408
Views
73
CrossRef citations to date
0
Altmetric
Reviews

The concept of privileged structures in rational drug design: focus on acridine and quinoline scaffolds in neurodegenerative and protozoan diseases

&
Pages 251-268 | Published online: 18 Jan 2011

Bibliography

  • Munos B. Lessons from 60 years of pharmaceutical innovation. Nat Rev Drug Discov 2009;8(12):959-68
  • Paul SM, Mytelka DS, Dunwiddie CT, How to improve R&D productivity: the pharmaceutical industry's grand challenge. Nat Rev Drug Discov 2010;9(3):203-14
  • Bleicher KH, Bohm HJ, Muller K, Hit and lead generation: beyond high-throughput screening. Nat Rev Drug Discov 2003;2(5):369-78
  • Fattori D. Molecular recognition: the fragment approach in lead generation. Drug Discov Today 2004;9(5):229-38
  • Bondensgaard K, Ankersen M, Thogersen H, Recognition of privileged structures by G-protein coupled receptors. J Med Chem 2004;47(4):888-99
  • Evans BE, Rittle KE, Bock MG, Methods for drug discovery: development of potent, selective, orally effective cholecystokinin antagonists. J Med Chem 1988;31(12):2235-46
  • Patchett AA, Nargund RP. Privileged structures – An update. Annu Reports Med Chem 2000;35:289-98
  • Muller G. Medicinal chemistry of target family-directed masterkeys. Drug Discov Today 2003;8(15):681-91
  • Che Y, Marshall GR. Privileged scaffolds targeting reverse-turn and helix recognition. Expert Opin Ther Targets 2008;12(1):101-14
  • Costantino L, Barlocco D. Privileged structures as leads in medicinal chemistry. Curr Med Chem 2006;13(1):65-85
  • DeSimone RW, Currie KS, Mitchell SA, Privileged structures: applications in drug discovery. Comb Chem High Throughput Screen 2004;7(5):473-94
  • Duarte CD, Barreiro EJ, Fraga CA. Privileged structures: a useful concept for the rational design of new lead drug candidates. Mini Rev Med Chem 2007;7(11):1108-19
  • Horton DA, Bourne GT, Smythe ML. The combinatorial synthesis of bicyclic privileged structures or privileged substructures. Chem Rev 2003;103(3):893-930
  • Kamal A, Reddy KL, Devaiah V, Recent advances in the solid-phase combinatorial synthetic strategies for the benzodiazepine based privileged structures. Mini Rev Med Chem 2006;6(1):53-69
  • Triggle DJ. 1,4-Dihydropyridines as calcium channel ligands and privileged structures. Cell Mol Neurobiol 2003;23(3):293-303
  • Schnur DM, Beno BR, Tebben AJ, Methods for combinatorial and parallel library design. Methods Mol Biol 2011;672:387-434
  • Welsch ME, Snyder SA, Stockwell BR. Privileged scaffolds for library design and drug discovery. Curr Opin Chem Biol 2010;14(3):347-61
  • Kubinyi H. Chemogenomics in drug discovery. Ernst Schering Res Found Workshop 2006;(58):1-19
  • McGovern SL, Helfand BT, Feng B, A specific mechanism of nonspecific inhibition. J Med Chem 2003;46(20):4265-72
  • Wisniewski T, Sigurdsson EM. Therapeutic approaches for prion and Alzheimer's diseases. FEBS J 2007;274(15):3784-98
  • O'Neill PM, Ward SA, Berry NG, A medicinal chemistry perspective on 4-aminoquinoline antimalarial drugs. Curr Top Med Chem 2006;6(5):479-507
  • Musiol R, Serda M, Hensel-Bielowka S, Quinoline-based antifungals. Curr Med Chem 2010;17(18):1960-73
  • Tekwani BL, Walker LA. 8-Aminoquinolines: future role as antiprotozoal drugs. Curr Opin Infect Dis 2006;19(6):623-31
  • Font M, Monge A, Alvarez E, Synthesis and evaluation of new Reissert analogs as HIV-1 reverse transcriptase inhibitors. 1. Quinoline and quinoxaline derivatives. Drug Des Discov 1997;14(4):305-32
  • Warshakoon NC, Sheville J, Bhatt RT, Design and synthesis of substituted quinolines as novel and selective melanin concentrating hormone antagonists as anti-obesity agents. Bioorg Med Chem Lett 2006;16(19):5207-11
  • DeRuiter J, Brubaker AN, Whitmer WL, Synthesis and aldose reductase inhibitory activity of substituted 2-oxoquinoline-1-acetic acid derivatives. J Med Chem 1986;29(10):2024-8
  • Kaila N, Janz K, Huang A, 2-(4-Chlorobenzyl)-3-hydroxy-7,8,9,10-tetrahydrobenzo[H]quinoline-4-carbox ylic acid (PSI-697): identification of a clinical candidate from the quinoline salicylic acid series of P-selectin antagonists. J Med Chem 2007;50(1):40-64
  • Liu Q, Chang JW, Wang J, Discovery of 1-(4-(4-Propionylpiperazin-1-yl)-3-(trifluoromethyl)phenyl)-9-(quinolin-3- yl)benzo[h][1,6]naphthyridin-2(1H)-one as a Highly Potent, Selective Mammalian Target of Rapamycin (mTOR) Inhibitor for the Treatment of Cancer. J Med Chem 2010;53(19):7146-55
  • Knight SD, Adams ND, Burgess JL, Discovery of GSK2126458, a highly potent inhibitor of PI3K and the mammalian target of rapamycin. ACS Med Chem Lett 2010:39-43
  • Dorn A, Vippagunta SR, Matile H, An assessment of drug-haematin binding as a mechanism for inhibition of haematin polymerisation by quinoline antimalarials. Biochem Pharmacol 1998;55(6):727-36
  • Ginsburg H, Famin O, Zhang J, Inhibition of glutathione-dependent degradation of heme by chloroquine and amodiaquine as a possible basis for their antimalarial mode of action. Biochem Pharmacol 1998;56(10):1305-13
  • Watkins WM, Sixsmith DG, Spencer HC, Effectiveness of amodiaquine as treatment for chloroquine-resistant Plasmodium falciparum infections in Kenya. Lancet 1984;1(8373):357-9
  • van Riemsdijk MM, Sturkenboom MC, Pepplinkhuizen L, Mefloquine increases the risk of serious psychiatric events during travel abroad: a nationwide case-control study in the Netherlands. J Clin Psychiatry 2005;66(2):199-204
  • Kaur K, Jain M, Reddy RP, Quinolines and structurally related heterocycles as antimalarials. Eur J Med Chem 2010;45(8):3245-64
  • Kouznetsov VV, Gomez-Barrio A. Recent developments in the design and synthesis of hybrid molecules based on aminoquinoline ring and their antiplasmodial evaluation. Eur J Med Chem 2009;44(8):3091-113
  • Muregi FW, Ishih A. Next-generation antimalarial drugs: hybrid molecules as a new strategy in drug design. Drug Dev Res 2010;71(1):20-32
  • Chiyanzu I, Clarkson C, Smith PJ, Design, synthesis and anti-plasmodial evaluation in vitro of new 4-aminoquinoline isatin derivatives. Bioorg Med Chem 2005;13(9):3249-61
  • Lavrado J, Moreira R, Paulo A. Indoloquinolines as scaffolds for drug discovery. Curr Med Chem 2010;17(22):2348-70
  • Gupta L, Srivastava K, Singh S, Synthesis of 2-[3-(7-Chloro-quinolin-4-ylamino)-alkyl]-1-(substituted phenyl)-2,3,4,9-tetrahydro-1H-beta-carbolines as a new class of antimalarial agents. Bioorg Med Chem Lett 2008;18(11):3306-9
  • Biot C, Taramelli D, Forfar-Bares I, Insights into the mechanism of action of ferroquine. Relationship between physicochemical properties and antiplasmodial activity. Mol Pharm 2005;2(3):185-93
  • Dive D, Biot C. Ferrocene conjugates of chloroquine and other antimalarials: the development of ferroquine, a new antimalarial. ChemMedChem 2008;3(3):383-91
  • Biot C, Pradines B, Sergeant MH, Design, synthesis, and antimalarial activity of structural chimeras of thiosemicarbazone and ferroquine analogues. Bioorg Med Chem Lett 2007;17(23):6434-8
  • Matos J, Vale N, Moreira R, Towards dual-action anti-malarials – primacenes, ferrocene derivatives of primaquine. Drugs Fut 2009;34:71
  • Gemma S, Campiani G, Butini S, Combining 4-aminoquinoline- and clotrimazole-based pharmacophores toward innovative and potent hybrid antimalarials. J Med Chem 2009;52(2):502-13
  • Dechy-Cabaret O, Benoit-Vical F, Robert A, Preparation and antimalarial activities of ‘trioxaquines’, new modular molecules with a trioxane skeleton linked to a 4-aminoquinoline. Chembiochem 2000;1(4):281-3
  • Cosledan F, Fraisse L, Pellet A, Selection of a trioxaquine as an antimalarial drug candidate. Proc Natl Acad Sci USA 2008;105(45):17579-84
  • Bellot F, Cosledan F, Vendier L, Trioxaferroquines as new hybrid antimalarial drugs. J Med Chem 2010;53(10):4103-9
  • Davis TM, Hung TY, Sim IK, Piperaquine: a resurgent antimalarial drug. Drugs 2005;65(1):75-87
  • Palit P, Paira P, Hazra A, Phase transfer catalyzed synthesis of bis-quinolines: antileishmanial activity in experimental visceral leishmaniasis and in vitro antibacterial evaluation. Eur J Med Chem 2009;44(2):845-53
  • Girault S, Grellier P, Berecibar A, Antiplasmodial activity and cytotoxicity of bis-, tris-, and tetraquinolines with linear or cyclic amino linkers. J Med Chem 2001;44(11):1658-65
  • Adlard PA, Cherny RA, Finkelstein DI, Rapid restoration of cognition in Alzheimer's transgenic mice with 8-hydroxy quinoline analogs is associated with decreased interstitial Abeta. Neuron 2008;59(1):43-55
  • Cherny RA, Atwood CS, Xilinas ME, Treatment with a copper-zinc chelator markedly and rapidly inhibits beta-amyloid accumulation in Alzheimer's disease transgenic mice. Neuron 2001;30(3):665-76
  • Ritchie CW, Bush AI, Mackinnon A, Metal-protein attenuation with iodochlorhydroxyquin (clioquinol) targeting Abeta amyloid deposition and toxicity in Alzheimer disease: a pilot phase 2 clinical trial. Arch Neurol 2003;60(12):1685-91
  • LeVine H III, Ding Q, Walker JA, Clioquinol and other hydroxyquinoline derivatives inhibit Abeta(1-42) oligomer assembly. Neurosci Lett 2009;465(1):99-103
  • Gal S, Fridkin M, Amit T, M30, a novel multifunctional neuroprotective drug with potent iron chelating and brain selective monoamine oxidase-ab inhibitory activity for Parkinson's disease. J Neural Transm Suppl 2006;(70):447-56
  • Ghosh B, Antonio T, Reith ME, Discovery of 4-(4-(2-((5-Hydroxy-1,2,3,4-tetrahydronaphthalen-2-yl)(propyl)amino)ethyl) piperazin-1-yl)quinolin-8-ol and its analogues as highly potent dopamine D2/D3 agonists and as iron chelator: in vivo activity indicates potential application in symptomatic and neuroprotective therapy for Parkinson's disease. J Med Chem 2010;53(5):2114-25
  • Camps P, Formosa X, Galdeano C, Pyrano[3,2-c]quinoline-6-chlorotacrine hybrids as a novel family of acetylcholinesterase- and beta-amyloid-directed anti-Alzheimer compounds. J Med Chem 2009;52(17):5365-79
  • Fernandez-Bachiller MI, Perez C, Gonzalez-Munoz GC, Novel tacrine-8-hydroxyquinoline hybrids as multifunctional agents for the treatment of Alzheimer's disease, with neuroprotective, cholinergic, antioxidant, and copper-complexing properties. J Med Chem 2010;53(13):4927-37
  • Korth C, May BC, Cohen FE, Acridine and phenothiazine derivatives as pharmacotherapeutics for prion disease. Proc Natl Acad Sci USA 2001;98(17):9836-41
  • Doh-Ura K, Iwaki T, Caughey B. Lysosomotropic agents and cysteine protease inhibitors inhibit scrapie-associated prion protein accumulation. J Virol 2000;74(10):4894-7
  • Klingenstein R, Melnyk P, Leliveld SR, Similar structure-activity relationships of quinoline derivatives for antiprion and antimalarial effects. J Med Chem 2006;49(17):5300-8
  • Murakami-Kubo I, Doh-Ura K, Ishikawa K, Quinoline derivatives are therapeutic candidates for transmissible spongiform encephalopathies. J Virol 2004;78(3):1281-8
  • Fukuuchi T, Okuda K, Yoshihara S, A candidate anti-prion disease agent, 2,2′-biquinoline, decreases expression of prion protein and mRNA in prion-infected cells. J Health Sci 2009;55(4):586-92
  • Wainwright M. Acridine-a neglected antibacterial chromophore. J Antimicrob Chemother 2001;47(1):1-13
  • Girault S, Grellier P, Berecibar A, Antimalarial, antitrypanosomal, and antileishmanial activities and cytotoxicity of bis(9-amino-6-chloro-2-methoxyacridines): influence of the linker. J Med Chem 2000;43(14):2646-54
  • Gamage SA, Tepsiri N, Wilairat P, Synthesis and in vitro evaluation of 9-anilino-3,6-diaminoacridines active against a multidrug-resistant strain of the malaria parasite Plasmodium falciparum. J Med Chem 1994;37(10):1486-94
  • Gamage SA, Figgitt DP, Wojcik SJ, Structure-activity relationships for the antileishmanial and antitrypanosomal activities of 1′-substituted 9-anilinoacridines. J Med Chem 1997;40(16):2634-42
  • Lyakhov SA, Suveyzdis YI, Litvinova LA, Biological active acridine derivatives. Part 4: synthesis and antiviral activity of some bis-acridinylated diamides. Pharmazie 2000;55(10):733-6
  • Denny WA. Acridine derivatives as chemotherapeutic agents. Curr Med Chem 2002;9(18):1655-65
  • Gniazdowski M, Szmigiero L. Nitracrine and its congeners–an overview. Gen Pharmacol 1995;26(3):473-81
  • Weidenaar AC, de Jonge HJ, Fidler V, Addition of PTK787/ZK 222584 can lower the dosage of amsacrine to achieve equal amounts of acute myeloid leukemia cell death. Anticancer Drugs 2008;19(1):45-54
  • Tien KH. Intraamniotic injection of ethacridine for second-trimester induction of labor. Obstet Gynecol 1983;61(6):733-6
  • Csuk R, Barthel A, Raschke C, Synthesis of monomeric and dimeric acridine compounds as potential therapeutics in Alzheimer and prion diseases. Arch Pharm (Weinheim) 2009;342(12):699-709
  • Sondhi SM, Singh J, Rani R, Synthesis, anti-inflammatory and anticancer activity evaluation of some novel acridine derivatives. Eur J Med Chem 2009;45(2):555-63
  • Chang C, Lin-Hua T, Jantanavivat C. Studies on a new antimalarial compound: pyronaridine. Trans R Soc Trop Med Hyg 1992;86(1):7-10
  • Kumar A, Srivastava K, Raja Kumar S, Synthesis of 9-anilinoacridine triazines as new class of hybrid antimalarial agents. Bioorg Med Chem Lett 2009;19(24):6996-9
  • Fattorusso C, Campiani G, Kukreja G, Design, synthesis, and structure-activity relationship studies of 4-quinolinyl- and 9-acrydinylhydrazones as potent antimalarial agents. J Med Chem 2008;51(5):1333-43
  • Kelly JX, Smilkstein MJ, Brun R, Discovery of dual function acridones as a new antimalarial chemotype. Nature 2009;459(7244):270-3
  • Horvath D. A virtual screening approach applied to the search for trypanothione reductase inhibitors. J Med Chem 1997;40(15):2412-23
  • Chibale K, Haupt H, Kendrick H, Antiprotozoal and cytotoxicity evaluation of sulfonamide and urea analogues of quinacrine. Bioorg Med Chem Lett 2001;11(19):2655-7
  • Bonse S, Santelli-Rouvier C, Barbe J, Inhibition of Trypanosoma cruzi trypanothione reductase by acridines: kinetic studies and structure-activity relationships. J Med Chem 1999;42(26):5448-54
  • Girault S, Davioud-Charvet TE, Maes L, Potent and specific inhibitors of trypanothione reductase from Trypanosoma cruzi: bis(2-aminodiphenylsulfides) for fluorescent labeling studies. Bioorg Med Chem 2001;9(4):837-46
  • Di Giorgio C, Shimi K, Boyer G, Synthesis and antileishmanial activity of 6-mono-substituted and 3,6-di-substituted acridines obtainedby acylation of proflavine. Eur J Med Chem 2007;42(10):1277-84
  • Carole DG, Michel DM, Julien C, Synthesis and antileishmanial activities of 4,5-di-substituted acridines as compared to their 4-mono-substituted homologues. Bioorg Med Chem 2005;13(19):5560-8
  • Di Giorgio C, Delmas F, Filloux N, In vitro activities of 7-substituted 9-chloro and 9-amino-2-methoxyacridines and their bis- and tetra-acridine complexes against Leishmania infantum. Antimicrob Agents Chemother 2003;47(1):174-80
  • Love R. Old drugs to treat new variant Creutzfeldt-Jakob disease. Lancet 2001;358(9281):563-63
  • Klingenstein R, Lober S, Kujala P, Tricyclic antidepressants, quinacrine and a novel, synthetic chimera thereof clear prions by destabilizing detergent-resistant membrane compartments. J Neurochem 2006;98(3):748-59
  • Collinge J, Gorham M, Hudson F, Safety and efficacy of quinacrine in human prion disease (PRION-1 study): a patient-preference trial. Lancet Neurol 2009;8(4):334-44
  • May BC, Witkop J, Sherrill J, Structure-activity relationship study of 9-aminoacridine compounds in scrapie-infected neuroblastoma cells. Bioorg Med Chem Lett 2006;16(18):4913-16
  • Cope H, Mutter R, Heal W, Synthesis and SAR study of acridine, 2-methylquinoline and 2-phenylquinazoline analogues as anti-prion agents. Eur J Med Chem 2006;41(10):1124-43
  • Nguyen TH, Lee CY, Teruya K, Antiprion activity of functionalized 9-aminoacridines related to quinacrine. Bioorg Med Chem 2008;16(14):6737-46
  • May BC, Fafarman AT, Hong SB, Potent inhibition of scrapie prion replication in cultured cells by bis-acridines. Proc Natl Acad Sci USA 2003;100(6):3416-21
  • Bongarzone S, Tran HN, Cavalli A, Parallel synthesis, evaluation, and preliminary structure-activity relationship of 2,5-diamino-1,4-benzoquinones as a novel class of bivalent anti-prion compound. J Med Chem 2010;53(22):8197-201
  • Renslo AR, McKerrow JH. Drug discovery and development for neglected parasitic diseases. Nat Chem Biol 2006;2(12):701-10
  • Cavalli A, Lizzi F, Bongarzone S, Complementary medicinal chemistry-driven strategies toward new antitrypanosomal and antileishmanial lead drug candidates. FEMS Immunol Med Microbiol 2010;58(1):51-60
  • Cavalli A, Lizzi F, Bongarzone S, Privileged structure-guided synthesis of quinazoline derivatives as inhibitors of trypanothione reductase. Bioorg Med Chem Lett 2009;19(11):3031-5
  • Schnur DM, Hermsmeier MA, Tebben AJ. Are target-family-privileged substructures truly privileged? J Med Chem 2006;49(6):2000-9
  • Cavalli A, Bolognesi ML, Minarini A, Multi-target-directed ligands to combat neurodegenerative diseases. J Med Chem 2008;51(3):347-72
  • Cavalli A, Bolognesi ML. Neglected tropical diseases: multi-target-directed ligands in the search for novel lead candidates against Trypanosoma and Leishmania. J Med Chem 2009;52(23):7339-59
  • Melchiorre C, Bolognesi ML, Minarini A, Polyamines in drug discovery: from the universal template approach to the multitarget-directed ligand design strategy. J Med Chem 2010;53(16):5906-14
  • Morphy R, Kay C, Rankovic Z. From magic bullets to designed multiple ligands. Drug Discov Today 2004;9(15):641-51
  • Howlett D, Cutler P, Heales S, Hemin and related porphyrins inhibit beta-amyloid aggregation. FEBS Lett 1997;417(2):249-51
  • Lee KS, Raymond LD, Schoen B, Hemin interactions and alterations of the subcellular localization of prion protein. J Biol Chem 2007;282(50):36525-33
  • Pramanik D, Dey SG. Active site environment of heme-bound amyloid beta peptide associated with Alzheimer's disease. J Am Chem Soc 2010; DOI: 10.1021/ja1084578

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.