150
Views
13
CrossRef citations to date
0
Altmetric
Reviews

Cell cycle modulatory and apoptotic effects of plant-derived anticancer drugs in clinical use or development

, &
Pages 361-379 | Published online: 20 Mar 2007

Bibliography

  • HARTWELL JL: Plants used against cancer. Quarterman, Lawrence, Massachusetts (1982).
  • NEWMAN DJ, CRAGG GM, HOLBECK S, SAUSVILLE EA: Natural products and derivatives as leads to cell cycle pathway targets in cancer chemotherapy. Curr. Cancer Drug Targets (2002) 2(4):279-308.
  • NEWMAN DJ, CRAGG GM, SNADER KM: Natural products as sources of new drugs over the period 1981-2002. J. Nat. Prod. (2003) 66(7):1022-1037.
  • CASTOR TP: Natures’ way – the case for, against natural therapeutics. Mass High Tech. (2006) 22(26):1-2.
  • CRAGG GM, NEWMAN DJ: Plants as a source of anti-cancer agents. J. Ethnopharmacol. (2005) 100(1-2):72-79.
  • GALI-MUHTASIB H, BAKKAR N: Modulating cell cycle: current applications and prospects for future drug development. Curr. Cancer Drug Targets (2002) 2(4):309-336.
  • OBERLIES NH, KROLL DJ: Camptothecin and taxol: historic achievements in natural products research. J. Nat. Prod. (2004) 67(2):129-135.
  • DUFLOS A, KRUCZYNSKI A, BARRET JM: Novel aspects of natural and modified Vinca alkaloids. Curr. Med. Chem. Anti-Cancer Agents (2002) 2(1):55-70.
  • NOBLE RL, BEER CT, CUTTS JH: Role of chance observations in chemotherapy: Vinca rosea. Ann. NY Acad. Sci. (1958) 76(3):882-894.
  • JOHNSON IS, ARMSTRONG JG, GORMAN M, BURNETT JP Jr: The Vinca alkaloids: a new class of oncolytic agents. Cancer Res. (1963) 23:1390-1427.
  • ADVANI R, AI WZ, HORNING SJ: Management of advanced stage Hodgkin lymphoma. J. Natl. Compr. Canc Netw. (2006) 4(3):241-247.
  • KUMAR L, VIKRAM P, KOCHUPILLAI V: Recent advances in the mangement of multiple myeloma. Natl. Med. J. India (2006) 19(2):80-89.
  • CLEGG A, SCOTT DA, SIDHU M, HEWITSON P, WAUGH N: A rapid and systematic review of the clinical effectiveness and cost-effectiveness of paclitaxel, docetaxel, gemcitabine and vinorelbine in non-small-cell lung cancer. Health Technol. Assess. (2001) 5(32):1-195.
  • CONROY T: Activity of vinorelbine in gastrointestinal cancers. Crit. Rev. Oncol. Hematol. (2002) 42(2):173-178.
  • ROSSI A, GRIDELLI C, GEBBIA V et al.: Single agent vinorelbine as first-line chemotherapy in elderly patients with advanced breast cancer. Anti-Cancer Res. (2003) 23(2C):1657-1664.
  • HASSAN MA, BRAAM SR, KRUYT FA: Paclitaxel and vincristine potentiate adenoviral oncolysis that is associated with cell cycle and apoptosis modulation, whereas they differentially affect the viral life cycle in non-small-cell lung cancer cells. Cancer Gene Ther. (2006) 13(12):1105-1114.
  • ESCUIN D, KLINE ER, GIANNAKAKOU P: Both microtubule-stabilizing and microtubule-destabilizing drugs inhibit hypoxia-inducible factor-1α accumulation and activity by disrupting microtubule function. Cancer Res. (2005) 65(19):9021-9028.
  • POURROY B, CARRE M, HONORE S et al.: Low concentrations of vinflunine induce apoptosis in human SK-N-SH neuroblastoma cells through a postmitotic G1 arrest and a mitochondrial pathway. Mol. Pharmacol. (2004) 66(3):580-591.
  • KRUCZYNSKI A, COLPAERT F, TARAYRE JP, MOUILLARD P, FAHY J, HILL BT: Preclinical in vivo antitumor activity of vinflunine, a novel fluorinated Vinca alkaloid. Cancer Chemother. Pharmacol. (1998) 41(6):437-447.
  • JEAN-DECOSTER C, BRICHESE L, BARRET JM et al.: Vinflunine, a new Vinca alkaloid: cytotoxicity, cellular accumulation and action on the interphasic and mitotic microtubule cytoskeleton of PtK2 cells. Anticancer Drugs (1999) 10(6):537-543.
  • NGAN VK, BELLMAN K, PANDA D, HILL BT, JORDAN MA, WILSON L: Novel actions of the antitumor drugs vinflunine and vinorelbine on microtubules. Cancer Res. (2000) 60(18):5045-5051.
  • JORDAN MA: Mechanism of action of antitumor drugs that interact with microtubules and tubulin. Curr. Med. Chem. Anti-Cancer Agents (2002) 2(1):1-17.
  • FAN M, DU L, STONE AA, GILBERT KM, CHAMBERS TC: Modulation of mitogen-activated protein kinases and phosphorylation of Bcl-2 by vinblastine represent persistent forms of normal fluctuations at G2-M1. Cancer Res. (2000) 60(22):6403-6407.
  • KAWAKAMI K, TSUKUDA M, MIZUNO H, NISHIMURA G, ISHII A, HAMAJIMA K: Alteration of the Bcl-2/Bax status of head and neck cancer cell lines by chemotherapeutic agents. Anti-Cancer Res. (1999) 19(5B):3927-3932.
  • WALL NR, MOHAMMAD RM, AL-KATIB AM: Bax:Bcl-2 ratio modulation by bryostatin 1 and novel antitubulin agents is important for susceptibility to drug induced apoptosis in the human early pre-B acute lymphoblastic leukemia cell line, Reh. Leuk. Res. (1999) 23(10):881-888.
  • GRONINGER E, MEEUWSEN-DE BOER GJ, DE GRAAF SS, KAMPS WA, DE BONT ES: Vincristine induced apoptosis in acute lymphoblastic leukaemia cells: a mitochondrial controlled pathway regulated by reactive oxygen species? Int. J. Oncol. (2002) 21(6):1339-1345.
  • GLASER T, WELLER M: Caspase-dependent chemotherapy-induced death of glioma cells requires mitochondrial cytochrome c release. Biochem. Biophys. Res. Commun. (2001) 281(2):322-327.
  • LIU XM, WANG LG, KREIS W, BUDMAN DR, ADAMS LM: Differential effect of vinorelbine versus paclitaxel on ERK2 kinase activity during apoptosis in MCF-7 cells. Br. J. Cancer (2001) 85(9):1403-1411.
  • MAGALSKA A, SLIWINSKA M, SZCZEPANOWSKA J, SALVIOLI S, FRANCESCHI C, SIKORA E: Resistance to apoptosis of HCW-2 cells can be overcome by curcumin- or vincristine-induced mitotic catastrophe. Int. J. Cancer (2006) 119(8):1811-1818.
  • BENNOUNA J, CAMPONE M, DELORD JP, PINEL MC: Vinflunine: a novel antitubulin agent in solid malignancies. Expert Opin. Investig. Drugs (2005) 14(10):1259-1267.
  • LOBERT S, INGRAM JW, HILL BT, CORREIA JJ: A comparison of thermodynamic parameters for vinorelbine- and vinflunine-induced tubulin self-association by sedimentation velocity. Mol. Pharmacol. (1998) 53(5):908-915.
  • HOLWELL SE, HILL BT, BIBBY MC: Anti-vascular effects of vinflunine in the MAC 15A transplantable adenocarcinoma model. Br. J. Cancer (2001) 84(2):290-295.
  • ETIEVANT C, KRUCZYNSKI A, BARRET JM, TAIT AS, KAVALLARIS M, HILL BT: Markedly diminished drug resistance-inducing properties of vinflunine (20′,20′-difluoro-3′,4′-dihydrovinorelbine) relative to vinorelbine, identified in murine and human tumour cells in vivo and in vitro. Cancer Chemother. Pharmacol. (2001) 48(1):62-70.
  • PODWYSSOTZKI V: The active consituent of podophyllin. Pharm. J. Trans. (1881) 12:217-218.
  • YOU Y: Podophyllotoxin derivatives: current synthetic approaches for new anticancer agents. Curr. Pharm. Des. (2005) 11(13):1695-1717.
  • BROOKS DJ, ALBERTS DS: A Phase I study of etoposide phosphate plus paclitaxel. Semin. Oncol. (1996) 23(6 Suppl. 13):S30-S33.
  • BHUTANI M, PATHAK AK, MOHAN A, GULERIA R, KOCHUPILLAI V: Small cell lung cancer: an update on therapeutic aspects. Indian J. Chest Dis. Allied Sci. (2006) 48(1):49-57.
  • GOMMERSALL LM, ARYA M, MUSHTAQ I, DUFFY P: Current challenges in Wilms’ tumor management. Nat. Clin. Pract. Oncol. (2005) 2(6):298-304.
  • KELLAND LR: Emerging drugs for ovarian cancer. Expert Opin. Emerg. Drugs (2005) 10(2):413-424.
  • LONG BH, CASAZZA AM: Structure-activity relationships of VP-16 analogues. Cancer Chemother. Pharmacol. (1994) 34(Suppl.):S26-S31.
  • BALDWIN EL, OSHEROFF N: Etoposide, topoisomerase II and cancer. Curr. Med. Chem. Anti-Cancer Agents (2005) 5(4):363-372.
  • ROSSI R, LIDONNICI MR, SOZA S, BIAMONTI G, MONTECUCCO A: The dispersal of replication proteins after etoposide treatment requires the cooperation of Nbs1 with the ataxia telangiectasia Rad3-related/Chk1 pathway. Cancer Res. (2006) 66(3):1675-1683.
  • ISLAIH M, HALSTEAD BW, KADURA IA et al.: Relationships between genomic, cell cycle, and mutagenic responses of TK6 cells exposed to DNA damaging chemicals. Mutat. Res. (2005) 578(1-2):100-116.
  • CHIU CC, LI CH, UNG MW, FUH TS, CHEN WL, FANG K: Etoposide (VP-16) elicits apoptosis following prolonged G2-M cell arrest in p53-mutated human non-small cell lung cancer cells. Cancer Lett. (2005) 223(2):249-258.
  • KARPINICH NO, TAFANI M, SCHNEIDER T, RUSSO MA, FARBER JL: The course of etoposide-induced apoptosis in Jurkat cells lacking p53 and Bax. J. Cell. Physiol. (2006) 208(1):55-63.
  • PARK SJ, WU CH, GORDON JD, ZHONG X, EMAMI A, SAFA AR: Taxol induces caspase-10-dependent apoptosis. J. Biol. Chem. (2004) 279(49):51057-51067.
  • KUROSU T, TAKAHASHI Y, FUKUDA T, KOYAMA T, MIKI T, MIURA O: p38 MAP kinase plays a role in G2 checkpoint activation and inhibits apoptosis of human B cell lymphoma cells treated with etoposide. Apoptosis (2005) 10(5):1111-1120.
  • WANG Z, GOULET R III, STANTON KJ, SADARIA M, NAKSHATRI H: Differential effect of anti-apoptotic genes Bcl-xL and c-FLIP on sensitivity of MCF-7 breast cancer cells to paclitaxel and docetaxel. Anti-Cancer Res. (2005) 25(3c):2367-2379.
  • NAVAKAUSKIENE R, TREIGYTE G, SAVICKIENE J, GINEITIS A, MAGNUSSON KE: Alterations in protein expression in HL-60 cells during etoposide-induced apoptosis modulated by the caspase inhibitor ZVAD. fmk. Ann. NY Acad. Sci. (2004) 1030:393-402.
  • BERGERON S, BEAUCHEMIN M, BERTRAND R: Camptothecin- and etoposide-induced apoptosis in human leukemia cells is independent of cell death receptor-3 and -4 aggregation but accelerates tumor necrosis factor-related apoptosis-inducing ligand-mediated cell death. Mol. Cancer Ther. (2004) 3(12):1659-1669.
  • ALBIHN A, LOVEN J, OHLSSON J, OSORIO LM, HENRIKSSON M: c-Myc-dependent etoposide-induced apoptosis involves activation of Bax and caspases, and PKCδ signaling. J. Cell. Biochem. (2006) 98(6):1597-1614.
  • CERUTI S, MAZZOLA A, ABBRACCHIO MP: Proteasome inhibitors potentiate etoposide-induced cell death in human astrocytoma cells bearing a mutated p53 isoform. J. Pharmacol. Exp. Ther. (2006) 319(3):1424-1434.
  • ZHAO J, JIN J, ZHANG X et al.: Transfection of Smac sensitizes tumor cells to etoposide-induced apoptosis and eradicates established human hepatoma in vivo. Cancer Gene Ther. (2006) 13(4):420-427.
  • RINGEL I, HORWITZ SB: Studies with RP 56976 (taxotere): a semisynthetic analogue of taxol. J. Natl. Cancer Inst. (1991) 83(4):288-291.
  • YUSUF RZ, DUAN Z, LAMENDOLA DE, PENSON RT, SEIDEN MV: Paclitaxel resistance: molecular mechanisms and pharmacologic manipulation. Curr. Cancer Drug Targets (2003) 3(1):1-19.
  • RECK M, VON PAWEL J, MACHA HN et al.: Efficient palliation in patients with small-cell lung cancer by a combination of paclitaxel, etoposide and carboplatin: quality of life and 6-years’-follow-up results from a randomised Phase III trial. Lung Cancer (2006) 53(1):67-75.
  • LYSENG-WILLIAMSON KA, FENTON C: Docetaxel: a review of its use in metastatic breast cancer. Drugs (2005) 65(17):2513-2531.
  • SCAGLIOTTI GV, DOUILLARD JY: Docetaxel in combined-modality treatment of inoperable locally or regionally advanced lung cancer. Lung Cancer (2004) 46(Suppl. 2):S13-S21.
  • HORWITZ SB: Taxol (paclitaxel): mechanisms of action. Ann. Oncol. (1994) 5(Suppl. 6):S3-S6.
  • CHANG BD, BROUDE EV, DOKMANOVIC M et al.: A senescence-like phenotype distinguishes tumor cells that undergo terminal proliferation arrest after exposure to anticancer agents. Cancer Res. (1999) 59(15):3761-3767.
  • SWANTON C, TOMLINSON I, DOWNWARD J: Chromosomal instability, colorectal cancer and taxane resistance. Cell Cycle (2006) 5(8):818-823.
  • ZHAO J, KIM JE, REED E, LI QQ: Molecular mechanism of antitumor activity of taxanes in lung cancer (Review). Int. J. Oncol. (2005) 27(1):247-256.
  • GIANNAKAKOU P, NAKANO M, NICOLAOU KC et al.: Enhanced microtubule-dependent trafficking and p53 nuclear accumulation by suppression of microtubule dynamics. Proc. Natl. Acad. Sci. USA (2002) 99(16):10855-10860.
  • OFIR R, SEIDMAN R, RABINSKI T et al.: Taxol-induced apoptosis in human SKOV3 ovarian and MCF7 breast carcinoma cells is caspase-3 and caspase-9 independent. Cell Death Differ. (2002) 9(6):636-642.
  • PANNO ML, GIORDANO F, MASTROIANNI F et al.: Evidence that low doses of Taxol enhance the functional transactivatory properties of p53 on p21 waf promoter in MCF-7 breast cancer cells. FEBS Lett. (2006) 580(9):2371-2380.
  • GREENBERG VL, ZIMMER SG: Paclitaxel induces the phosphorylation of the eukaryotic translation initiation factor 4E-binding protein 1 through a Cdk1-dependent mechanism. Oncogene (2005) 24(30):4851-4860.
  • PEREZ-STABLE C: 2-Methoxyestradiol and paclitaxel have similar effects on the cell cycle and induction of apoptosis in prostate cancer cells. Cancer Lett. (2006) 231(1):49-64.
  • EHRLICHOVA M, KOC M, TRUKSA J, NALDOVA Z, VACLAVIKOVA R, KOVARR J: Cell death induced by taxanes in breast cancer cells: cytochrome c is released in resistant but not in sensitive cells. Anti-Cancer Res. (2005) 25(6B):4215-4224.
  • DAY TW, NAJAFI F, WU CH, SAFA AR: Cellular FLICE-like inhibitory protein (c-FLIP): a novel target for Taxol-induced apoptosis. Biochem. Pharmacol. (2006) 71(11):1551-1561.
  • LU KH, LUE KH, CHOU MC, CHUNG JG: Paclitaxel induces apoptosis via caspase-3 activation in human osteogenic sarcoma cells (U-2 OS). J. Orthop. Res. (2005) 23(5):988-994.
  • LU KH, LUE KH, LIAO HH, LIN KL, CHUNG JG: Induction of caspase-3-dependent apoptosis in human leukemia HL-60 cells by paclitaxel. Clin. Chim. Acta (2005) 357(1):65-73.
  • WANG TH, POPP DM, WANG HS et al.: Microtubule dysfunction induced by paclitaxel initiates apoptosis through both c-Jun N-terminal kinase (JNK)-dependent and -independent pathways in ovarian cancer cells. J. Biol. Chem. (1999) 274(12):8208-8216.
  • HELIEZ C, BARICAULT L, BARBOULE N, VALETTE A: Paclitaxel increases p21 synthesis and accumulation of its AKT-phosphorylated form in the cytoplasm of cancer cells. Oncogene (2003) 22(21):3260-3268.
  • SUNTERS A, MADUREIRA PA, POMERANZ KM et al.: Paclitaxel-induced nuclear translocation of FOXO3a in breast cancer cells is mediated by c-Jun NH2-terminal kinase and Akt. Cancer Res. (2006) 66(1):212-220.
  • HENLEY D, ISBILL M, FERNANDO R, FOSTER JS, WIMALASENA J: Paclitaxel induced apoptosis in breast cancer cells requires cell cycle transit but not Cdc2 activity. Cancer Chemother. Pharmacol. (2006) 59(2):235-249.
  • CROWN J, O’LEARY M: The taxanes: an update. Lancet (2000) 355(9210):1176-1178.
  • LAVELLE F, BISSERY MC, COMBEAU C, RIOU JF, VRIGNAUD P, ANDRE S: Preclinical evaluation of docetaxel (Taxotere). Semin. Oncol. (1995) 22(2 Suppl. 4):S3-16.
  • SUZUKI A, KAWABATA T, KATO M: Necessity of interleukin-1β converting enzyme cascade in taxotere-initiated death signaling. Eur. J. Pharmacol. (1998) 343(1):87-92.
  • ZENG S, CHEN YZ, FU L, JOHNSON KR, FAN W: In vitro evaluation of schedule-dependent interactions between docetaxel and doxorubicin against human breast and ovarian cancer cells. Clin. Cancer Res. (2000) 6(9):3766-3773.
  • KOLFSCHOTEN GM, HULSCHER TM, DUYNDAM MC, PINEDO HM, BOVEN E: Variation in the kinetics of caspase-3 activation, Bcl-2 phosphorylation and apoptotic morphology in unselected human ovarian cancer cell lines as a response to docetaxel. Biochem. Pharmacol. (2002) 63(4):733-743.
  • WANG Q, WIEDER R: All-trans retinoic acid potentiates Taxotere-induced cell death mediated by Jun N-terminal kinase in breast cancer cells. Oncogene (2004) 23(2):426-433.
  • TANIGUCHI T, TAKAHASHI M, SHINOHARA F, SATO T, ECHIGO S, RIKIISHI H: Involvement of NF-κB and mitochondrial pathways in docetaxel-induced apoptosis of human oral squamous cell carcinoma. Int. J. Mol. Med. (2005) 15(4):667-673.
  • RUSSO AJ, MAGRO PG, HU Z et al.: E2F-1 overexpression in U2OS cells increases cyclin B1 levels and cdc2 kinase activity and sensitizes cells to antimitotic agents. Cancer Res. (2006) 66(14):7253-7260.
  • YUAN J, KRAMER A, MATTHESS Y et al.: Stable gene silencing of cyclin B1 in tumor cells increases susceptibility to taxol and leads to growth arrest in vivo. Oncogene (2006) 25(12):1753-1762.
  • TAKAHASHI T, YAMASAKI F, SUDO T et al.: Cyclin A-associated kinase activity is needed for paclitaxel sensitivity. Mol. Cancer. Ther. (2005) 4(7):1039-1046.
  • PRATT MA, NIU MY, RENART LI: Regulation of survivin by retinoic acid and its role in paclitaxel-mediated cytotoxicity in MCF-7 breast cancer cells. Apoptosis (2006) 11(4):589-605.
  • WALL ME, WANI MC, COOK CE, PALMER KH, MCPHAIL AT, SIM GA: Plant antitumor agents. I. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from Camptotheca acuminata. J. Am. Chem. Soc. (1966) 88(16):3888-3890.
  • LI QY, ZU YG, SHI RZ, YAO LP: Review camptothecin: current perspectives. Curr. Med. Chem. (2006) 13(17):2021-2039.
  • KINGSBURY WD, BOEHM JC, JAKAS DR et al.: Synthesis of water-soluble (aminoalkyl)camptothecin analogues: inhibition of topoisomerase I and antitumor activity. J. Med. Chem. (1991) 34(1):98-107.
  • NEGORO S, FUKUOKA M, MASUDA N et al.: Phase I study of weekly intravenous infusions of CPT-11, a new derivative of camptothecin, in the treatment of advanced non-small-cell lung cancer. J. Natl. Cancer Inst. (1991) 83(16):1164-1168.
  • GARCIA-MANERO G, TALPAZ M, KANTARJIAN HM: Current therapy of chronic myelogenous leukemia. Intern. Med. (2002) 41(4):254-264.
  • POMMIER Y: Topoisomerase I inhibitors: camptothecins and beyond. Nat. Rev. Cancer. (2006) 6(10):789-802.
  • GLABERMAN U, RABINOWITZ I, VERSCHRAEGEN CF: Alternative administration of camptothecin analogues. Expert Opin. Drug Deliv. (2005) 2(2):323-333.
  • HARTMANN JT, LIPP HP: Camptothecin and podophyllotoxin derivatives: inhibitors of topoisomerase I and II – mechanisms of action, pharmacokinetics and toxicity profile. Drug Saf. (2006) 29(3):209-230.
  • CIUSANI E, CROCI D, GELATI M et al.: In vitro effects of topotecan and ionizing radiation on TRAIL/Apo2L-mediated apoptosis in malignant glioma. J. Neurooncol. (2005) 71(1):19-25.
  • MINDERMAN H, CONROY JM, O’LOUGHLIN KL et al.: In vitro and in vivo irinotecan-induced changes in expression profiles of cell cycle and apoptosis-associated genes in acute myeloid leukemia cells. Mol. Cancer Ther. (2005) 4(6):885-900.
  • RAMNATH N, KHUSHALANI N, TOTH K et al.: S-phase modulation by irinotecan: pilot studies in advanced solid tumors. Cancer Chemother. Pharmacol. (2005) 56(5):447-454.
  • XIAO Z, XUE J, SOWIN TJ, ZHANG H: Differential roles of checkpoint kinase 1, checkpoint kinase 2, and mitogen-activated protein kinase-activated protein kinase 2 in mediating DNA damage-induced cell cycle arrest: implications for cancer therapy. Mol. Cancer. Ther. (2006) 5(8):1935-1943.
  • FLATTEN K, DAI NT, VROMAN BT et al.: The role of checkpoint kinase 1 in sensitivity to topoisomerase I poisons. J. Biol. Chem. (2005) 280(14):14349-14355.
  • BORGNE A, VERSTEEGE I, MAHE M et al.: Analysis of cyclin B1 and CDK activity during apoptosis induced by camptothecin treatment. Oncogene (2006) 25(56):7361-7372.
  • RODRIGUEZ-HERNANDEZ A, BREA-CALVO G, FERNANDEZ-AYALA DJ, CORDERO M, NAVAS P, SANCHEZ-ALCAZAR JA: Nuclear caspase-3 and capase-7 activation, and Poly(ADP-ribose) polymerase cleavage are early events in camptothecin-induced apoptosis. Apoptosis (2006) 11(1):131-139.
  • SMITH LM, WILLMORE E, AUSTIN CA, CURTIN NJ: The novel poly(ADP-ribose) polymerase inhibitor, AG14361, sensitizes cells to topoisomerase I poisons by increasing the persistence of DNA strand breaks. Clin. Cancer Res. (2005) 11(23):8449-8457.
  • MIALON A, SANKINEN M, SODERSTROM H et al.: DNA topoisomerase I is a cofactor for c-Jun in the regulation of epidermal growth factor receptor expression and cancer cell proliferation. Mol. Cell. Biol. (2005) 25(12):5040-5051.
  • KOIZUMI N, HATANO E, NITTA T et al.: Blocking of PI3K/Akt pathway enhances apoptosis induced by SN-38, an active form of CPT-11, in human hepatoma cells. Int. J. Oncol. (2005) 26(5):1301-1306.
  • GIOVANNETTI E, MEY V, DANESI R et al.: Interaction between gemcitabine and topotecan in human non-small-cell lung cancer cells: effects on cell survival, cell cycle and pharmacogenetic profile. Br. J. Cancer (2005) 92(4):681-689.
  • FUCHS C, MITCHELL EP, HOFF PM: Irinotecan in the treatment of colorectal cancer. Cancer Treat. Rev. (2006) 32(7):491-503.
  • GRIVICICH I, REGNER A, DA ROCHA AB et al.: Irinotecan/5-fluorouracil combination induces alterations in mitochondrial membrane potential and caspases on colon cancer cell lines. Oncol. Res. (2005) 15(7-8):385-392.
  • POWELL RG, WEISLEDER D, SMITH CR Jr: Antitumor alkaloids for Cephalataxus harringtonia: structure and activity. J. Pharm. Sci. (1972) 61(8):1227-1230.
  • HUANG MT: Harringtonine, an inhibitor of initiation of protein biosynthesis. Mol. Pharmacol. (1975) 11(5):511-519.
  • LUO CY, TANG JY, WANG YP: Homoharringtonine: a new treatment option for myeloid leukemia. Hematology (2004) 9(4):259-270.
  • FRESNO M, JIMENEZ A, VAZQUEZ D: Inhibition of translation in eukaryotic systems by harringtonine. Eur. J. Biochem. (1977) 72(2):323-330.
  • BAASKE DM, HEINSTEIN P: Cytotoxicity and cell cycle specificity of homoharringtonine. Antimicrob. Agents Chemother. (1977) 12(2):298-300.
  • XU B: The influence of several anticancer agents on cell proliferation, differentiation and the cell cycle of murine erythroleukemia cells. Am. J. Chin. Med. (1981) 9(4):268-276.
  • CAI Z, LIN M, WUCHTER C et al.: Apoptotic response to homoharringtonine in human wt p53 leukemic cells is independent of reactive oxygen species generation and implicates Bax translocation, mitochondrial cytochrome c release and caspase activation. Leukemia (2001) 15(4):567-574.
  • YINJUN L, JIE J, WEILAI X, XIANGMING T: Homoharringtonine mediates myeloid cell apoptosis via upregulation of pro-apoptotic bax and inducing caspase-3-mediated cleavage of poly(ADP-ribose) polymerase (PARP). Am. J. Hematol. (2004) 76(3):199-204.
  • TANG R, FAUSSAT AM, MAJDAK P et al.: Semisynthetic homoharringtonine induces apoptosis via inhibition of protein synthesis and triggers rapid myeloid cell leukemia-1 down-regulation in myeloid leukemia cells. Mol. Cancer. Ther. (2006) 5(3):723-731.
  • XIE WZ, LIN MF, HUANG H, CAI Z: Homoharringtonine-induced apoptosis of human leukemia HL-60 cells is associated with down-regulation of telomerase. Am. J. Chin. Med. (2006) 34(2):233-244.
  • CAI Z, BAO HY, LIN MF: Correlation between survivin mRNA expression and homoharringtonine induced apoptosis of malignant hematopoietic cells. Chin. Med. J. (Engl) (2005) 118(7):548-554.
  • O’BRIEN S, GILES F, TALPAZ M et al.: Results of triple therapy with interferon-α, cytarabine, and homoharringtonine, and the impact of adding imatinib to the treatment sequence in patients with Philadelphia chromosome-positive chronic myelogenous leukemia in early chronic phase. Cancer (2003) 98(5):888-893.
  • JIN J, JIANG DZ, MAI WY et al.: Homoharringtonine in combination with cytarabine and aclarubicin resulted in high complete remission rate after the first induction therapy in patients with de novo acute myeloid leukemia. Leukemia (2006) 20(8):1361-1367.
  • GOODWIN S, SMITH AF, HORNING EC: Alkaloids of Ochrosia elliptica Labill. J. Am. Chem. Soc. (1959) 81(8):1903-1908.
  • STIBOROVA M, SEJBAL J, BOREK-DOHALSKA L et al.: The anticancer drug ellipticine forms covalent DNA adducts, mediated by human cytochromes P450, through metabolism to 13-hydroxyellipticine and ellipticine N2-oxide. Cancer Res. (2004) 64(22):8374-8380.
  • AUCLAIR C: Multimodal action of antitumor agents on DNA: the ellipticine series. Arch. Biochem. Biophys. (1987) 259(1):1-14.
  • SINGH MP, HILL GC, PEOC’H D, RAYNER B, IMBACH JL, LOWN JW: High-field NMR and restrained molecular modeling studies on a DNA heteroduplex containing a modified apurinic abasic site in the form of covalently linked 9-aminoellipticine. Biochemistry (1994) 33(34):10271-10285.
  • FROELICH-AMMON SJ, PATCHAN MW, OSHEROFF N, THOMPSON RB: Topoisomerase II binds to ellipticine in the absence or presence of DNA. Characterization of enzyme-drug interactions by fluorescence spectroscopy. J. Biol. Chem. (1995) 270(25):14998-15004.
  • SUGIKAWA E, HOSOI T, YAZAKI N, GAMANUMA M, NAKANISHI N, OHASHI M: Mutant p53 mediated induction of cell cycle arrest and apoptosis at G1 phase by 9-hydroxyellipticine. Anti-Cancer Res. (1999) 19(4B):3099-3108.
  • PENG Y, LI C, CHEN L, SEBTI S, CHEN J: Rescue of mutant p53 transcription function by ellipticine. Oncogene (2003) 22(29):4478-4487.
  • OHASHI M, SUGIKAWA E, NAKANISHI N: Inhibition of p53 protein phosphorylation by 9-hydroxyellipticine: a possible anticancer mechanism. Jpn. J. Cancer Res. (1995) 86(9):819-827.
  • KUO PL, HSU YL, CHANG CH, LIN CC: The mechanism of ellipticine-induced apoptosis and cell cycle arrest in human breast MCF-7 cancer cells. Cancer Lett. (2005) 223(2):293-301.
  • KUO PL, HSU YL, KUO YC, CHANG CH, LIN CC: The anti-proliferative inhibition of ellipticine in human breast MDA-MB -231 cancer cells is through cell cycle arrest and apoptosis induction. Anticancer Drugs (2005) 16(7):789-795.
  • HAGG M, BERNDTSSON M, MANDIC A, ZHOU R, SHOSHAN MC, LINDER S: Induction of endoplasmic reticulum stress by ellipticine plant alkaloids. Mol. Cancer Ther. (2004) 3(4):489-497.
  • NEWCOMB EW: Flavopiridol: pleiotropic biological effects enhance its anti-cancer activity. Anticancer Drugs (2004) 15(5):411-419.
  • KARP JE, PASSANITI A, GOJO I et al.: Phase I and pharmacokinetic study of flavopiridol followed by 1-β-d-arabinofuranosylcytosine and mitoxantrone in relapsed and refractory adult acute leukemias. Clin. Cancer Res. (2005) 11(23):8403-8412.
  • SENDEROWICZ AM: The cell cycle as a target for cancer therapy: basic and clinical findings with the small molecule inhibitors flavopiridol and UCN-01. Oncologist (2002) 7(Suppl. 3):S12-S19.
  • BLAGOSKLONNY MV: Flavopiridol, an inhibitor of transcription: implications, problems and solutions. Cell Cycle (2004) 3(12):1537-1542.
  • SEDLACEK HH: Mechanisms of action of flavopiridol. Crit. Rev. Oncol. Hematol. (2001) 38(2):139-170.
  • GRANT S, ROBERTS JD: The use of cyclin-dependent kinase inhibitors alone or in combination with established cytotoxic drugs in cancer chemotherapy. Drug Resist. Updat. (2003) 6(1):15-26.
  • WORLAND PJ, KAUR G, STETLER-STEVENSON M, SEBERS S, SARTOR O, SAUSVILLE EA: Alteration of the phosphorylation state of p34cdc2 kinase by the flavone L86-8275 in breast carcinoma cells. Correlation with decreased H1 kinase activity. Biochem. Pharmacol. (1993) 46(10):1831-1840.
  • KAUR G, STETLER-STEVENSON M, SEBERS S et al.: Growth inhibition with reversible cell cycle arrest of carcinoma cells by flavone L86-8275. J. Natl. Cancer Inst. (1992) 84(22):1736-1740.
  • CARLSON BA, DUBAY MM, SAUSVILLE EA, BRIZUELA L, WORLAND PJ: Flavopiridol induces G1 arrest with inhibition of cyclin-dependent kinase (CDK) 2 and CDK4 in human breast carcinoma cells. Cancer Res. (1996) 56(13):2973-2978.
  • CHAO SH, PRICE DH: Flavopiridol inactivates P-TEFb and blocks most RNA polymerase II transcription in vivo. J. Biol. Chem. (2001) 276(34):31793-31799.
  • PRICE DH: P-TEFb, a cyclin-dependent kinase controlling elongation by RNA polymerase II. Mol. Cell. Biol. (2000) 20(8):2629-2634.
  • KITADA S, ZAPATA JM, ANDREEFF M, REED JC: Protein kinase inhibitors flavopiridol and 7-hydroxy-staurosporine down-regulate antiapoptosis proteins in B-cell chronic lymphocytic leukemia. Blood (2000) 96(2):393-397.
  • DEMIDENKO ZN, BLAGOSKLONNY MV: Flavopiridol induces p53 via initial inhibition of Mdm2 and p21 and, independently of p53, sensitizes apoptosis-reluctant cells to tumor necrosis factor. Cancer Res. (2004) 64(10):3653-3660.
  • TANIAI M, GRAMBIHLER A, HIGUCHI H et al.: Mcl-1 mediates tumor necrosis factor-related apoptosis-inducing ligand resistance in human cholangiocarcinoma cells. Cancer Res. (2004) 64(10):3517-3524.
  • VENKATARAMAN G, MAUDUDI T, OZPUYAN F et al.: Induction of apoptosis and down regulation of cell cycle proteins in mantle cell lymphoma by flavopiridol treatment. Leuk. Res. (2006) 30(11):1377-1384.
  • WALL NR, O’CONNOR DS, PLESCIA J, POMMIER Y, ALTIERI DC: Suppression of survivin phosphorylation on Thr34 by flavopiridol enhances tumor cell apoptosis. Cancer Res. (2003) 63(1):230-235.
  • ALONSO M, TAMASDAN C, MILLER DC, NEWCOMB EW: Flavopiridol induces apoptosis in glioma cell lines independent of retinoblastoma and p53 tumor suppressor pathway alterations by a caspase-independent pathway. Mol. Cancer. Ther. (2003) 2(2):139-150.
  • SHAPIRO GI, KOESTNER DA, MATRANGA CB, ROLLINS BJ: Flavopiridol induces cell cycle arrest and p53-independent apoptosis in non-small cell lung cancer cell lines. Clin. Cancer Res. (1999) 5(10):2925-2938.
  • PEPPER C, THOMAS A, HOY T et al.: Leukemic and non-leukemic lymphocytes from patients with Li Fraumeni syndrome demonstrate loss of p53 function, Bcl-2 family dysregulation and intrinsic resistance to conventional chemotherapeutic drugs but not flavopiridol. Cell Cycle (2003) 2(1):53-58.
  • YU C, RAHMANI M, DAI Y et al.: The lethal effects of pharmacological cyclin-dependent kinase inhibitors in human leukemia cells proceed through a phosphatidylinositol 3-kinase/Akt-dependent process. Cancer Res. (2003) 63(8):1822-1833.
  • LITZ J, CARLSON P, WARSHAMANA-GREENE GS, GRANT S, KRYSTAL GW: Flavopiridol potently induces small cell lung cancer apoptosis during S phase in a manner that involves early mitochondrial dysfunction. Clin. Cancer Res. (2003) 9(12):4586-4594.
  • ACHENBACH TV, MULLER R, SLATER EP: Bcl-2 independence of flavopiridol-induced apoptosis. Mitochondrial depolarization in the absence of cytochrome c release. J. Biol. Chem. (2000) 275(41):32089-32097.
  • AGGARWAL BB, TAKADA Y, OOMMEN OV: From chemoprevention to chemotherapy: common targets and common goals. Expert Opin. Investig. Drugs (2004) 13(10):1327-1338.
  • SAMBOL EB, AMBROSINI G, GEHA RC et al.: Flavopiridol targets c-KIT transcription and induces apoptosis in gastrointestinal stromal tumor cells. Cancer Res. (2006) 66(11):5858-5866.
  • LEE YK, ISHAM CR, KAUFMAN SH, BIBLE KC: Flavopiridol disrupts STAT3/DNA interactions, attenuates STAT3-directed transcription, and combines with the Jak kinase inhibitor AG490 to achieve cytotoxic synergy. Mol. Cancer. Ther. (2006) 5(1):138-148.
  • SENDEROWICZ AM: Small-molecule cyclin-dependent kinase modulators. Oncogene (2003) 22(42):6609-6620.
  • MOTWANI M, JUNG C, SIROTNAK FM et al.: Augmentation of apoptosis and tumor regression by flavopiridol in the presence of CPT-11 in HCT116 colon cancer monolayers and xenografts. Clin. Cancer Res. (2001) 7(12):4209-4219.
  • MIYASHITA K, SHIRAKI K, FUKE H et al.: The cyclin-dependent kinase inhibitor flavopiridol sensitizes human hepatocellular carcinoma cells to TRAIL-induced apoptosis. Int. J. Mol. Med. (2006) 18(2):249-256.
  • DASMAHAPATRA G, ALMENARA JA, GRANT S: Flavopiridol and histone deacetylase inhibitors promote mitochondrial injury and cell death in human leukemia cells that overexpress Bcl-2. Mol. Pharmacol. (2006) 69(1):288-298.
  • TRON GC, PIRALI T, SORBA G, PAGLIAI F, BUSACCA S, GENAZZANI AA: Medicinal chemistry of combretastatin A4: present and future directions. J. Med. Chem. (2006) 49(11):3033-3044.
  • YOUNG SL, CHAPLIN DJ: Combretastatin A4 phosphate: background and current clinical status. Expert Opin. Investig. Drugs (2004) 13(9):1171-1182.
  • WEST CM, PRICE P: Combretastatin A4 phosphate. Anticancer Drugs (2004) 15(3):179-187.
  • PETTIT GR, TEMPLE C Jr, NARAYANAN VL et al.: Antineoplastic agents 322. synthesis of combretastatin A-4 prodrugs. Anti-Cancer Drug Des. (1995) 10(4):299-309.
  • TOZER GM, KANTHOU C, BAGULEY BC: Disrupting tumour blood vessels. Nat. Rev. Cancer (2005) 5(6):423-435.
  • DENEKAMP J: Endothelial cell proliferation as a novel approach to targeting tumour therapy. Br. J. Cancer (1982) 45(1):136-139.
  • DARK GG, HILL SA, PRISE VE, TOZER GM, PETTIT GR, CHAPLIN DJ: Combretastatin A-4, an agent that displays potent and selective toxicity toward tumor vasculature. Cancer Res. (1997) 57(10):1829-1834.
  • WEHBE H, KEARNEY CM, PINNEY KG: Combretastatin A-4 resistance in H460 human lung carcinoma demonstrates distinctive alterations in β-tubulin isotype expression. Anti-Cancer Res. (2005) 25(6B):3865-3870.
  • KANTHOU C, GRECO O, STRATFORD A et al.: The tubulin-binding agent combretastatin A-4-phosphate arrests endothelial cells in mitosis and induces mitotic cell death. Am. J. Pathol. (2004) 165(4):1401-1411.
  • IYER S, CHAPLIN DJ, ROSENTHAL DS, BOULARES AH, LI LY, SMULSON ME: Induction of apoptosis in proliferating human endothelial cells by the tumor-specific antiangiogenesis agent combretastatin A-4. Cancer Res. (1998) 58(20):4510-4514.
  • NABHA SM, MOHAMMAD RM, DANDASHI MH et al.: Combretastatin-A4 prodrug induces mitotic catastrophe in chronic lymphocytic leukemia cell line independent of caspase activation and poly(ADP-ribose) polymerase cleavage. Clin. Cancer Res. (2002) 8(8):2735-2741.
  • DE AZEVEDO WF, LECLERC S, MEIJER L, HAVLICEK L, STRNAD M, KIM SH: Inhibition of cyclin-dependent kinases by purine analogues: crystal structure of human Cdk2 complexed with roscovitine. Eur. J. Biochem. (1997) 243(1-2):518-526.
  • CHANG YT, GRAY NS, ROSANIA GR et al.: Synthesis and application of functionally diverse 2,6,9-trisubstituted purine libraries as CDK inhibitors. Chem. Biol. (1999) 6(6):361-375.
  • MEIJER L, RAYMOND E: Roscovitine and other purines as kinase inhibitors. From starfish oocytes to clinical trials. Acc. Chem. Res. (2003) 36(6):417-425.
  • BACH S, KNOCKAERT M, REINHARDT J et al.: Roscovitine targets, protein kinases and pyridoxal kinase. J. Biol. Chem. (2005) 280(35):31208-31219.
  • SAVIO M, CERRI M, CAZZALINI O et al.: Replication-dependent DNA damage response triggered by roscovitine induces an uncoupling of DNA replication proteins. Cell Cycle (2006) 5(18):2153-2159.
  • WHITTAKER SR, WALTON MI, GARRETT MD, WORKMAN P: The cyclin-dependent kinase inhibitor CYC202 (R-roscovitine) inhibits retinoblastoma protein phosphorylation, causes loss of cyclin D1, and activates the mitogen-activated protein kinase pathway. Cancer Res. (2004) 64(1):262-272.
  • TIRADO OM, MATEO-LOZANO S, NOTARIO V: Roscovitine is an effective inducer of apoptosis of Ewing’s sarcoma family tumor cells in vitro and in vivo. Cancer Res. (2005) 65(20):9320-9327.
  • MACCALLUM DE, MELVILLE J, FRAME S et al.: Seliciclib (CYC202, R-roscovitine) induces cell death in multiple myeloma cells by inhibition of RNA polymerase II-dependent transcription and down-regulation of Mcl-1. Cancer Res. (2005) 65(12):5399-5407.
  • RAJE N, KUMAR S, HIDESHIMA T et al.: Seliciclib (CYC202 or R-roscovitine), a small-molecule cyclin-dependent kinase inhibitor, mediates activity via down-regulation of Mcl-1 in multiple myeloma. Blood (2005) 106(3):1042-1047.
  • WESIERSKA-GADEK J, GUEORGUIEVA M, HORKY M: Roscovitine-induced up-regulation of p53AIP1 protein precedes the onset of apoptosis in human MCF-7 breast cancer cells. Mol. Cancer. Ther. (2005) 4(1):113-124.
  • ALVI AJ, AUSTEN B, WESTON VJ et al.: A novel CDK inhibitor, CYC202 (R-roscovitine), overcomes the defect in p53-dependent apoptosis in B-CLL by down-regulation of genes involved in transcription regulation and survival. Blood (2005) 105(11):4484-4491.
  • HENFLING ME, RAMAEKERS FC, SCHUTTE B: Proteasomes act in the pre-mitochondrial signal transduction route towards roscovitine-induced apoptosis. Int. J. Oncol. (2004) 25(5):1437-1446.
  • CRESCENZI E, PALUMBO G, BRADY HJ: Roscovitine modulates DNA repair and senescence: implications for combination chemotherapy. Clin. Cancer Res. (2005) 11(22):8158-8171.
  • ATANASOVA G, JANS R, ZHELEV N, MITEV V, POUMAY Y: Effects of the cyclin-dependent kinase inhibitor CYC202 (R-roscovitine) on the physiology of cultured human keratinocytes. Biochem. Pharmacol. (2005) 70(6):824-836.
  • BLAGOSKLONNY MV: How cancer could be cured by 2015. Cell Cycle (2005) 4(2):269-278.
  • BLAGOSKLONNY MV, DARZYNKIEWICZ Z: Cyclotherapy: protection of normal cells and unshielding of cancer cells. Cell Cycle (2002) 1(6):375-382.
  • KRAMER R, COHEN D: Functional genomics to new drug targets. Nat. Rev. Drug Discov. (2004) 3(11):965-972.
  • BALUNAS MJ, KINGHORN AD: Drug discovery from medicinal plants. Life Sci. (2005) 78(5):431-441.
  • REICHERT JM: Trends in development and approval times for new therapeutics in the United States. Nat. Rev. Drug Discov. (2003) 2(9):695-702.
  • DICKSON M, GAGNON JP: Key factors in the rising cost of new drug discovery and development. Nat. Rev. Drug Discov. (2004) 3(5):417-429.
  • KOEHN FE, CARTER GT: The evolving role of natural products in drug discovery. Nat. Rev. Drug Discov. (2005) 4(3):206-220.
  • CLARDY J, WALSH C: Lessons from natural molecules. Nature (2004) 432(7019):829-837.
  • ARMSTRONG JG, DYKE RW, FOUTS PJ, HAWTHORNE JJ, JANSEN CJ Jr, PEABODY AM: Initial clinical experience with vinglycinate sulfate, a molecular modification of vinblastine. Cancer Res. (1967) 27(2):221-227.
  • POTIER P: The synthesis of navelbine prototype of a new series of vinblastine derivatives. Semin. Oncol. (1989) 16(2 Suppl. 4):2-4.
  • WANI MC, TAYLOR HL, WALL ME, COGGON P, MCPHAIL AT: Plant antitumor agents. VI. The isolation and structure of Taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J. Am. Chem. Soc. (1971) 93(9):2325-2327.
  • STIBOROVA M, RUPERTOVA M, SCHMEISER HH, FREI E: Molecular mechanisms of antineoplastic action of an anticancer drug ellipticine. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech. Repub. (2006) 150(1):13-23.
  • PETTIT GR, CRAGG GM, HERALD DL, SCHMIDT JM: Isolation and structure of combretastatin. Can. J. Chem. (1982) 60:1347-1376.
  • PETTIT GR, SINGH SB: Antineoplastic agents. 130. Isolation, structure, and synthesis of combretastatin A-2, A-3, and B-2. Can. J. Chem. (1987) 65:2390-2396.

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.