286
Views
25
CrossRef citations to date
0
Altmetric
Reviews

New opportunities in drug design of metalloproteinase inhibitors: combination between structure–function experimental approaches and systems biology

, , &
Pages 527-542 | Published online: 21 Apr 2011

Bibliography

  • Overall CM, Blobel CP. In search of partners: linking extracellular proteases to substrates. Nat Rev Mol Cell Biol 2007;8(3):245-57
  • Page-McCaw A, Ewald AJ, Werb Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol 2007;8(3):221-33
  • Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 2010;141(1):52-67
  • VanSaun MN, Matrisian LM. Matrix metalloproteinases and cellular motility in development and disease. Birth Defects Res C Embryo Today 2006;78(1):69-79
  • Sternlicht MD, Werb Z. How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 2001;17:463-516
  • Wolf K, Friedl P. Functional imaging of pericellular proteolysis in cancer cell invasion. Biochimie 2005;87(3-4):315-20
  • Stocker W, Grams F, Baumann U, The metzincins–topological and sequential relations between the astacins, adamalysins, serralysins, and matrixins (collagenases) define a superfamily of zinc-peptidases. Protein Sci 1995;4(5):823-40
  • Maskos K, Bode W. Structural basis of matrix metalloproteinases and tissue inhibitors of metalloproteinases. Mol Biotechnol 2003;25(3):241-66
  • Overall CM. Molecular determinants of metalloproteinase substrate specificity: matrix metalloproteinase substrate binding domains, modules, and exosites. Mol Biotechnol 2002;22(1):51-86
  • Piccard H, Van den Steen PE, Opdenakker G. Hemopexin domains as multifunctional liganding modules in matrix metalloproteinases and other proteins. J Leukoc Biol 2007;81(4):870-92
  • Cell Surface Proteases. Academic Press, New York; 2003
  • Maskos K. Crystal structures of MMPs in complex with physiological and pharmacological inhibitors. Biochimie 2005;87(3-4):249-63
  • Werb Z. The joy of a career in cell biology. Mol Biol Cell 2010;21(22):3764-6
  • Kopitz C, Kruger A. Janus-Faced Effects of Broad-Spectrum and Specific MMP Inhibition on Metastasis. Cancer Degrodome 2008;III:495-517
  • Coussens LM, Fingleton B, Matrisian LM. Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 2002;295(5564):2387-92
  • Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2002;2(3):161-74
  • Lopez-Otin C, Palavalli LH, Samuels Y. Protective roles of matrix metalloproteinases: from mouse models to human cancer. Cell Cycle 2009;8(22):3657-62
  • Overall CM, Kleifeld O. Tumour microenvironment - opinion: validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. Nat Rev Cancer 2006;6(3):227-39
  • Sela-Passwell N, Rosenblum G, Shoham T, Structural and functional bases for allosteric control of MMP activities: can it pave the path for selective inhibition? Biochim Biophys Acta 2010;1803(1):29-38
  • Porter S, Clark IM, Kevorkian L, The ADAMTS metalloproteinases. Biochem J 2005;386(Pt 1):15-27
  • Edwards DR, Handsley MM, Pennington CJ. The ADAM metalloproteinases. Mol Aspects Med 2008;29(5):258-89
  • Lopez-Otin C, Matrisian LM. Emerging roles of proteases in tumour suppression. Nat Rev Cancer 2007;7(10):800-8
  • Gutierrez-Fernandez A, Fueyo A, Folgueras AR, Matrix metalloproteinase-8 functions as a metastasis suppressor through modulation of tumor cell adhesion and invasion. Cancer Res 2008;68(8):2755-63
  • Schelter F, Kobuch J, Moss ML, A disintegrin and metalloproteinase-10 (ADAM-10) mediates DN30 antibody-induced shedding of the met surface receptor. J Biol Chem 2010;285(34):26335-40
  • Kruger A, Soeltl R, Sopov I, Hydroxamate-type matrix metalloproteinase inhibitor batimastat promotes liver metastasis. Cancer Res 2001;61(4):1272-5
  • Sagi I, Milla ME. Application of structural dynamic approaches provide novel insights into the enzymatic mechanism of the tumor necrosis factor-alpha-converting enzyme. Anal Biochem 2008;372(1):1-10
  • Stocker W, Bode W. Structural features of a superfamily of zinc-endopeptidases: the metzincins. Curr Opin Struct Biol 1995;5(3):383-90
  • Bertini I, Calderone V, Fragai M, Snapshots of the reaction mechanism of matrix metalloproteinases. Angew Chem Int Ed Engl 2006;45(47):7952-5
  • Hangauer DG, Monzingo AF, Matthews BW. An interactive computer graphics study of thermolysin-catalyzed peptide cleavage and inhibition by N-carboxymethyl dipeptides. Biochemistry 1984;23(24):5730-41
  • Skiles JW, Gonnella NC, Jeng AY. The design, structure, and therapeutic application of matrix metalloproteinase inhibitors. Curr Med Chem 2001;8(4):425-74
  • Brown S, Bernardo MM, Li Z-H, Potent and selective mechanism-based inhibition of gelatinases. J Am Chem Soc 2000;122(28):6799-800
  • Ikejiri M, Bernardo MM, Bonfil RD, Potent mechanism-based inhibitors for matrix metalloproteinases. J Biol Chem 2005;280(40):33992-4002
  • Kleifeld O, Kotra LP, Gervasi DC, X-ray absorption studies of human matrix metalloproteinase-2 (MMP-2) bound to a highly selective mechanism-based inhibitor. comparison with the latent and active forms of the enzyme. J Biol Chem 2001;276(20):17125-31
  • Rao BG. Recent developments in the design of specific Matrix Metalloproteinase inhibitors aided by structural and computational studies. Curr Pharm Des 2005;11(3):295-322
  • Jacobsen JA, Major Jourden JL, Miller MT, To bind zinc or not to bind zinc: an examination of innovative approaches to improved metalloproteinase inhibition. Biochim Biophys Acta 2010;1803(1):72-94
  • Rouffet M, de Oliveira CA, Udi Y, From sensors to silencers: quinoline- and benzimidazole-sulfonamides as inhibitors for zinc proteases. J Am Chem Soc 2010;132(24):8232-3
  • Skiles JW, Gonnella NC, Jeng AY. The design, structure, and clinical update of small molecular weight matrix metalloproteinase inhibitors. Curr Med Chem 2004;11(22):2911-77
  • Cuniasse P, Devel L, Makaritis A, Future challenges facing the development of specific active-site-directed synthetic inhibitors of MMPs. Biochimie 2005;87(3-4):393-402
  • Whittaker M, Floyd CD, Brown P, Design and therapeutic application of matrix metalloproteinase inhibitors. Chem Rev 1999;99(9):2735-76
  • Tallant C, Marrero A, Gomis-Ruth FX. Matrix metalloproteinases: fold and function of their catalytic domains. Biochim Biophys Acta 2010;1803:8-20
  • Johnson AR, Pavlovsky AG, Ortwine DF, Discovery and characterization of a novel inhibitor of matrix metalloprotease-13 that reduces cartilage damage in vivo without joint fibroplasia side effects. J Biol Chem 2007;282(38):27781-91
  • Lovejoy B, Welch AR, Carr S, Crystal structures of MMP-1 and -13 reveal the structural basis for selectivity of collagenase inhibitors. Nat Struct Biol 1999;6(3):217-21
  • Zhang X, Gonnella NC, Koehn J, Solution structure of the catalytic domain of human collagenase-3 (MMP-13) complexed to a potent non-peptidic sulfonamide inhibitor: binding comparison with stromelysin-1 and collagenase-1. J Mol Biol 2000;301(2):513-24
  • Babine RE, Bender SL. Molecular recognition of proteinminus signLigand complexes: applications to drug design. Chem Rev 1997;97(5):1359-472
  • Bhaskaran R, Palmier MO, Bagegni NA, Solution structure of inhibitor-free human metalloelastase (MMP-12) indicates an internal conformational adjustment. J Mol Biol 2007;374(5):1333-44
  • Bertini I, Calderone V, Cosenza M, Conformational variability of matrix metalloproteinases: beyond a single 3D structure. Proc Natl Acad Sci USA 2005;102(15):5334-9
  • Bertini I, Fragai M, Luchinat C. Intra- and interdomain flexibility in matrix metalloproteinases: functional aspects and drug design. Curr Pharm Des 2009;15(31):3592-605
  • Agrawal A, Romero-Perez D, Jacobsen JA, Zinc-binding groups modulate selective inhibition of MMPs. ChemMedChem 2008;3(5):812-20
  • Saghatelian A, Jessani N, Joseph A, Activity-based probes for the proteomic profiling of metalloproteases. Proc Natl Acad Sci USA 2004;101(27):10000-5
  • Rosenblum G, Meroueh S, Toth M, Molecular structures and dynamics of the stepwise activation mechanism of a matrix metalloproteinase zymogen: challenging the cysteine switch dogma. J Am Chem Soc 2007;129(44):13566-74
  • Solomon A, Akabayov B, Frenkel A, Key feature of the catalytic cycle of TNF-alpha converting enzyme involves communication between distal protein sites and the enzyme catalytic core. Proc Natl Acad Sci USA 2007;104(12):4931-6
  • Yiotakis A, Dive V. Synthetic active site-directed inhibitors of metzincins: achievement and perspectives. Mol Aspects Med 2008;29(5):329-38
  • Engel CK, Pirard B, Schimanski S, Structural basis for the highly selective inhibition of MMP-13. Chem Biol 2005;12(2):181-9
  • Li JJ, Nahra J, Johnson AR, Quinazolinones and pyrido[3,4-d]pyrimidin-4-ones as orally active and specific matrix metalloproteinase-13 inhibitors for the treatment of osteoarthritis. J Med Chem 2008;51(4):835-41
  • Devel L, Czarny B, Beau F, Third generation of matrix metalloprotease inhibitors: gain in selectivity by targeting the depth of the S(1)' cavity. Biochimie 2010;92(11):1501-8
  • Baragi VM, Becher G, Bendele AM, A new class of potent matrix metalloproteinase 13 inhibitors for potential treatment of osteoarthritis: evidence of histologic and clinical efficacy without musculoskeletal toxicity in rat models. Arthritis Rheum 2009;60(7):2008-18
  • Piecha D, Weik J, Kheil H, Novel selective MMP-13 inhibitors reduce collagen degradation in bovine articular and human osteoarthritis cartilage explants. Inflamm Res 2010;59(5):379-89
  • Johnson JL, Devel L, Czarny B, A Selective Matrix Metalloproteinase-12 Inhibitor Retards Atherosclerotic Plaque Development in Apolipoprotein E-Knockout Mice. Arterioscler Thromb Vasc Biol 2011;31(3):528-35
  • Butler GS, Overall CM. Proteomic validation of protease drug targets: pharmacoproteomics of matrix metalloproteinase inhibitor drugs using isotope-coded affinity tag labelling and tandem mass spectrometry. Curr Pharm Des 2007;13(3):263-70
  • auf dem Keller U, Schilling O. Proteomic techniques and activity-based probes for the system-wide study of proteolysis. Biochimie 2010;92(11):1705-14
  • Doucet A, Overall CM. Protease proteomics: revealing protease in vivo functions using systems biology approaches. Mol Aspects Med 2008;29(5):339-58
  • Kruger A. Functional genetic mouse models: promising tools for investigation of the proteolytic internet. Biol Chem 2009;390(2):91-7
  • Kruger A, Kates RE, Edwards DR. Avoiding spam in the proteolytic internet: future strategies for anti-metastatic MMP inhibition. Biochim Biophys Acta 2010;1803(1):95-102
  • Porter S, Span PN, Sweep FC, ADAMTS8 and ADAMTS15 expression predicts survival in human breast carcinoma. Int J Cancer 2006;118(5):1241-7
  • Zhong JL, Poghosyan Z, Pennington CJ, Distinct functions of natural ADAM-15 cytoplasmic domain variants in human mammary carcinoma. Mol Cancer Res 2008;6(3):383-94
  • Kopitz C, Gerg M, Gansbacher B, Plasminogen activator inhibitor-2, but not cystatin C, inhibits the prometastatic activity of tissue inhibitor of metalloproteinases-1 in the liver. Hum Gene Ther 2008;19(10):1039-49
  • auf dem Keller U, Doucet A, Overall CM. Protease research in the era of systems biology. Biol Chem 2007;388(11):1159-62
  • Kopitz C, Gerg M, Bandapalli OR, Tissue inhibitor of metalloproteinases-1 promotes liver metastasis by induction of hepatocyte growth factor signaling. Cancer Res 2007;67(18):8615-23
  • Schrotzlmair F, Kopitz C, Halbgewachs B, Tissue inhibitor of metalloproteinases-1-induced scattered liver metastasis is mediated by host-derived urokinase-type plasminogen activator. J Cell Mol Med 2010;14(12):2760-70
  • Schelter F, Halbgewachs B, Baumler P, Tissue inhibitor of metalloproteinases-1-induced scattered liver metastasis is mediated by hypoxia-inducible factor-1alpha. Clin Exp Metastasis 2011;28(2):91-9
  • Edwards D, Hoyer-Hansen G, Blasi F, Sloane BF. The cancer degradome: springer science and business media; 2009
  • Kaplan RN, Rafii S, Lyden D. Preparing the “soil”: the premetastatic niche. Cancer Res 2006;66(23):11089-93
  • Lopez-Otin C, Hunter T. The regulatory crosstalk between kinases and proteases in cancer. Nat Rev Cancer 2010;10(4):278-92
  • Weidle UH, Klostermann S, Eggle D, Interleukin 6/interleukin 6 receptor interaction and its role as a therapeutic target for treatment of cachexia and cancer. Cancer Genomics Proteomics 2010;7(6):287-302
  • Zhao P, Gao C, Dykema K, Repeated hepatocyte growth factor neutralizing antibody treatment leads to HGF/SF unresponsiveness in human glioblastoma multiforme cells. Cancer Lett 2010;291(2):209-16
  • Lund IK, Jogi A, Rono B, Antibody-mediated targeting of the urokinase-type plasminogen activator proteolytic function neutralizes fibrinolysis in vivo. J Biol Chem 2008;283(47):32506-15
  • Murphy G, Allan JA, Willenbrock F, The role of the C-terminal domain in collagenase and stromelysin specificity. J Biol Chem 1992;267(14):9612-18
  • Gioia M, Fasciglione GF, Marini S, Modulation of the catalytic activity of neutrophil collagenase MMP-8 on bovine collagen I. Role of the activation cleavage and of the hemopexin-like domain. J Biol Chem 2002;277(26):23123-30
  • Chung L, Shimokawa K, Dinakarpandian D, Identification of the (183)RWTNNFREY(191) region as a critical segment of matrix metalloproteinase 1 for the expression of collagenolytic activity. J Biol Chem 2000;275(38):29610-17
  • Aureli L, Gioia M, Cerbara I, Structural bases for substrate and inhibitor recognition by matrix metalloproteinases. Curr Med Chem 2008;15(22):2192-222
  • Lauer-Fields JL, Chalmers MJ, Busby SA, Identification of specific hemopexin-like domain residues that facilitate matrix metalloproteinase collagenolytic activity. J Biol Chem 2009;284(36):24017-24
  • Lauer-Fields JL, Whitehead JK, Li S, Selective modulation of matrix metalloproteinase 9 (MMP-9) functions via exosite inhibition. J Biol Chem 2008;283(29):20087-95
  • Iyer S, Visse R, Nagase H, Crystal structure of an active form of human MMP-1. J Mol Biol 2006;362(1):78-88
  • Rosenblum G, Van den Steen PE, Cohen SR, Insights into the structure and domain flexibility of full-length pro-matrix metalloproteinase-9/gelatinase B. Structure 2007;15(10):1227-36
  • Rosenblum G, Van den Steen PE, Cohen SR, Direct visualization of protease action on collagen triple helical structure. PloS one 2010;5(6):e11043
  • Gioia M, Monaco S, Van Den Steen PE, The collagen binding domain of gelatinase A modulates degradation of collagen IV by gelatinase B. J Mol Biol 2009;386(2):419-34
  • Bhaskaran R, Palmier MO, Lauer-Fields JL, MMP-12 catalytic domain recognizes triple helical peptide models of collagen V with exosites and high activity. J Biol Chem 2008;283(31):21779-88
  • Pelman GR, Morrison CJ, Overall CM. Pivotal molecular determinants of peptidic and collagen triple helicase activities reside in the S3′ subsite of matrix metalloproteinase 8 (MMP-8): the role of hydrogen bonding potential of ASN188 and TYR189 and the connecting cis bond. J Biol Chem 2005;280(3):2370-7
  • Minond D, Lauer-Fields JL, Cudic M, The roles of substrate thermal stability and P2 and P1′ subsite identity on matrix metalloproteinase triple-helical peptidase activity and collagen specificity. J Biol Chem 2006;281(50):38302-13
  • Bertini I, Fragai M, Luchinat C, Characterisation of the MMP-12-elastin adduct. Chemistry 2009;15(32):7842-5
  • Shapiro SD, Kobayashi DK, Ley TJ. Cloning and characterization of a unique elastolytic metalloproteinase produced by human alveolar macrophages. J Biol Chem 1993;268(32):23824-9
  • Tam EM, Moore TR, Butler GS, Characterization of the distinct collagen binding, helicase and cleavage mechanisms of matrix metalloproteinase 2 and 14 (gelatinase A and MT1-MMP): the differential roles of the MMP hemopexin c domains and the MMP-2 fibronectin type II modules in collagen triple helicase activities. J Biol Chem 2004;279(41):43336-44
  • Palmier MO, Fulcher YG, Bhaskaran R, NMR and bioinformatics discovery of exosites that tune metalloelastase specificity for solubilized elastin and collagen triple helices. J Biol Chem 2010;285(40):30918-30
  • Gall AL, Ruff M, Kannan R, Crystal structure of the stromelysin-3 (MMP-11) catalytic domain complexed with a phosphinic inhibitor mimicking the transition-state. J Mol Biol 2001;307(2):577-86
  • Lauer-Fields J, Brew K, Whitehead JK, Triple-helical transition state analogues: a new class of selective matrix metalloproteinase inhibitors. J Am Chem Soc 2007;129(34):10408-17
  • Overall CM, Butler GS. Protease yoga: extreme flexibility of a matrix metalloproteinase. Structure 2007;15(10):1159-61
  • Bertini I, Fragai M, Luchinat C, Interdomain flexibility in full-length matrix metalloproteinase-1 (MMP-1). J Biol Chem 2009;284(19):12821-8
  • Saffarian S, Collier IE, Marmer BL, Interstitial collagenase is a Brownian ratchet driven by proteolysis of collagen. Science 2004;306(5693):108-11
  • Ottl J, Gabriel D, Murphy G, Recognition and catabolism of synthetic heterotrimeric collagen peptides by matrix metalloproteinases. Chem Biol 2000;7(2):119-32
  • Moy FJ, Chanda PK, Chen J, Impact of mobility on structure-based drug design for the MMPs. J Am Chem Soc 2002;124(43):12658-9
  • Bertini I, Fragai M, Luchinat C, Interdomain Flexibility in full-length Matrix Metalloproteinase-1 (MMP-1). J Biol Chem 2009;284(19):12821-8
  • Bertini I, Calderone V, Fragai M, Evidence of reciprocal reorientation of the catalytic and hemopexin-like domains of full-length MMP-12. J Am Chem Soc 2008;130(22):7011-21
  • Tuuttila A, Morgunova E, Bergmann U, Three-dimensional structure of human tissue inhibitor of metalloproteinases-2 at 2.1 A resolution. J Mol Biol 1998;284(4):1133-40
  • Morgunova E, Tuuttila A, Bergmann U, Structure of human pro-matrix metalloproteinase-2: activation mechanism revealed. Science 1999;284(5420):1667-70
  • Elkins PA, Ho YS, Smith WW, Structure of the C-terminally truncated human ProMMP9, a gelatin-binding matrix metalloproteinase. Acta Crystallogr 2002;58(Pt 7):1182-92
  • Jozic D, Bourenkov G, Lim NH, X-ray structure of human proMMP-1: new insights into procollagenase activation and collagen binding. J Biol Chem 2005;280(10):9578-85
  • Van Wart HE, Birkedal-Hansen H. The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proc Natl Acad Sci USA 1990;87(14):5578-82
  • Klein T, Bischoff R. Active Metalloproteases of the A Disintegrin And Metalloprotease (ADAM) Family: biological function and structure. J Proteome Res 2011;10(1):17-33
  • Fotouhi N, Lugo A, Visnick M, Potent peptide inhibitors of stromelysin based on the prodomain region of matrix metalloproteinases. J Biol Chem 1994;269(48):30227-31
  • Hanglow AC, Lugo A, Walsky R, Peptides based on the conserved predomain sequence of matrix metalloproteinases inhibit human stromelysin and collagenase. Agents Actions 1993;39:C148-50
  • Golubkov VS, Cieplak P, Chekanov AV, Internal cleavages of the autoinhibitory prodomain are required for membrane type 1 matrix metalloproteinase activation, although furin cleavage alone generates inactive proteinase. J Biol Chem 2010;285(36):27726-36
  • Moss ML, Bomar M, Liu Q, The ADAM10 prodomain is a specific inhibitor of ADAM10 proteolytic activity and inhibits cellular shedding events. J Biol Chem 2007;282(49):35712-21
  • Gonzales PE, Solomon A, Miller AB, Inhibition of the tumor necrosis factor-alpha-converting enzyme by its pro domain. J Biol Chem 2004;279(30):31638-45
  • Moss ML, Rasmussen FH. Fluorescent substrates for the proteinases ADAM17, ADAM10, ADAM8, and ADAM12 useful for high-throughput inhibitor screening. Anal Biochem 2007;366(2):144-8
  • Gonzales PE, Galli JD, Milla ME. Identification of key sequence determinants for the inhibitory function of the prodomain of TACE. Biochemistry 2008;47(37):9911-19
  • Fernandez-Catalan C, Bode W, Huber R, Crystal structure of the complex formed by the membrane type 1-matrix metalloproteinase with the tissue inhibitor of metalloproteinases-2, the soluble progelatinase A receptor. EMBO J 1998;17(17):5238-48
  • Wingfield PT, Sax JK, Stahl SJ, Biophysical and functional characterization of full-length, recombinant human tissue inhibitor of metalloproteinases-2 (TIMP-2) produced in Escherichia coli. Comparison of wild type and amino-terminal alanine appended variant with implications for the mechanism of TIMP functions. J Biol Chem 1999;274(30):21362-8
  • Higashi S, Miyazaki K. Reactive site-modified tissue inhibitor of metalloproteinases-2 inhibits the cell-mediated activation of progelatinase A. J Biol Chem 1999;274(15):10497-504
  • Van Doren SR, Wei S, Gao G, Inactivation of N-TIMP-1 by N-terminal acetylation when expressed in bacteria. Biopolymers 2008;89(11):960-8
  • Gomis-Ruth FX, Maskos K, Betz M, Mechanism of inhibition of the human matrix metalloproteinase stromelysin-1 by TIMP-1. Nature 1997;389(6646):77-81
  • Wisniewska M, Goettig P, Maskos K, Structural determinants of the ADAM inhibition by TIMP-3: crystal structure of the TACE-N-TIMP-3 complex. J Mol Biol 2008;381(5):1307-19
  • Grossman M, Tworowski D, Dym O, The intrinsic protein flexibility of endogenous protease inhibitor TIMP-1 controls its binding interface and affects its function. Biochemistry 2010;49(29):6184-92
  • Kveiborg M, Jacobsen J, Lee MH, Selective inhibition of ADAM12 catalytic activity through engineering of tissue inhibitor of metalloproteinase 2 (TIMP-2). Biochem J 2010;430(1):79-86
  • Hamze AB, Wei S, Bahudhanapati H, Constraining specificity in the N-domain of tissue inhibitor of metalloproteinases-1; gelatinase-selective inhibitors. Protein Sci 2007;16(9):1905-13
  • Pfaffen S, Hemmerle T, Weber M, Isolation and characterization of human monoclonal antibodies specific to MMP-1A, MMP-2 and MMP-3. Exp Cell Res 2010;316(5):836-47
  • Devy L, Huang L, Naa L, Selective inhibition of matrix metalloproteinase-14 blocks tumor growth, invasion, and angiogenesis. Cancer Res 2009;69(4):1517-26
  • Pfaffen S, Frey K, Stutz I, Tumour-targeting properties of antibodies specific to MMP-1A, MMP-2 and MMP-3. Eur J Nucl Med Mol Imaging 2010;37(8):1559-65
  • Neri D, Bicknell R. Tumour vascular targeting. Nat Rev Cancer 2005;5(6):436-46
  • Paemen L, Martens E, Masure S, Monoclonal antibodies specific for natural human neutrophil gelatinase B used for affinity purification, quantitation by two-site ELISA and inhibition of enzymatic activity. Eur J Biochem FEBS 1995;234(3):759-65
  • Martens E, Leyssen A, Van Aelst I, A monoclonal antibody inhibits gelatinase B/MMP-9 by selective binding to part of the catalytic domain and not to the fibronectin or zinc binding domains. Biochim Biophys Acta 2007;1770(2):178-86
  • Glasheen BM, Robbins RM, Piette C, A matrix metalloproteinase mediates airway remodeling in Drosophila. Dev Biol 2010;344(2):772-83
  • Bjorklund M, Heikkila P, Koivunen E. Peptide inhibition of catalytic and noncatalytic activities of matrix metalloproteinase-9 blocks tumor cell migration and invasion. J Biol Chem 2004;279(28):29589-97
  • Xu X, Chen Z, Wang Y, Inhibition of MMP-2 gelatinolysis by targeting exodomain-substrate interactions. Biochem J 2007;406(1):147-55
  • Bannikov GA, Karelina TV, Collier IE, Substrate binding of gelatinase B induces its enzymatic activity in the presence of intact propeptide. J Biol Chem 2002;277(18):16022-7
  • Geurts N, Martens E, Van Aelst I, Beta-hematin interaction with the hemopexin domain of gelatinase B/MMP-9 provokes autocatalytic processing of the propeptide, thereby priming activation by MMP-3. Biochemistry 2008;47(8):2689-99
  • Olson MW, Bernardo MM, Pietila M, Characterization of the monomeric and dimeric forms of latent and active matrix metalloproteinase-9. Differential rates for activation by stromelysin 1. J Biol Chem 2000;275(4):2661-8
  • Cao J, Kozarekar P, Pavlaki M, Distinct roles for the catalytic and hemopexin domains of membrane type 1-matrix metalloproteinase in substrate degradation and cell migration. J Biol Chem 2004;279(14):14129-39
  • Itoh Y, Takamura A, Ito N, Homophilic complex formation of MT1-MMP facilitates proMMP-2 activation on the cell surface and promotes tumor cell invasion. EMBO J 2001;20(17):4782-93
  • Ingvarsen S, Madsen DH, Hillig T, Dimerization of endogenous MT1-MMP is a regulatory step in the activation of the 72-kDa gelatinase MMP-2 on fibroblasts and fibrosarcoma cells. Biol Chem 2008;389(7):943-53
  • Tape CJ, Willems SH, Dombernowsky SL, Cross-Domain Inhibition of TACE Ectodomain. Proc Natl Acad Sci USA, in press

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.