102
Views
8
CrossRef citations to date
0
Altmetric
Technology Evaluation

Three-dimensional structure generators of drug-like compounds: DG-AMMOS, an open-source package

, &
Pages 339-351 | Published online: 18 Feb 2011

Bibliography

  • Clark DE. What has virtual screening ever done for drug discovery? Expert Opin Drug Discov 2008;3(8):841-51
  • Shoichet BK. Virtual screening of chemical libraries. Nature 2004;432(7019):862-5
  • McInnes C. Virtual screening strategies in drug discovery. Curr Opin Chem Biol 2007;11(5):494-502
  • Villoutreix BO, Eudes R, Miteva MA. Structure-based virtual ligand screening: recent success stories. Comb Chem High Throughput Screen 2009;12(10):1000-16
  • Seifert MH, Lang M. Essential factors for successful virtual screening. Mini Rev Med Chem 2008;8(1):63-72
  • Miteva MA. Hierarchical structure-based virtual screening for drug design. Biotechnol Biotechnol Equip 2008;1:634-8
  • Montes M, Miteva MA, Villoutreix BO. Structure-based virtual ligand screening with LigandFit: pose prediction and enrichment of compound collections. Proteins 2007;68(3):712-25
  • Sperandio O, Miteva MA, Delfaud F, Receptor-based computational screening of compound databases: the main docking-scoring engines. Curr Protein Pept Sci 2006;7(5):369-93
  • FRED - Openeye Scientific Software. Openeye Scientific Software
  • Sauton N, Lagorce D, Villoutreix BO, MS-DOCK: accurate multiple conformation generator and rigid docking protocol for multi-step virtual ligand screening. BMC Bioinformatics 2008;9:184
  • Martin YC, Kofron JL, Traphagen LM. Do structurally similar molecules have similar biological activity? J Med Chem 2002;45(19):4350-8
  • Bender A, Jenkins JL, Scheiber J, How similar are similarity searching methods? A principal component analysis of molecular descriptor space. J Chem Inf Model 2009;49(1):108-19
  • Livingstone DJ. The characterization of chemical structures using molecular properties. A survey. J Chem Inf Comput Sci 2000;40(2):195-209
  • Downs GM, Willett P. Similarity searching in databases of chemical structures. In: Lipkowitz KB, Boyd DB, editors. edition. Reviews in computational chemistry. VCH Publishers NY; 1995. p. 1-66
  • Martin YC. 3D database searching in drug design. J Med Chem 1992;35(12):2145-54
  • Good AC, Mason JS. Three-dimensional structure database searches. In: Lipkowitz KB, Boyd DB, editors, edition. Reviews in computational chemistry. VCH Publishers NY; 1995. p. 67-117
  • Willett P. Searching techniques for databases of two- and three-dimensional chemical structures. J Med Chem 2005;48(13):4183-99
  • Wolber G, Seidel T, Bendix F, Molecule-pharmacophore superpositioning and pattern matching in computational drug design. Drug Discov Today 2008;13(1-2):23-9
  • Jones G, Willett P, Glen RC. A genetic algorithm for flexible molecular overlay and pharmacophore elucidation. J Comput Aided Mol Des 1995;9(6):532-49
  • OpenEyes ROCS version 2.2. 2006
  • Quintus F, Sperandio O, Grynberg J, Ligand scaffold hopping combining 3D maximal substructure search and molecular similarity. BMC Bioinformatics 2009;10:245
  • Sperandio O, Andrieu O, Miteva MA, MED-SuMoLig: a new ligand-based screening tool for efficient scaffold hopping. J Chem Inf Model 2007;47(3):1097-110
  • Schwab CH. Conformations and 3D pharmacophore searching. Drug Discov Today Technologies 2010; In press
  • Ekins S, Bradford J, Dole K, A collaborative database and computational models for tuberculosis drug discovery. Mol Biosyst 2010;6(5):840-51
  • Zhang Q, Muegge I. Scaffold hopping through virtual screening using 2D and 3D similarity descriptors: ranking, voting, and consensus scoring. J Med Chem 2006;49(5):1536-48
  • Venkatraman V, Perez-Nueno VI, Mavridis L, Comprehensive comparison of ligand-based virtual screening tools against the DUD data set reveals limitations of current 3D methods. J Chem Inf Model 2010
  • Weininger D. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J Chem Inf Comput Sci 1988;28(1):31-6
  • Dalby A, Nourse JG, Hounshell WD, Description of several chemical structure file formats used by computer programs developed at molecular design limited. J Chem Inf Comput Sci 1992;32:244-55
  • Del Rio A, Barbosa AJ, Caporuscio F, CoCoCo: a free suite of multiconformational chemical databases for high-throughput virtual screening purposes. Mol Biosyst;6(11):2122-8
  • Blum LC, Reymond JL. 970 million druglike small molecules for virtual screening in the chemical universe database GDB-13. J Am Chem Soc 2009;131(25):8732-3
  • Reymond JL. Chemical space as a source for new drugs. Med Chem Commun 2010;1:30-8
  • Barton DH. The conformation of the steroid nucleus. 1950. Experientia 1994;50(4):390-4
  • Bostrom J, Greenwood JR, Gottfries J. Assessing the performance of OMEGA with respect to retrieving bioactive conformations. J Mol Graph Model 2003;21(5):449-62
  • Kirchmair J, Wolber G, Laggner C, Comparative performance assessment of the conformational model generators omega and catalyst: a large-scale survey on the retrieval of protein-bound ligand conformations. J Chem Inf Model 2006;46(4):1848-61
  • Perola E, Walters WP, Charifson PS. A detailed comparison of current docking and scoring methods on systems of pharmaceutical relevance. Proteins 2004;56(2):235-49
  • Renner S, Schwab CH, Gasteiger J, Impact of conformational flexibility on three-dimensional similarity searching using correlation vectors. J Chem Inf Model 2006;46(6):2324-32
  • Sadowski J, Gasteiger J. From atoms and bonds to three-dimensional atomic coordinates: automatic model builders. Chem Rev 1993;93:2567-81
  • Steinbeck C, Hoppe C, Kuhn S, Recent developments of the chemistry development kit (CDK) - an open-source java library for chemo- and bioinformatics. Curr Pharm Des 2006;12(17):2111-20
  • Brameld KA, Kuhn B, Reuter DC, Small molecule conformational preferences derived from crystal structure data. A medicinal chemistry focused analysis. J Chem Inf Model 2008;48(1):1-24
  • Kirchmair J, Ristic S, Eder K, Fast and efficient in silico 3D screening: toward maximum computational efficiency of pharmacophore-based and shape-based approaches. J Chem Inf Model 2007;47(6):2182-96
  • Sadowski J, Gasteiger J, Klebe G. Comparison of automatic three-dimensional model builders. J Chem Inf Comput Sci 1994;34
  • The 3D structure generator CORINA.: Molecular Networks GmbH, Erlangen, Germany. 2010
  • OMEGA - Openeye Scientific Software. Available from: http://www.eyesopen.com
  • Kirchmair J, Laggner C, Wolber G, Comparative analysis of protein-bound ligand conformations with respect to catalyst’s conformational space subsampling algorithms. J Chem Inf Model 2005;45(2):422-30
  • Sperandio O, Souaille M, Delfaud F, MED-3DMC: a new tool to generate 3D conformation ensembles of small molecules with a Monte Carlo sampling of the conformational space. Eur J Med Chem 2009;44(4):1405-9
  • Watts KS, Dalal P, Murphy RB, ConfGen: a conformational search method for efficient generation of bioactive conformers. J Chem Inf Model 2010;50(4):534-46
  • Vainio MJ, Johnson MS. Generating conformer ensembles using a multiobjective genetic algorithm. J Chem Inf Model 2007;47(6):2462-74
  • Leite TB, Gomes D, Miteva MA, Frog: a FRee Online druG 3D conformation generator (Web Server issue). Nucleic Acids Res 2007;35:W568-72
  • Miteva MA, Guyon F, Tuffery P. Frog2: efficient 3D conformation ensemble generator for small compounds. Nucleic Acids Res 2010;38(Suppl):W622-7
  • Lagorce D, Pencheva T, Villoutreix BO, DG-AMMOS: a new tool to generate 3d conformation of small molecules using distance geometry and automated molecular mechanics optimization for in silico screening. BMC Chem Biol 2009;9:6
  • Li J, Ehlers T, Sutter J, CAESAR: a new conformer generation algorithm based on recursive buildup and local rotational symmetry consideration. J Chem Inf Model 2007;47(5):1923-32
  • Molsoft. Interactive 2D to 3D Molecular Converter - Molsoft, LLC Available from: http://www.molsoft.com/2dto3d.html
  • OpenBabel 2.3.0. 2010
  • SMI23D – REST web service that can generate 3D structures from input 2D structures. 2010
  • The Official UCSF DOCK Web-site – Contributed Code. 2010. Available from: http://dock.compbio.ucsf.edu/Contributed_Code/index.htm. [Cited]
  • AMMP. Available from: http://www.cs.gsu.edu/∼cscrwh/ammp/ammp.html
  • Chastine JW, Brooks JC, Zhu Y, AMMP-Vis: a collaborative virtual environment for molecular modeling. Proceedings of the ACM symposium on Virtual reality software and technology, Monterey, CA, USA. 2005. p. 8-15
  • Weber IT, Harrison RW. Molecular mechanics calculations on Rous sarcoma virus protease with peptide substrates. Protein Sci 1997;6(11):2365-74
  • Crippen GM, Smellie AS, Peng JW. Use of augmented Lagrangians in the calculation of molecular conformations by distance geometry. J Chem Inf Comput Sci 1988;28(3):125-8
  • Spellmeyer DC, Wong AK, Bower MJ, Conformational analysis using distance geometry methods. J Mol Graph Model 1997;15(1):18-36
  • Rappé AK, Casewit CJ, Colwell KS, UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc 1992;114:10024-35
  • Weber IT, Harrison RW. Molecular mechanics analysis of drug-resistant mutants of HIV protease. Protein Eng 1999;12(6):469-74
  • INSERM UMR-S 973 – MTi – Download Section. 2010. Available from: http://www.mti.univ-paris-diderot.fr/en/downloads.html. [Cited]
  • RPBS – Ressource Parisienne en Bioinformatique Structurale. 2010 [Cited; Available from: http://bioserv.rpbs.univ-paris-diderot.fr
  • DG-AMMOS on Mobyle Portal. 2010. Available from: http://mobyle.rpbs.univ-paris-diderot.fr/cgi-bin/portal.py?form=DG-AMMOS. [Cited]
  • Neron B, Menager H, Maufrais C, Mobyle: a new full web bioinformatics framework. Bioinformatics 2009;25(22):3005-11
  • Berman HM, Westbrook J, Feng Z, The Protein Data Bank. Nucleic Acids Res 2000;28(1):235-42
  • Hartshorn MJ, Verdonk ML, Chessari G, Diverse, high-quality test set for the validation of protein-ligand docking performance. J Med Chem 2007;50(4):726-41
  • ChemBridge DIVERSetTM collection. 2009; Available from: http://www.chembridge.com/collected-screening-libraries.html [Cited]
  • Lagorce D, Sperandio O, Galons H, FAF-Drugs2: free ADME/tox filtering tool to assist drug discovery and chemical biology projects. BMC Bioinformatics 2008;9:396
  • Segers K, Sperandio O, Sack M, Design of protein membrane interaction inhibitors by virtual ligand screening, proof of concept with the C2 domain of factor V. Proc Natl Acad Sci USA 2007;104(31):12697-702
  • Montes M, Braud E, Miteva MA, Receptor-based virtual ligand screening for the identification of novel CDC25 phosphatase inhibitors. J Chem Inf Model 2008;48(1):157-65
  • Sperandio O, Reynes CH, Camproux AC, Rationalizing the chemical space of protein-protein interaction inhibitors. Drug Discov Today 2010;15(5-6):220-9
  • Wells JA, McClendon CL. Reaching for high-hanging fruit in drug discovery at protein-protein interfaces. Nature 2007;450(7172):1001-9
  • Basse N, Montes M, Marechal X, Novel organic proteasome inhibitors identified by virtual and in vitro screening. J Med Chem 2010;53(1):509-13
  • Clark RD. Prospective ligand- and target-based 3D QSAR: state of the art 2008. Curr Top Med Chem 2009;9(9):791-810
  • DiMasi JA, Hansen RW, Grabowski HG. The price of innovation: new estimates of drug development costs. J Health Econ 2003;22(2):151-85
  • Adams CP, Brantner VV. Estimating the cost of new drug development: is it really 802 million dollars? Health Aff (Millwood) 2006;25(2):420-8
  • Wlodawer A. Rational approach to AIDS drug design through structural biology. Annu Rev Med 2002;53:595-614
  • Hartman GD, Egbertson MS, Halczenko W, Non-peptide fibrinogen receptor antagonists. 1. Discovery and design of exosite inhibitors. J Med Chem 1992;35(24):4640-2
  • Leban J, Saeb W, Garcia G, Discovery of a novel series of DHODH inhibitors by a docking procedure and QSAR refinement. Bioorg Med Chem Lett 2004;14(1):55-8
  • Villoutreix BO, Renault N, Lagorce D, Free resources to assist structure-based virtual ligand screening experiments. Curr Protein Pept Sci 2007;8(4):381-411
  • Geldenhuys WJ, Gaasch KE, Watson M, Optimizing the use of open-source software applications in drug discovery. Drug Discov Today 2006;11(3-4):127-32
  • DeLano WL. The case for open-source software in drug discovery. Drug Discov Today 2005;10(3):213-17
  • Venkatraman V, Perez-Nueno VI, Mavridis L, Comprehensive comparison of ligand-based virtual screening tools against the DUD data set reveals limitations of current 3D methods. J Chem Inf Model
  • Musafia B, Senderowitz H. Biasing conformational ensembles towards bioactive-like conformers for ligand-based drug design. Expert Opin Drug Discov 2010;5(10):943-59
  • Musafia B, Senderowitz H. Bioactive conformational biasing: a new method for focusing conformational ensembles on bioactive-like conformers. J Chem Inf Model 2009;49(11):2469-80
  • Yongye AB, Bender A, Martinez-Mayorga K. Dynamic clustering threshold reduces conformer ensemble size while maintaining a biologically relevant ensemble. J Comput Aided Mol Des 2010;24(8):675-86
  • Meslamani JE, Andre F, Petitjean M. Assessing the geometric diversity of cytochrome P450 ligand conformers by hierarchical clustering with a stop criterion. J Chem Inf Model 2009;49(2):330-7
  • KNIME. Konstanz Information Miner. Available from: http://www.knime.org/knime
  • Pipeline Pilot. Accelrys 2010
  • FROG2 on Mobyle Portal. 2010
  • Steinbeck C, Han Y, Kuhn S, The chemistry development kit (CDK): an open-source Java library for chemo- and bioinformatics. J Chem Inf Comput Sci 2003;43(2):493-500
  • ChemAxon. Available from: www.chemaxon.com. 2009
  • Guha R, Howard MT, Hutchison GR, The blue obelisk-interoperability in chemical informatics. J Chem Inf Model 2006;46(3):991-8
  • Weininger D. Rubicon 4.9. Daylight Chemical Information Systems, Inc. 2008

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.