59
Views
2
CrossRef citations to date
0
Altmetric
Reviews

Structural basis for computational screening of non-steroidal androgen receptor ligands

, PhD (Adjunct Professor) & , MSc
Pages 5-20 | Published online: 19 Dec 2009

Bibliography

  • Quigley CA, De Bellis A, Marschke KB, Androgen receptor defects: historical, clinical, and molecular perspectives. Endocr Rev 1995;16(3):271-321
  • Snyder PJ, editor. Androgens. 10th edition. McGraw-Hill Medical Pub. Division, New York; 2001
  • Mangelsdorf DJ, Thummel C, Beato M, The nuclear receptor superfamily: the second decade. Cell 1995;83(6):835-9
  • Robinson-Rechavi M, Escriva Garcia H, Laudet V. The nuclear receptor superfamily. J Cell Sci 2003;116(Pt 4):585-6
  • Tran C, Ouk S, Clegg NJ, Development of a second-generation antiandrogen for treatment of advanced. Science 2009;324(5928):787-90
  • Schmidt A, Harada SI, Kimmel DB, Identification of anabolic selective androgen receptor modulators with reduced. J Biol Chem 2009. [Epub ahead of print]
  • Min L, Yanase T, Tanaka T, A novel synthetic androgen receptor ligand, S42, works as a selective androgen. Endocrinology 2009, doi:10.1210/en.2009-0405
  • Zhang X, Lanter J, Sui Z. Recent advances in the development of selective androgen receptor modulators. Expert Opin Ther Pat 2009;19(9):1239-58
  • Narayanan R, Mohler ML, Bohl CE, Selective androgen receptor modulators in preclinical and clinical development. Nucl Recept Signal 2008;6:e010
  • Gottlieb B, Beitel LK, Wu JH, Trifiro M. The androgen receptor gene mutations database (ARDB): 2004 update. Hum Mutat 2004;23(6):527-33
  • Gao W, Bohl CE, Dalton JT. Chemistry and structural biology of androgen receptor. Chem Rev 2005;105(9):3352-70
  • Gao W, Kim J, Dalton JT. Pharmacokinetics and pharmacodynamics of nonsteroidal androgen receptor ligands. Pharm Res 2006;23(8):1641-58
  • Narayanan R, Mohler ML, Bohl CE, Steroidal androgens and nonsteroidal, tissue-selective androgen receptor. Mol Endocrinol 2008;22(11):2448-65
  • Walters WP, Stahl MT, Murcko MA. Virtual screening – an overview. DDT 1998;3(4):160-78
  • Ekins S, Mestres J, Testa B. In silico pharmacology for drug discovery: methods for virtual ligand screening and profiling. Br J Pharmacol 2007;152(1):9-20
  • Lyne PD. Structure-based virtual screening: an overview. Drug Discov Today 2002;7(20):1047-55
  • Miller MA. Chemical database techniques in drug discovery. Nat Rev Drug Discov 2002;1(3):220-7
  • Willett P. Similarity-based virtual screening using 2D fingerprints. Drug Discov Today 2006;11(23-24):1046-53
  • Lengauer T, Lemmen C, Rarey M, Zimmermann M. Novel technologies for virtual screening. Drug Discov Today 2004;9(1):27-34
  • Good AC, Krystek SR, Mason JS. High-throughput and virtual screening: core lead discovery technologies move towards integration. Drug Discov Today 2000;5(12 Suppl 1):61-9
  • Ghosh S, Nie A, An J, Huang Z. Structure-based virtual screening of interest chemical libraries for drug discovery. Curr Opin Chem Biol 2006;10(3):194-202
  • Lonard DM, O’Malley B W. Nuclear receptor coregulators: judges, juries, and executioners of cellular regulation. Mol Cell 2007;27(5):691-700
  • Perissi V, Rosenfeld MG. Controlling nuclear receptors: the circular logic of cofactor cycles. Nat Rev Mol Cell Biol 2005;6(7):542-54
  • Heemers HV, Tindall DJ. Androgen receptor (AR) coregulators: a diversity of functions converging on and regulating the AR transcriptional complex. Endocr Rev 2007;28(7):778-808
  • Onate SA, Tsai SY, Tsai MJ, O’Malley BW. Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science 1995;270(5240):1354-7
  • Chen JD, Evans RM. A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature 1995;377(6548):454-7
  • Horlein AJ, Naar AM, Heinzel T, Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature 1995;377(6548):397-404
  • Cheng S, Brzostek S, Lee SR, Inhibition of the dihydrotestosterone-activated androgen receptor by nuclear receptor corepressor. Mol Endocrinol 2002;16(7):1492-501
  • Hodgson MC, Astapova I, Cheng S, The androgen receptor recruits nuclear receptor CoRepressor (N-CoR) in the presence of mifepristone via its N and C termini revealing a novel molecular mechanism for androgen receptor antagonists. J Biol Chem 2005;280(8):6511-19
  • Dotzlaw H, Papaioannou M, Moehren U, Agonist-antagonist induced coactivator and corepressor interplay on the human androgen receptor. Mol Cell Endocrinol 2003;213(1):79-85
  • Berrevoets CA, Umar A, Trapman J, Brinkmann AO. Differential modulation of androgen receptor transcriptional activity by the nuclear receptor co-repressor (N-CoR). Biochem J 2004;379(Pt 3):731-8
  • Smith CL, O’Malley BW. Coregulator function: a key to understanding tissue specificity of selective receptor modulators. Endocr Rev 2004;25(1):45-71
  • Mohler ML, Bohl CE, Jones A, Nonsteroidal selective androgen receptor modulators (SARMs): dissociating the anabolic and androgenic activities of the androgen receptor for therapeutic benefit. J Med Chem 2009;52(12):3597-617
  • Mitchell HJ, Dankulich WP, Hartman GD, Design, synthesis, and biological evaluation of 16-substituted 4-azasteroids as. J Med Chem 2009;52(15):4578-81
  • Bhasin S, Jasuja R. Selective androgen receptor modulators as function promoting therapies. Curr Opin Clin Nutr Metab Care 2009;12(3):232-40
  • Agoulnik IU, Weigel NL. Coactivator selective regulation of androgen receptor activity. Steroids 2009;74(8):669-74
  • Madauss KP, Stewart EL, Williams SP. The evolution of progesterone receptor ligands. Med Res Rev 2007;27(3):374-400
  • Cadilla R, Turnbull P. Selective androgen receptor modulators in drug discovery: medicinal chemistry and therapeutic potential. Curr Top Med Chem 2006;6(3):245-70
  • Buijsman RC, Hermkens PH, van Rijn RD, Non-steroidal steroid receptor modulators. Curr Med Chem 2005;12(9):1017-75
  • Anonymous. Flutamide for prostate cancer. Med Lett Drugs Ther 1989;31:72
  • Tucker H, Crook JW, Chesterson GJ. Nonsteroidal antiandrogens. Synthesis and structure-activity relationships of 3-substituted derivatives of 2-hydroxypropionanilides. J Med Chem 1988;31(5):954-9
  • Dalton JT, Mukherjee A, Zhu Z, Discovery of nonsteroidal androgens. Biochem Biophys Res Commun 1998;244(1):1-4
  • He Y, Yin D, Perera M, Novel nonsteroidal ligands with high binding affinity and potent functional activity for the androgen receptor. Eur J Med Chem 2002;37(8):619-34
  • Kirkovsky L, Mukherjee A, Yin D, Chiral nonsteroidal affinity ligands for the androgen receptor. 1. Bicalutamide analogues bearing electrophilic groups in the B aromatic ring. J Med Chem 2000;43(4):581-90
  • Marhefka CA, Gao W, Chung K, Design, synthesis, and biological characterization of metabolically stable selective androgen receptor modulators. J Med Chem 2004;47(4):993-8
  • Yin D, He Y, Perera MA, Key structural features of nonsteroidal ligands for binding and activation of the androgen receptor. Mol Pharmacol 2003;63(1):211-23
  • Soderholm AA, Lehtovuori PT, Nyronen TH. Three-dimensional structure-activity relationships of nonsteroidal ligands in complex with androgen receptor ligand-binding domain. J Med Chem 2005;48(4):917-25
  • Bohl CE, Chang C, Mohler ML, A ligand-based approach to identify quantitative structure-activity relationships for the androgen receptor. J Med Chem 2004;47(15):3765-76
  • Morris JJ, Hughes LR, Glen AT, Taylor PJ. Non-steroidal antiandrogens. Design of novel compounds based on an infrared study of the dominant conformation and hydrogen-bonding properties of a series of anilide antiandrogens. J Med Chem 1991;34(1):447-55
  • Van Dort ME, Jung YW. Synthesis and structure-activity studies of side-chain derivatized arylhydantoins for investigation as androgen receptor radioligands. Bioorg Med Chem Lett 2001;11(8):1045-7
  • Van Dort ME, Robins DM, Wayburn B. Design, synthesis, and pharmacological characterization of 4-[4, 4-dimethyl-3-(4- hydroxybutyl)- 5-oxo-2-thioxo-1-imidazolidinyl]- 2-iodobenzonitrile as a high-affinity nonsteroidal androgen receptor ligand. J Med Chem 2000;43(17):3344-7
  • Balog A, Salvati ME, Shan W, The synthesis and evaluation of [2.2.1]-bicycloazahydantoins as androgen receptor antagonists. Bioorg Med Chem Lett 2004;14(24):6107-11
  • Salvati ME, Balog A, Shan W, Structure based approach to the design of bicyclic-1H-isoindole-1,3(2H)-dione based androgen receptor antagonists. Bioorg Med Chem Lett 2005;15(2):271-6
  • Salvati ME, Balog A, Wei DD, Identification of a novel class of androgen receptor antagonists based on the bicyclic-1H-isoindole-1,3(2H)-dione nucleus. Bioorg Med Chem Lett 2005;15(2):389-93
  • Sun C, Robl JA, Wang TC, Discovery of potent, orally-active, and muscle-selective androgen receptor modulators based on an N-aryl-hydroxybicyclohydantoin scaffold. J Med Chem 2006;49(26):7596-9
  • Ostrowski J, Kuhns JE, Lupisella JA, Pharmacological and x-ray structural characterization of a novel selective androgen receptor modulator: potent hyperanabolic stimulation of skeletal muscle with hypostimulation of prostate in rats. Endocrinology 2007;148(1):4-12
  • Hamann LG, Higuchi RI, Zhi L, Synthesis and biological activity of a novel series of nonsteroidal, peripherally selective androgen receptor antagonists derived from 1,2-dihydropyridono[5,6-g]quinolines. J Med Chem 1998;41(4):623-39
  • Edwards JP, Higuchi RI, Winn DT, Nonsteroidal androgen receptor agonists based on 4-(trifluoromethyl)-2H-pyrano[3,2-g]quinolin-2-one. Bioorg Med Chem Lett 1999;9(7):1003-8
  • Hamann LG, Mani NS, Davis RL, Discovery of a potent, orally active, nonsteroidal androgen receptor agonist: 4-ethyl-1,2,3,4-tetrahydro-6- (trifluoromethyl)-8-pyridono[5,6-g]- quinoline (LG121071). J Med Chem 1999;42(2):210-12
  • Higuchi RI, Edwards JP, Caferro TR, 4-Alkyl- and 3,4-dialkyl-1,2,3,4-tetrahydro-8-pyridono[5,6-g]quinolines: potent, nonsteroidal androgen receptor agonists. Bioorg Med Chem Lett 1999;9(9):1335-40
  • Kong JW, Hamann LG, Ruppar DA, Effects of isosteric pyridone replacements in androgen receptor antagonists based on 1,2-dihydro- and 1,2,3,4-tetrahydro-2,2- dimethyl-6-trifluoromethyl-8-pyridono[5,6-g]quin olines. Bioorg Med Chem Lett 2000;10(5):411-14
  • van Oeveren A, Motamedi M, Mani NS, Discovery of 6-N,N-bis(2,2,2-trifluoroethyl)amino- 4-trifluoromethylquinolin-2(1H)-one as a novel selective androgen receptor modulator. J Med Chem 2006;49(21):6143-6
  • van Oeveren A, Pio BA, Tegley CM, Discovery of an androgen receptor modulator pharmacophore based on 2-quinolinones. Bioorg Med Chem Lett 2007;17(6):1523-6
  • Zhi L, Tegley CM, Marschke KB, Jones TK. Switching androgen receptor antagonists to agonists by modifying C-ring substituents on piperidino[3,2-g]quinolinone. Bioorg Med Chem Lett 1999;9(7):1009-12
  • Edwards JP, West SJ, Pooley CL, New nonsteroidal androgen receptor modulators based on 4-(trifluoromethyl)-2(1H)-pyrrolidino[3,2-g] quinolinone. Bioorg Med Chem Lett 1998;8(7):745-50
  • Chabbert-Buffet N, Meduri G, Bouchard P, Spitz IM. Selective progesterone receptor modulators and progesterone antagonists: mechanisms of action and clinical applications. Hum Reprod Update 2005;11(3):293-307
  • Combs DW, Reese K, Cornelius LA, Nonsteroidal progesterone receptor ligands. 2. High-affinity ligands with selectivity for bone cell progesterone receptors. J Med Chem 1995;38(25):4880-4
  • Combs DW, Reese K, Phillips A. Nonsteroidal progesterone receptor ligands. 1. 3-Aryl-1-benzoyl-1,4,5,6-tetrahydropyridazines. J Med Chem 1995;38(25):4878-9
  • Palmer S, Campen CA, Allan GF, Nonsteroidal progesterone receptor ligands with unprecedented receptor selectivity. J Steroid Biochem Mol Biol 2000;75(1):33-42
  • Jones DG, Liang X, Stewart EL, Discovery of non-steroidal mifepristone mimetics: pyrazoline-based PR antagonists. Bioorg Med Chem Lett 2005;15(13):3203-6
  • Soderholm AA, Lehtovuori PT, Nyronen TH. Docking and three-dimensional quantitative structure–activity relationship (3D QSAR) analyses of nonsteroidal progesterone receptor ligands. J Med Chem 2006;49(14):4261-8
  • Pooley CL, Edwards JP, Goldman ME, Discovery and preliminary SAR studies of a novel, nonsteroidal progesterone receptor antagonist pharmacophore. J Med Chem 1998;41(18):3461-6
  • Zhi L, Ringgenberg JD, Edwards JP, Development of progesterone receptor antagonists from 1,2-dihydrochromeno[3,4-f]quinoline agonist pharmacophore. Bioorg Med Chem Lett 2003;13(12):2075-8
  • Edwards JP, West SJ, Marschke KB, 5-Aryl-1,2-dihydro-5H-chromeno[3,4-f]quinolines as potent, orally active, nonsteroidal progesterone receptor agonists: the effect of D-ring substituents. J Med Chem 1998;41(3):303-10
  • Zhi L, Tegley CM, Pio B, 5-Benzylidene-1,2-dihydrochromeno[3,4-f]quinolines as selective progesterone receptor modulators. J Med Chem 2003;46(19):4104-12
  • Zhi L, Tegley CM, Pio B, Nonsteroidal progesterone receptor antagonists based on 6-thiophenehydroquinolines. Bioorg Med Chem Lett 2000;10(5):415-18
  • Zhang P, Terefenko EA, Fensome A, Potent nonsteroidal progesterone receptor agonists: synthesis and SAR study of 6-aryl benzoxazines. Bioorg Med Chem Lett 2002;12(5):787-90
  • Zhang P, Terefenko EA, Fensome A, Novel 6-aryl-1,4-dihydrobenzo[d]oxazine-2-thiones as potent, selective, and orally active nonsteroidal progesterone receptor agonists. Bioorg Med Chem Lett 2003;13(7):1313-16
  • Zhang P, Terefenko EA, Fensome A, 6-Aryl-1,4-dihydro-benzo[d][1,3]oxazin-2-ones: a novel class of potent, selective, and orally active nonsteroidal progesterone receptor antagonists. J Med Chem 2002;45(20):4379-82
  • Collins MA, Hudak V, Bender R, Novel pyrrole-containing progesterone receptor modulators. Bioorg Med Chem Lett 2004;14(9):2185-9
  • Fensome A, Bender R, Chopra R, Synthesis and structure-activity relationship of novel 6-aryl-1,4-dihydrobenzo[d][1,3]oxazine-2-thiones as progesterone receptor modulators leading to the potent and selective nonsteroidal progesterone receptor agonist tanaproget. J Med Chem 2005;48(16):5092-5
  • Bourguet W, Germain P, Gronemeyer H. Nuclear receptor ligand-binding domains: three-dimensional structures, molecular interactions and pharmacological implications. Trends Pharmacol Sci 2000;21(10):381-8
  • Wurtz JM, Bourguet W, Renaud JP, A canonical structure for the ligand-binding domain of nuclear receptors. Nat Struct Biol 1996;3(1):87-94
  • Matias PM, Donner P, Coelho R, Structural evidence for ligand specificity in the binding domain of the human androgen receptor. Implications for pathogenic gene mutations. J Biol Chem 2000;275(34):26164-71
  • Williams SP, Sigler PB. Atomic structure of progesterone complexed with its receptor. Nature 1998;393(6683):392-6
  • Heery DM, Kalkhoven E, Hoare S, Parker MG. A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature 1997;387(6634):733-6
  • Shiau AK, Barstad D, Loria PM, The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell 1998;95(7):927-37
  • He B, Wilson EM. Electrostatic modulation in steroid receptor recruitment of LXXLL and FXXLF motifs. Mol Cell Biol 2003;23(6):2135-50
  • Bohl CE, Miller DD, Chen J, Structural basis for accommodation of nonsteroidal ligands in the androgen receptor. J Biol Chem 2005;280(45):37747-54
  • Pereira de Jesus-Tran K, Cote PL, Cantin L, Comparison of crystal structures of human androgen receptor ligand-binding domain complexed with various agonists reveals molecular determinants responsible for binding affinity. Protein Sci 2006;15(5):987-99
  • Sack JS, Kish KF, Wang C, Crystallographic structures of the ligand-binding domains of the androgen receptor and its T877A mutant complexed with the natural agonist dihydrotestosterone. Proc Natl Acad Sci USA 2001;98(9):4904-9
  • Zhang Z, Olland AM, Zhu Y, Molecular and pharmacological properties of a potent and selective novel nonsteroidal progesterone receptor agonist tanaproget. J Biol Chem 2005;280(31):28468-75
  • Wang F, Liu XQ, Li H, Structure of the ligand-binding domain (LBD) of human androgen receptor in complex with a selective modulator LGD2226. Acta Crystallograph Sect F Struct Biol Cryst Commun 2006;62(Pt 11):1067-71
  • Cantin L, Faucher F, Couture JF, Structural characterization of the human androgen receptor ligand-binding domain complexed with EM5744, a rationally designed steroidal ligand bearing a bulky chain directed toward helix 12. J Biol Chem 2007;282(42):30910-19
  • Madauss KP, Deng SJ, Austin RJ, Progesterone receptor ligand binding pocket flexibility: crystal structures of the norethindrone and mometasone furoate complexes. J Med Chem 2004;47(13):3381-7
  • Yin D, Gao W, Kearbey JD, Pharmacodynamics of selective androgen receptor modulators. J Pharmacol Exp Ther 2003;304(3):1334-40
  • Hara T, Miyazaki J, Araki H, Novel mutations of androgen receptor: a possible mechanism of bicalutamide withdrawal syndrome. Cancer Res 2003;63(1):149-53
  • Suzuki H, Akakura K, Komiya A, Codon 877 mutation in the androgen receptor gene in advanced prostate cancer: relation to antiandrogen withdrawal syndrome. Prostate 1996;29(3):153-8
  • Veldscholte J, Berrevoets CA, Ris-Stalpers C, The androgen receptor in LNCaP cells contains a mutation in the ligand binding domain which affects steroid binding characteristics and response to antiandrogens. J Steroid Biochem Mol Biol 1992;41(3-8):665-9
  • Culig Z, Hoffmann J, Erdel M, Switch from antagonist to agonist of the androgen receptor bicalutamide is associated with prostate tumour progression in a new model system. Br J Cancer 1999;81(2):242-51
  • Taplin ME, Rajeshkumar B, Halabi S, Androgen receptor mutations in androgen-independent prostate cancer: Cancer and Leukemia Group B Study 9663. J Clin Oncol 2003;21(14):2673-8
  • Bohl CE, Wu Z, Miller DD, Crystal structure of the T877A human androgen receptor ligand-binding domain complexed to cyproterone acetate provides insight for ligand-induced conformational changes and structure-based drug design. J Biol Chem 2007;282(18):13648-55
  • He B, Kemppainen JA, Voegel JJ, Activation function 2 in the human androgen receptor ligand binding domain mediates interdomain communication with the NH(2)-terminal domain. J Biol Chem 1999;274(52):37219-25
  • He B, Bowen NT, Minges JT, Wilson EM. Androgen-induced NH2- and COOH-terminal Interaction Inhibits p160 coactivator recruitment by activation function 2. J Biol Chem 2001;276(45):42293-301
  • He B, Gampe RT Jr, Kole AJ, Structural basis for androgen receptor interdomain and coactivator interactions suggests a transition in nuclear receptor activation function dominance. Mol Cell 2004;16(3):425-38
  • He B, Kemppainen JA, Wilson EM. FXXLF and WXXLF sequences mediate the NH2-terminal interaction with the ligand binding domain of the androgen receptor. J Biol Chem 2000;275(30):22986-94
  • He B, Minges JT, Lee LW, Wilson EM. The FXXLF motif mediates androgen receptor-specific interactions with coregulators. J Biol Chem 2002;277(12):10226-35
  • Zhou ZX, He B, Hall SH, Domain interactions between coregulator ARA(70) and the androgen receptor (AR). Mol Endocrinol 2002;16(2):287-300
  • Hsu CL, Chen YL, Yeh S, The use of phage display technique for the isolation of androgen receptor interacting peptides with (F/W)XXL(F/W) and FXXLY new signature motifs. J Biol Chem 2003;278(26):23691-8
  • He B, Lee LW, Minges JT, Wilson EM. Dependence of selective gene activation on the androgen receptor NH2- and COOH-terminal interaction. J Biol Chem 2002;277(28):25631-9
  • Alen P, Claessens F, Verhoeven G, The androgen receptor amino-terminal domain plays a key role in p160 coactivator-stimulated gene transcription. Mol Cell Biol 1999;19(9):6085-97
  • Bevan CL, Hoare S, Claessens F, The AF1 and AF2 domains of the androgen receptor interact with distinct regions of SRC1. Mol Cell Biol 1999;19(12):8383-92
  • Estebanez-Perpina E, Moore JM, Mar E, The molecular mechanisms of coactivator utilization in ligand-dependent transactivation by the androgen receptor. J Biol Chem 2005;280(9):8060-8
  • Hur E, Pfaff SJ, Payne ES, Recognition and accommodation at the androgen receptor coactivator binding interface. PLoS Biol 2004;2(9):E274
  • Bledsoe RK, Montana VG, Stanley TB, Crystal structure of the glucocorticoid receptor ligand binding domain reveals a novel mode of receptor dimerization and coactivator recognition. Cell 2002;110(1):93-105
  • Brzozowski AM, Pike AC, Dauter Z, Molecular basis of agonism and antagonism in the oestrogen receptor. Nature 1997;389(6652):753-8
  • Kauppi B, Jakob C, Farnegardh M, The three-dimensional structures of antagonistic and agonistic forms of the glucocorticoid receptor ligand-binding domain: RU-486 induces a transconformation that leads to active antagonism. J Biol Chem 2003;278(25):22748-54
  • Bohl CE, Gao W, Miller DD, Structural basis for antagonism and resistance of bicalutamide in prostate cancer. Proc Natl Acad Sci USA 2005;102(17):6201-6
  • Madauss KP, Grygielko ET, Deng SJ, A structural and in vitro characterization of asoprisnil: a selective progesterone receptor modulator. Mol Endocrinol 2007;21(5):1066-81
  • Perissi V, Staszewski LM, McInerney EM, Molecular determinants of nuclear receptor-corepressor interaction. Genes Dev 1999;13(24):3198-208
  • Heldring N, Pawson T, McDonnell D, Structural insights into corepressor recognition by antagonist-bound estrogen receptors. J Biol Chem 2007;282(14):10449-55

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.