272
Views
14
CrossRef citations to date
0
Altmetric
Reviews

Small interfering ribonucleic acid design strategies for effective targeting and gene silencing

, , &
Pages 269-289 | Published online: 23 Feb 2011

Bibliography

  • Napoli C, Lemieux C, Jorgensen R. Introduction of a chimeric chalcone synthase gene into petunia results in reversible cosuppression of homologous genes in trans. Plant Cell 1990;2:279-89
  • Fire A, Xu S, Montgomery MK, Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998;391:806-11
  • Elbashir SM, Harborth J, Lendeckel W, Duplexes of 21-nucleotide RNAs mediate RNA interference in mammalian cell culture. Nature 2001;411:494-8
  • Hammond SM, Boettcher S, Caudy AA, Argonaute2, a link between genetic and biochemical analyses of RNAi. Science 2001;293:1146-50
  • Sharp PA. RNA interference-2001. Genes Dev 2001;15:485-90
  • Hutvagner G, Zamore PD. RNAi: nature abhors a double-strand. Curr Opin Genet Dev 2002;12:225-32
  • Kim DH, Behlke MA, Rose SD, Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy. Nat Biotechnol 2005;23:222-6
  • Elbashir SM, Martinez J, Patkaniowska A, Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J 2001;20:6877-88
  • Reynolds A, Leake D, Boese Q, Rational siRNA design for RNA interference. Nat Biotechnol 2004;22:326-30
  • Ui-Tei K, Naito Y, Takahashi F, Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Res 2004;32:936-48
  • Amarzguioui M, Prydz H. An algorithm for selection of functional siRNA sequences. Biochem Biophys Res Commun 2004;316:1050-8
  • Pei Y, Tuschl T. On the art of identifying effective and specific siRNAs. Nat Methods 2006;3:670-6
  • Holen T, Amarzguioui M, Wiiger MT, Positional effects of short interfering RNAs targeting the human coagulation trigger Tissue Factor. Nucleic Acids Res 2002;30:1757-66
  • Echeverri CJ, Beachy PA, Baum B, Minimizing the risk of reporting false positives in large-scale RNAi screens. Nat Methods 2006;3:777-9
  • Schwarz D, Hutvagner G, Du T, Asymmetry in the assembly of the RNAi enzyme complex. Cell 2003;115:199-208
  • Jackson AL, Bartz SR, Schelter J, Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol 2003;21:635-7
  • Khvorova A, Reynolds A, Jayasena JD. Functional siRNAs and miRNAs exhibit strand bias. Cell 2003;115:209-16
  • Tomari Y, Matranga C, Haley B, A protein sensor for siRNA asymmetry. Science 2004;306:1377-80
  • Haley B, Zamore PD. Kinetic analysis of the RNAi enzyme complex. Nat Struct Mol Biol 2004;11:599-606
  • Hohjoh H. Enhancement of RNAi activity by improved siRNA duplexes. FEBS Lett 2004;557:193-8
  • Holen T, Moe SE, Sorbo JG, Tolerated wobble mutations in siRNAs decrease specificity, but can enhance activity in vivo. Nucleic Acids Res 2005;33:4704-10
  • Overhoff M, Alken M, Kretschmer-Kazemi R. Local RNA target structure influences siRNA efficacy: a systemic global analysis. J Mol Biol 2005;348:871-81
  • Yoshinari K, Miyagishi M, Taira K. Effects on RNAi of the tight structure, sequence and position of the targeted region. Nucleic Acids Res 2004;32:691-9
  • Yuan B, Latke R, Mossback M, siRNA Selection Server: an automated siRNA oligonucleotide prediction server. Nucleic Acids Res 2004;32:W130-4
  • Persengiev SP, Zhu X, Green MR. Nonspecific, concentration-dependent stimulation and repression of mammalian gene expression by small interfering RNAs (siRNAs). RNA 2004;10:12-18
  • Birmingham A, Anderson EM, Reynolds A, 3′ UTR seed matches, but not overall identity, are associated with RNAi off-targets. Nat Methods 2006;3:199-204
  • Anderson EM, Birmingham A, Baskerville S, Experimental validation of the importance of seed complement frequency to siRNA specificity. RNA 2008;4:853-61
  • Stein P, Zeng F, Pan H, Absence of non-specific effects of RNA interference triggered by long double-stranded RNA in mouse oocytes. Dev Biol 2005;286:464-71
  • Cullen BR. Enhancing and confirming the specificity of RNAi experiments. Nat Methods 2006;3(9):677-81
  • Hornung V, Guenthner-Biller M, Bourquin C, Sequence-specific potent induction of IFN-alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat Med 2005;11:263-70
  • Judge AD, Sood V, Shaw JR, Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat Biotechnol 2005;23:457-62
  • Poeck H, Besch R, Maihoefer C, 5′-Triphosphate-siRNA: turning gene silencing and Rig-I activation against melanoma. Nat Med 2008;14:1256-63
  • Schlee M, Hornung V, Hartmann G. siRNA and isRNA: two edges of one sword. Mol Ther 2006;14:463-70
  • Behlke MA. Chemical modification of siRNAs for in vivo use. Oligonucleotides 2008;18:305-19
  • Eberle F, Giessler K, Deck C, Modifications in small interfering RNA that separate immunostimulation from RNA interference. J Immunol 2008;180:3229-37
  • Gantier MP, Tong S, Behlke MA, Rational design of immunostimulatory siRNAs. Mol Ther 2010;18:785-95
  • Jackson AL, Linsley PS. Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application. Nat Rev Drug Discov 2010;9:57-67
  • Bramsen JB, Laursen MB, Nielsen AF, A large-scale chemical modification screen identifies design rules to generate siRNAs with high activity, high stability and low toxicity. Nucleic Acids Res 2009;37:2867-288
  • Chiu YL, Rana TM. SiRNA function in RNAi: a chemical modification analysis. RNA 2003;9:1034-48
  • Rana TM. Illuminating the silence: understanding the structure and function of small RNAs. Nat Rev Mol Cell Biol 2007;8:23-36
  • Chiu YL, Rana TM. RNAi in human cells: basic structural and functional features of small interfering RNA. Mol Cell 2002;10:549-61
  • Czauderna F, Fechtner M, Dames S, Structural variations and stabilising modifications of synthetic siRNAs in mammalian cells. Nucleic Acids Res 2003;31:2705-16
  • Soutschek J, Akinc A, Bramlage B, Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 2004;432:173-8
  • Muhonen P, Tennila T, Azhayeva E, RNA interference tolerates 2′-fluoro modifications at the Argonaute2 cleavage site. Chem Biodivers 2007;4:858-73
  • Layzer JM, McCaffrey AP, Tanner AK, In vivo activity of nuclease-resistant siRNAs. RNA 2004;10:766-71
  • Jackson AL, Burchard J, Leake D, Position specific chemical modification of siRNAs reduces “off-target” transcript silencing. RNA 2006;12:1197-205
  • Robbins M, Judge A, Liang L, 2′-O-methyl-modified RNAs act as TLR7 antagonists. Mol Ther 2007;15:1663-9
  • Bolcato-Bellemin AL, Bonnet ME, Creusat G, Sticky overhangs enhance siRNA-mediated gene silencing. PNAS 2007;104:16050-5
  • Bramsen JB, Laursen MB, Damgaard CK, Improved silencing properties using small internally segmented interfering RNAs. Nucleic Acids Res 2007;35:5886-97
  • Leuschner PJ, Ameres SL, Kueng S, Cleavage of the siRNA passenger strand during RISC assembly in human cells. EMBO Rep 2006;7:314-20
  • Elmen J, Thonberg H, Ljungberg K, Locked nucleic acid (LNA) mediated improvements in siRNA stability and functionality. Nucleic Acids Res 2005;33:439-47
  • Mook OR, Baas F, de Wissel MB, Evaluation of locked nucleic acid-modified small interfering RNA in vitro and in vivo. Mol Cancer Ther 2007;6:833-43
  • Werk D, Wengel J, Wengel SL, Application of small interfering RNAs modified by unlocked nucleic acid (UNA) to inhibit the heart-pathogenic coxsackievirus B3. FEBS Lett 2010;584:591-8
  • Kenski DM, Cooper AJ, Li JJ, Analysis of acyclic nucleoside modifications in siRNAs finds sensitivity at position 1 that is restored by 5′-terminal phosphorylation both in vitro and in vivo. Nucleic Acids Res 2010;38:660-71
  • Bramsen JB, Pakula MM, Hansen TB, A screen of chemical modifications identifies position-specific modification by UNA to most potently reduce siRNA off-target effects. Nucleic Acids Res 2010;38:5761-73
  • Vaish N, Chen F, Seth S, Improved specificity of gene silencing by siRNAs containing unlocked nucleobase analogs. Nucleic Acids Res 2010:1-10
  • Sullivan YB, Hughes DE, Narahari J, Importance of siRNA negative control selection: evaluation of non-specific protein knock-down by negative control siRNA. J Immunol 2007;178: 87.42
  • Zhou H, Zeng X, Wang Y, A three-phase algorithm for computer aided siRNA design. Informatica 2006;30:357-64
  • Schubert S, Grunweller A, Erdmann VA, Local RNA target structure influences siRNA efficacy: systematic analysis of intentionally designed binding regions. J Mol Biol 2005;348:883-93
  • Heale BS, Soifer HS, Bowers C, siRNA target site secondary structure predictions using local stable substructures. Nucleic Acids Res 2005;33:e30
  • Yiu SM, Prudence WH, Lam TW, Filtering of ineffective siRNAs and improved siRNA design tool. Bioinformatics 2005;21:144-51
  • Matveeva O, Nechipurenko Y, Rossi L, Comparison of approaches for rational siRNA design leading to a new efficient and transparent method. Nucleic Acids Res 2007;35:e63
  • Takasaki S. Efficient prediction methods for selecting effective siRNA sequences. Comput Biol Med 2010;40:149-58
  • Klingelhoefer JW, Moutsianas L, Holmes C. Approximate Bayesian feature selection on a large meta-dataset offers novel insights on factors that effect siRNA potency. Bioinformatics 2009;25:1594-601
  • Hu W, Hu J. Prediction of siRNA potency using sparse logistic regression. J Comput Biol 2010;18:1-8
  • Walton SP, Wu M, Gredell JA, Chan C. Designing highly active siRNAs for therapeutic applications. FEBS J 2010;277:4806-13
  • Tiemann K, Hohn B, Ehsani A, Dual-targeting siRNAs. RNA 2010;6:1275-84
  • Chang CI, Kang HS, Ban C, Dual-target gene silencing by using long, synthetic siRNA duplexes without triggering antiviral responses. Mol Cells 2009;30:689-95
  • Grimn D, Kay MA. Combinatorial RNAi: a winning strategy for the race against evolving targets. Mol Ther 2007;15:878-88
  • Ehsani A, Saetrom P, Zhang J, Rational design of micro-RNA-like bifunctional siRNAs targeting HIV and the HIV coreceptor CCR5. Mol Ther 2010;18:796-802
  • Lu PY, Xie F, Woodle MC. In vivo application of RNA interference: from functional genomics to therapeutics. Adv Genet 2005;54:117-42
  • Morar AS, Schrimsher JL, Mark D. Pegylation of proteins a structural approach. Biopharm Int 2006;19:34-49
  • Schiffelers RM, Mixsonb AJ, Ansari AM, Transporting silence: design of carriers for siRNA to angiogenic endothelium. J Control Release 2005;109:5-14
  • McNeil SE. Nanotechnology for the biologist. J Leukoc Biol 2005;78:585-94
  • Reich SJ, Fosnot J, Kuroki A, Small interfering RNA (siRNA) targeting VEGF effectively inhibits ocular neovascularization in a mouse model. Mol Vision 2003;9:210-16
  • Tolentino MJ, Brucker AJ, Fosnot J, Intravitreal injection of vascular endothelial growth factor small interfering RNA inhibits growth and leakage in a nonhuman primate, laser-induced model of choroidal neovascularization. Retina 2004;24:132-8
  • Shen J, Samul R, Silva RL, Suppression of ocular neovascularization with siRNA targeting VEGF receptor 1. Gene Ther 2006;13:225-34
  • Nakamura H, Siddiqui SS, Shen X, RNA interference targeting transforming growth factor-beta type II receptor suppresses ocular inflammation and fibrosis. Mol Vision 2004;10:703-11
  • Bitko V, Musiyenko A, Shulyayeva O, Inhibition of respiratory viruses by nasally administered siRNA. Nat Med 2005;11:50-5
  • Li BJ, Tang Q, Cheng D, Using siRNA in prophylactic and therapeutic regimens against SARS coronavirus in Rhesus macaque. Nat Med 2005;11:944-51
  • Thakker DR, Natt F, Husken D, Neurochemical and behavioral consequences of widespread gene knockdown in the adult mouse brain by using nonviral RNA interference. Proc Natl Acad Sci USA 2004;101:17270-5
  • Thakker DR, Natt F, Husken D, siRNA-mediated knockdown of the serotonin transporter in the adult mouse brain. Mol Psychiatry 2005;10:782-9
  • Dorn G, Patel S, Wotherspoon G, SiRNA relieves chronic neuropathic pain. Nucleic Acids Res 2004;32:e49
  • Luo MC, Zhang DQ, Ma SW, An efficient intrathecal delivery of small interfering RNA to the spinal cord and peripheral neurons. Mol Pain 2005;1:29
  • Tan PH, Yang LC, Shih HC, Gene knockdown with intrathecal siRNA of NMDA receptor NR2B subunit reduces formalin-induced nociception in the rat. Gene Ther 2005;12:59-66
  • Oh YK, Park TG. siRNA delivery systems for cancer treatment. Adv Drug Deliv Rev 2009;61:850-62
  • Whitehead KA, Langer R, Anderson DG. Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov 2009;8:129-38
  • de Fougerolles A, Vornlocher HP, Maraganore J, Interfering with disease: a progress report on siRNA-based therapeutics. Nat Rev Drug Discov 2007;6:443-53
  • Chen SH, Zhaori G. Potential clinical applications of siRNA technique: benefits and limitations. Eur J Clin Invest 2010: DOI: 10.1111/j.1365-2362.2010.02400.x
  • Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 2005;4:145-60
  • MacLachlan I. In: Crooke ST, editor, Antisense drug technology: principles, strategies and applications. 2nd edition. Chapter 9. CRC, Boca Raton; 2007. p. 237-70
  • Felgner PL, Gadek TR, Holm M, Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci USA 1987;84:7413-17
  • Malone RW, Felgner PL, Verma IM. Cationic liposome-mediated RNA transfection. Proc Natl Acad Sci USA 1989;86:6077-81
  • Zimmermann TS, Lee ACH, Akinc A, RNAi-mediated gene silencing in non-human primates. Nature 2006;441:111-14
  • Geisbert TW, Hensley LE, Kagan E, Postexposure protection of guinea pigs against a lethal ebola virus challenge is conferred by RNA interference. J Infect Dis 2006;193:1650-7
  • Santhakumaran LM, Thomas T, Thomas TJ. Enhanced cellular uptake of a triplex-forming oligonucleotide by nanoparticle formation in the presence of polypropylenimine dendrimers. Nucleic Acids Res 2004;32:2102-12
  • Hollins AJ, Benboubetra M, Omidi Y, Evaluation of generation 2 and 3 poly(propylenimine) dendrimers for the potential cellular delivery of antisense oligonucleotides targeting the epidermal growth factor receptor. Pharm Res 2004;21:458-66
  • Choi YS, Thomas T, Kotlyar A, Synthesis and functional evalution of DNA-assembled polyamidoamine dendrimer clusters for cancer cell-specific targeting. Chem Biol 2005;12:35-43
  • Urban-Klein B, Werth S, Abuharbeid S, RNAi-mediated gene-targeting through systemic application of polyethylenimine (PEI)-complexed siRNA in vivo. Gene Ther 2005;12:461-6
  • Grzelinski M, Urban-Klein B, Martens T, RNA interference-mediated gene silencing of pleiotrophin through polyethylenimine-complexed small interfering RNAs in vivo exerts antitumoral effects in glioblastoma xenografts. Hum Gene Ther 2006;17:751-66
  • Hu-Lieskovan S, Heidel JD, Bartlett DW, Sequence-specific knockdown of EWS-FLI1 by targeted, nonviral delivery of small interfering RNA inhibits tumor growth in a murine model of metastatic Ewing's sarcoma. Cancer Res 2005;65:8984-92
  • Heidel JD, Yu Z, Liu JYC, Administration in non-human primates of escalating intravenous doses of targeted nanoparticles containing ribonucleotide reductase subunit M2 siRNA. Proc Natl Acad Sci USA 2007;104:5715-21
  • Bartlett DW, Davis ME. Impact of tumor-specific targeting and dosing schedule on tumor growth inhibition after intravenous administration of siRNA containing nanoparticles. Biotechnol Bioeng 2008;99:975-85
  • Howard KA, Rahbek UL, Liu X, RNA interference in vitro and in vivo using a novel chitosan/siRNA nanoparticle system. Mol Ther 2006;14:476-84
  • Pille JY, Li H, Blot E. Intravenous delivery of anti-RhoA small interfering RNA loaded in nanoparticles of chitosan in mice: safety and efficacy in xenografted aggressive breast cancer. Hum Gene Ther 2006;17:1019-26
  • Ochiya T, Takahama Y, Nagahara S, New delivery system for plasmid DNA in vivo using atelocollagen as a carrier material: the Minipellet. Nat Med 1999;5:707-10
  • Hanai K, Takeshita F, Honma K, Atelocollagen-mediated systemic DDS for nucleic acid medicines. Ann NY Acad Sci 2006;1082:9-17
  • Takeshita F, Minakuchi Y, Nagahara S, Efficient delivery of small interfering RNA to bone-metastatic tumors by using atelocollagen in vivo. Proc Natl Acad Sci USA 2005;102:12177-82
  • Cheng K, Ye Z, Guntaka RV, Enhanced hepatic uptake and bioactivity of type alpha1 (I) collagen gene promoter-specific triplex-forming oligonucleotides after conjugation with cholesterol. J Pharmacol Exp Ther 2006;317:797-805
  • McNamara JO, Andrechek ER, Wang Y, Cell type-specific delivery ofsiRNAs with aptamer-siRNA chimeras. Nat Biotechnol 2006;24:1005-15
  • Chu TC, Twu KY, Ellington AD, Aptamer mediated siRNA delivery. Nucleic Acids Res 2006;34:e73
  • Muratovska A, Eccles MR. Conjugate for efficient delivery of short interfering RNA (siRNA) into mammalian cells. FEBS Lett 2004;558:63-8
  • Simeoni F, Morris MC, Heitz F, Insight into the mechanism of the peptide-based gene delivery system MPG: implications for delivery of siRNA into mammalian cells. Nucleic Acids Res 2003;31:2717-24
  • Kim WJ, Christensen LV, Jo S, Cholesteryl oligoarginine delivering vascular endothelial growth factor siRNA effectively inhibits tumor growth in colon adenocarcinoma. Mol Ther 2006;14:343-50
  • Schiffelers RM, Ansari A, Xu J, Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic Acids Res 2004;32:e149
  • Eguchi A, Meade BR, Chang Y-C, Efficient siRNA delivery into primary cells by a peptide transduction domain-dsRNA binding domain fusion protein. Nature biotechnology 2009;7:567-71
  • Martinez J, Patkaniowska A, Urlaub H. Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 2002;110:563-74
  • Saetrom P, Snove O. A comparison of siRNA efficacy predictors. Biochem Biophys Res Commun 2004;321:247-53
  • Boese Q, Leake D, Reynolds A, Mechanistic insights aid computational short interfering RNA design. Methods Enzymol 2005;392:73-96
  • Jayasena SD. Designer siRNAs to overcome the challenges from the RNAi pathway. J RNAi Gene Silencing 2006;2:109-17
  • Tanaka T, Mangala LS, Vivas-Mejia PE, Sustained small interfering RNA delivery by mesoporous silicon particles. Cancer Res 2010;70:3687-96
  • Park YK, Park SM, Choi YC, AsiDesigner: exon-based siRNA design server considering alternative splicing. Nucleic Acids Res 2008;36:W97-103
  • Vert JP, Foveau N, Lajaunie C, An accurate and interpretable model for siRNA efficacy prediction. BMC Bioinformatics 2006;30: 7:520
  • Horn T, Boutros M. E-RNAi: a web application for the multi-species design of RNAi reagents–2010 update. Nucleic Acids Res 2010;38:W332-9
  • Lu ZJ, Mathews DH. The efficient siRNA selection using hybridization thermodynamics. Nuclear Acids Res 2008;36:640-7
  • Naito Y, Yoshimura J, Morishita S, Ui-Tei K. siDirect 2.0: updated software for designing functional siRNA with reduced seed-dependent off-target effect. BMC Bioinformatics 2009;10:392
  • Gong W, Ren Y, Zhou H, siDRM: an effective and generally applicable online siRNA design tool. Bioinformatics 2008;24:2405-6
  • Chalk AM, Sonnhammer EL. siRNA specificity searching incorporating mismatch tolerance data. Bioinformatics 2008;24:1316-17
  • Wang X, Wang X, Rajeev K, Selection of hyper-functional siRNAs with improved potency and specificity. Nucleic Acids Res 2009;37:e152

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.