc 2005;127(14):5224-37
  • Cheng KC, Schenkman JB. Testosterone-metabolism by cytochrome-P-450 isozymes RLM3 and RLM5 and by microsomes–metabolite identification. J Biol Chem 1983;258(19):1738-44
  • Bellucci G, Chiappe C, Pucci L, Gervasi PG. The mechanism of oxidation of allylic alcohols to alpha,beta-unsaturated ketones by cytochrome p450. Chem Res Toxicol 1996;9(5):871-4
  • Chandrasena REP, Vatsis KP, Coon MJ, Hydroxylation by the hydroperoxy-iron species in cytochrome P450 enzymes. J Am Chem Soc 2004;126(1):115-26
  • Sono M, Roach MP, Coulter ED, Dawson JH. Heme-containing oxygenases. Chem Rev 1996;96(7):2841-87
  • Kamachi T, Yoshizawa K. A theoretical study on the mechanism of camphor hydroxylation by compound I of cytochrome P450. J Am Chem Soc 2003;125(15):4652-61
  • Shaik S, Filatov M, Schroder D, Schwarz H. Electronic structure makes a difference: Cytochrome P-450 mediated hydroxylations of hydrocarbons as a two-state reactivity paradigm. Chem-Eur J 1998;4(2):193-9
  • Ogliaro FO, de Visser SR, Cohen S, The experimentally elusive oxidant of cytochrome P450: a theoretical “trapping” defining more closely the “real” species. Chembiochem 2001;2(11):848-51
  • Kumar D, De Visser SP, Shaik S. Oxygen economy of cytochrome P450: what is the origin of the mixed functionality as a dehydrogenase-oxidase enzyme compared with its normal function? J Am Chem Soc 2004;126(16):5072-3
  • Brown CM, Reisfeld B, Mayeno AN. Cytochromes p450: a structure-based summary of biotransformations using representative substrates. Drug Metab Rev 2008;40(1):1-100
  • Fishelovitch D, Hazan C, Hirao H, QM/MM study of the active species of the human cytochrome p450 3A4, and the influence thereof of the multiple substrate binding. J Phys Chem B 2007;111(49):13822-32
  • Frisch MJ, Schlegel HB, Scuseria GE, Gaussian 03; Revision B.05 edition; Gaussian, Inc.: Pittsburgh PA; 2003
  • Becke AD. Density-functional thermochemistry 3. The role of exact exchange. J Phys Chem 1993;98(7):5648-52
  • Fenton JW, Ofosu FA, Moon DG, Maraganore JM. Thrombin structure and function–why thrombin is the primary target for antithrombotics. Blood Coagulation & Fibrinolysis 1991;2(1):69-75
  • Nantermet PG, Barrow JC, Newton CL, Design and synthesis of potent and selective macrocyclic thrombin inhibitors. Bioorg Med Chem Lett 2003;13(16):2781-4
  • Kollman PA, Massova I, Reyes C, Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 2000;33(12):889-97
  • Jorgensen WL. The many roles of computation in drug discovery. Science 2004;303(5665):1813-8
  • He X, Wang B, Merz KM. Protein NMR chemical shift calculations based on the automated fragmentation QM/MM approach. J Phys Chem B 2009;113(30):10380-8
  • Gong WM, Zhu XY, Liu SJ, Crystal structures of acutolysin A, a three-disulfide hemorrhagic zinc metalloproteinase from the snake venom of Agkistrodon acutus. J Mol Biol 1998;283(3):657-68

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.