156
Views
52
CrossRef citations to date
0
Altmetric
Reviews

The alluring potential of functionalized carbon nanotubes in drug discovery

, , , , , , & show all
Pages 691-707 | Published online: 20 May 2010

Bibliography

  • Monthioux M, Kuznetsov VL. Who should be given the credit for the discovery of carbon nanotubes? Carbon 2006;44(9):1621-3
  • Iijima S. Helical microtubules of graphitic carbon. Nature 1991;354(6348):56-8
  • Ajayan PM, Tour JM. Materials science: nanotube composites. Nature 2007;447(7148):1066-8
  • Lu F, Gu L, Meziani MJ, Advances in bioapplications of carbon nanotubes. Adv Mater 2009;21(2):139-52
  • Prato M, Kostarelos K, Bianco A. Functionalized carbon nanotubes in drug design and discovery. Acc Chem Res 2008;41(1):60-8
  • Kostarelos K, Bianco A, Prato M. Promises, facts and challenges for carbon nanotubes in imaging and therapeutics. Nat Nanotechnol 2009;4(10):627-33
  • Kostarelos K, Lacerda L, Pastorin G, Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat Nanotechnol 2007;2(2):108-13
  • Kam NW, Dai H. Carbon nanotubes as intracellular protein transporters: generality and biological functionality. J Am Chem Soc 2005;127(16):6021-6
  • Dumortier H, Lacotte S, Pastorin G, Functionalized carbon nanotubes are non-cytotoxic and preserve the functionality of primary immune cells. Nano Lett 2006;6(7):1522-8
  • Ménard-Moyon C, Kostarelos K, Prato M, Bianco A. Functionalized carbon nanotubes for probing and modulating molecular functions. Chem Biol 2010;17(2):107-15
  • Bachilo SM, Strano MS, Kittrell C, Structure-assigned optical spectra of single-walled carbon nanotubes. Science 2002;298(5602):2361-6
  • Ren Y, Pastorin G. Incorporation of hexamethylmelamine inside capped carbon nanotubes. Adv Mater 2008;20(11):2031-6
  • Ajima K, Maigné A, Yudasaka M, Iijima S. Optimum hole-opening condition for cisplatin incorporation in single-wall carbon nanohorns and its release. J Phys Chem B 2006;110(39):19097-9
  • Xu J, Yudasaka M, Kouraba S, Single wall carbon nanohorn as a drug carrier for controlled release. Chem Phys Lett 2008;461(4-6):189-92
  • Murakami T, Sawada H, Tamura G, Water-dispersed single-wall carbon nanohorns as drug carriers for local cancer chemotherapy. Nanomedicine 2008;3(4):453-63
  • Miyawaki J, Matsumura S, Yuge R, Biodistribution and ultrastructural localization of single-walled carbon nanohorns determined in vivo with embedded Gd2O3 labels. ACS Nano 2009;3(6):1399-406
  • Xing Y, Dai L. Nanodiamonds for nanomedicine. Nanomedicine 2009;4(2):207-18
  • Bianco A, Kostarelos K, Prato M. Opportunities and challenges of carbon-based nanomaterials for cancer therapy. Expert Opin Drug Deliv 2008;5(3):331-42
  • Wu W, Wieckowski S, Pastorin G, Targeted delivery of amphotericin B to cells by using functionalized carbon nanotubes. Angew Chem Int Ed 2005;44(39):6358-62
  • Bianco A. Carbon nanotubes for the delivery of therapeutic molecules. Expert Opin Drug Deliv 2004;1(1):57-65
  • Allen TM, Cullis PR. Drug delivery systems: entering the mainstream. Science 2004;303(5665):1818-22
  • O'Neal DP, Hirsch LR, Halas NJ, Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett 2004;209(2):171-6
  • Brannon-Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev 2004;56(11):1649-59
  • Loo C, Lowery A, Halas N, Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 2005;5(4):709-11
  • Huang X, El-Sayed IH, Qian W, El-Sayed MA. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 2006;128(6):2115-20
  • Huff TB, Tong L, Zhao Y, Hyperthermic effects of gold nanorods on tumor cells. Nanomedicine 2007;2(1):125-32
  • Kim W, Ng JK, Kunitake ME, Interfacing silicon nanowires with mammalian cells. J Am Chem Soc 2007;129(23):7228-9
  • Ferrari M. Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 2005;5(3):161-71
  • Peer D, Karp JM, Hong S, Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2007;2(12):751-60
  • Wang X, Yang L, Chen ZG, Shin DM. Application of nanotechnology in cancer therapy and imaging. CA Cancer J Clin 2008;58(2):97-110
  • Farokhzad OC, Langer R. Impact of nanotechnology on drug delivery. ACS Nano 2009;3(1):16-20
  • Pastorin G, Wu W, Wieckowski S, Double functionalization of carbon nanotubes for multimodal drug delivery. Chem Commun 2006;(11):1182-4
  • Samorì C, Ali-Boucetta H, Sainz R, Enhanced anticancer activity of multi-walled carbon nanotube-methotrexate conjugates using cleavable linkers. Chem Commun 2010;46(9):1494-6
  • Ali-Boucetta H, Al-Jamal KT, McCarthy D, Multiwalled carbon nanotube-doxorubicin supramolecular complexes for cancer therapeutics. Chem Commun 2008;(4):459-61
  • Liu Z, Sun XM, Nakayama-Ratchford N, Dai HJ. Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ACS Nano 2007;1(1):50-6
  • Mizejewski GJ. Role of integrins in cancer: survey of expression patterns. Proc Soc Expert Biol Med 1999;222(2):124-38
  • Liu Z, Fan AC, Rakhra K, Supramolecular stacking of doxorubicin on carbon nanotubes for in vivo cancer therapy. Angew Chem Int Ed 2009;48(41):7668-72
  • Heister E, Neves V, Tîlmaciu C, Triple functionalisation of single-walled carbon nanotubes with doxorubicin, a monoclonal antibody, and a fluorescent marker for targeted cancer therapy. Carbon 2009;47(9):2152-60
  • Zhang X, Meng L, Lu Q, Targeted delivery and controlled release of doxorubicin to cancer cells using modified single wall carbon nanotubes. Biomaterials 2009;30(30):6041-7
  • Sudimack J, Lee RJ. Targeted drug delivery via the folate receptor. Adv Drug Deliv Rev 2000;41(2):147-62
  • Chaudhuri P, Soni S, Sengupta S. Single-walled carbon nanotube-conjugated chemotherapy exhibits increased therapeutic index in melanoma. Nanotechnology 2010;21(2):025102 (11pp)
  • Xu G, Zhang W, Ma MK, McLeod HL. Human carboxylesterase 2 is commonly expressed in tumor tissue and is correlated with activation of irinotecan. Clin Cancer Res 2002;8(8):2605-11
  • Chaudhuri P, Harfouche R, Soni S, Shape effect of carbon nanovectors on angiogenesis. ACS Nano 2010;4(1):574-82
  • Geng Y, Dalhaimer P, Cai S, Shape effects of filaments versus spherical particles in flow and drug delivery. Nat Nanotechnol 2007;2(4):249-55
  • Champion JA, Katare YK, Mitragotri S. Particle shape: a new design parameter for micro- and nanoscale drug delivery carriers. J Control Release 2007;121(1-2):3-9
  • Wu W, Li R, Bian X, Covalently combining carbon nanotubes with anticancer agent: preparation and antitumor activity. ACS Nano 2009;3(9):2740-50
  • Liu Z, Chen K, Davis C, Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res 2008;68(16):6652-60
  • Chen J, Chen S, Zhao X, Functionalized single-walled carbon nanotubes as rationally designed vehicles for tumor-targeted drug delivery. J Am Chem Soc 2008;130(49):16778-85
  • Jung Y, Lippard SJ. Direct cellular responses to platinum-induced DNA damage. Chem Rev 2007;107(5):1387-407
  • Feazell RP, Nakayama-Ratchford N, Dai H, Lippard SJ. Soluble single-walled carbon nanotubes as longboat delivery systems for platinum(IV) anticancer drug design. J Am Chem Soc 2007;129(27):8438-9
  • Dhar S, Liu Z, Thomale J, Targeted single-wall carbon nanotube-mediated Pt(IV) prodrug delivery using folate as a homing device. J Am Chem Soc 2008;130(34):11467-76
  • Bhirde AA, Patel V, Gavard J, Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery. ACS Nano 2009;3(2):307-16
  • Tripisciano C, Kraemer K, Taylor A, Borowiak-Palen E. Single-wall carbon nanotubes based anticancer drug delivery system. Chem Phys Lett 2009;478(4-6):200-5
  • Hampel S, Kunze D, Haase D, Carbon nanotubes filled with a chemotherapeutic agent: a nanocarrier mediates inhibition of tumor cell growth. Nanomedicine 2008;3(2):175-82
  • Yang D, Yang F, Hu J, Hydrophilic multi-walled carbon nanotubes decorated with magnetite nanoparticles as lymphatic targeted drug delivery vehicles. Chem Commun 2009;(29):4447-9
  • Maeda H, Wu J, Sawa T, Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 2000;65(1-2):271-84
  • Maeda H, Seymour LW, Miyamoto Y. Conjugates of anticancer agents and polymers: advantages of macromolecular therapeutics in vivo. Bioconjug Chem 1992;3(5):351-62
  • Weng X, Wang M, Ge J, Carbon nanotubes as a protein toxin transporter for selective HER2-positive breast cancer cell destruction. Mol Biosyst 2009;5(10):1224-31
  • Lacerda L, Raffa S, Prato M, Cell-penetrating CNTs for delivery of therapeutics. Nano Today 2007;2(6):38-43
  • Raffa V, Ciofani G, Nitodas S, Can the properties of carbon nanotubes influence their internalization by living cells? Carbon 2008;46(12):1600-10
  • Pantarotto D, Partidos CD, Hoebeke J, Immunization with peptide-functionalized carbon nanotubes enhances virus-specific neutralizing antibody responses. Chem Biol 2003;10(10):961-6
  • Pantarotto D, Briand JP, Prato M, Bianco A. Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem Commun 2004;(1):16-7
  • Pantarotto D, Singh R, McCarthy D, Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew Chem Int Ed 2004;43(39):5242-6
  • Kueltzo LA, Middaugh CR. Nonclassical transport proteins and peptides: an alternative to classical macromolecule delivery systems. J Pharm Sci 2003;92(9):1754-72
  • Lopez CF, Nielsen SO, Moore PB, Klein ML. Understanding nature's design for a nanosyringe. Proc Natl Acad Sci USA 2004;101(13):4431-4
  • Lu Q, Moore JM, Huang G, RNA polymer translocation with single-walled carbon nanotubes. Nano Lett 2004;4(12):2473-7
  • Cai D, Mataraza JM, Qin ZH, Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing. Nat Methods 2005;2(6):449-54
  • Cherukuri P, Bachilo SM, Litovsky SH, Weisman RB. Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells. J Am Chem Soc 2004;126(48):15638-9
  • Kam NW, Jessop TC, Wender PA, Dai H. Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into mammalian cells. J Am Chem Soc 2004;126(22):6850-1
  • Kam NW, O'Connell M, Wisdom JA, Dai H. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci USA 2005;102(33):11600-5
  • Heller DA, Baik S, Eurell TE, Strano MS. Single-walled carbon nanotube spectroscopy in live cells: towards long-term labels and optical sensors. Adv Mater 2005;17(23):2793-9
  • Chin SF, Baughman RH, Dalton AB, Amphiphilic helical peptide enhances the uptake of single-walled carbon nanotubes by living cells. Exp Biol Med 2007;232(9):1236-44
  • Cato MH, D'Annibale F, Mills DM, Cell-type specific and cytoplasmic targeting of PEGylated carbon nanotube-based nanoassemblies. J Nanosci Nanotechnol 2008;8(5):2259-69
  • Kam NW, Liu Z, Dai H. Carbon nanotubes as intracellular transporters for proteins and DNA: an investigation of the uptake mechanism and pathway. Angew Chem Int Ed 2006;45(4):577-81
  • Liu Z, Winters M, Holodniy M, Dai H. siRNA delivery into human T cells and primary cells with carbon-nanotube transporters. Angew Chem Int Ed 2007;46(12):2023-7
  • Zeineldin R, Al-Haik M, Hudson LG. Role of polyethylene glycol integrity in specific receptor targeting of carbon nanotubes to cancer cells. Nano Lett 2009;9(2):751-7
  • Jin H, Heller DA, Strano MS. Single-particle tracking of endocytosis and exocytosis of single-walled carbon nanotubes in NIH-3T3 cells. Nano Lett 2008;8(6):1577-85
  • Jin H, Heller DA, Sharma R, Strano MS. Size-dependent cellular uptake and expulsion of single-walled carbon nanotubes: single particle tracking and a generic uptake model for nanoparticles. ACS Nano 2009;3(1):149-58
  • Gao H, Shi W, Freund LB. Mechanics of receptor-mediated endocytosis. Proc Natl Acad Sci USA 2005;102(27):9469-74
  • Cheng J, Fernando KA, Veca LM, Reversible accumulation of PEGylated single-walled carbon nanotubes in the mammalian nucleus. ACS Nano 2008;2(10):2085-94
  • Ren HX, Chen X, Liu JH, Toxicity of single-walled carbon nanotube: how we were wrong? Mater Today 2010;13(1-2):6-8
  • Boczkowski J, Lanone S. Potential uses of carbon nanotubes in the medical field: how worried should patients be? Nanomedicine 2007;2(4):407-10
  • Poland CA, Duffin R, Kinloch I, Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 2008;3(7):423-8
  • Ryman-Rasmussen JP, Cesta MF, Brody AR, Inhaled carbon nanotubes reach the subpleural tissue in mice. Nat Nanotechnol 2009;4(11):747-51
  • Singh R, Pantarotto D, Lacerda L, Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc Natl Acad Sci USA 2006;103(9):3357-62
  • Lacerda L, Soundararajan A, Singh R, Dynamic imaging of functionalized multi-walled carbon nanotube systemic circulation and urinary excretion. Adv Mater 2008;20(2):225-30
  • Lacerda L, Ali-Boucetta H, Herrero MA, Tissue histology and physiology following intravenous administration of different types of functionalized multiwalled carbon nanotubes. Nanomedicine 2008;3(2):149-61
  • Lacerda L, Herrero MA, Venner K, Carbon-nanotube shape and individualization critical for renal excretion. Small 2008;4(8):1130-2
  • McDevitt MR, Chattopadhyay D, Jaggi JS, PET imaging of soluble yttrium-86-labeled carbon nanotubes in mice. PLoS One 2007;2(9):e907
  • Guo J, Zhang X, Li Q, Li W. Biodistribution of functionalized multiwall carbon nanotubes in mice. Nucl Med Biol 2007;34(5):579-83
  • Liu Z, Davis C, Cai W, Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. Proc Natl Acad Sci USA 2008;105(5):1410-5
  • Liu Z, Cai W, He L, In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat Nanotechnol 2007;2(1):47-52
  • Yang ST, Fernando KA, Liu JH, Covalently PEGylated carbon nanotubes with stealth character in vivo. Small 2008;4(7):940-4
  • Kang B, Yu D, Dai Y, Biodistribution and accumulation of intravenously administered carbon nanotubes in mice probed by Raman spectroscopy and fluorescent labeling. Carbon 2009;47(4):1189-92

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.