258
Views
78
CrossRef citations to date
0
Altmetric
Reviews

Advances in the discovery and development of heat-shock protein 90 inhibitors for cancer treatment

, , &
Pages 559-587 | Published online: 15 Mar 2011

Bibliography

  • Trepel J, Mollapour M, Giaccone G, Targeting the dynamic HSP90 complex in cancer. Nat Rev Cancer 2010;10:537-49
  • Porter JR, Fritz CC, Depew KM. Discovery and development of Hsp90 inhibitors: a promising pathway for cancer therapy. Curr Opin Chem Biol 2010;14:412-20
  • Taipale M, Jarosz DF, Lindquist S. HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat Rev Mol Cell Biol 2010;11:515-28
  • Hessling M, Richter K, Buchner J. Dissection of the ATP-induced conformational cycle of the molecular chaperone Hsp90. Nat Struct Mol Biol 2009;16:287-93
  • Mickler M, Hessling M, Ratzke C, The large conformational changes of Hsp90 are only weakly coupled to ATP hydrolysis. Nat Struct Mol Biol 2009;16:281-6
  • Krukenberg KA, Forster F, Rice LM, Multiple conformations of E. coli Hsp90 in solution: Insights into the conformational dynamics of Hsp90. Structure 2008;16:755-65
  • Mayer MP. Gymnastics of molecular chaperones. Mol Cell 2010;39:321-31
  • Picard D. Chaperoning steroid hormone action. Trends Endocrinol Metab 2006;17:229-35
  • Richter K, Soroka J, Skalniak L, Conserved conformational changes in the ATPase cycle of human hsp90. J Biol Chem 2008;283:17757-65
  • Murphy PJ, Kanelakis KC, Galigniana MD, Stoichiometry, abundance, and functional significance of the Hsp90/Hsp70-based multiprotein chaperone machinery in reticulocyte lysate. J Biol Chem 2001;276:30092-8
  • Kosano H, Stensgard B, Charlesworth MC, The assembly of progesterone receptor-Hsp90 complexes using purified proteins. J Biol Chem 1998;273:32973-9
  • Shiau AK, Harris SF, Southworth DR, Structural analysis of E. coli Hsp90 reveals dramatic nucleotide-dependent conformational rearrangements. Cell 2006;127:329-40
  • Ali MMU, Roe SM, Vaughan CK, Crystal structure of an Hsp90–nucleotide–p23/Sba1 closed chaperone complex. Nature 2006;440:1013-17
  • Dollins DE, Warren JJ, Immormino RM, Structures of GRP94-nucleotide complexes reveal mechanistic differences between the Hsp90 chaperones. Mol Cell 2007;28:41-56
  • Panaretou B, Prodromou C, Roe SM, ATP binding and hydrolysis are essential to the function of the Hsp90 molecular chaperone in vivo. EMBO 1998;17:4829-36
  • Obermann WMJ, Sondermann H, Russo AA, In vivo function of Hsp90 is dependent on ATP binding and ATP hydrolysis. J Cell Biol 1998;143:901-10
  • Prodromou C, Panaretou B, Chohan S, The ATPase cycle of Hsp90 drives a molecular ‘clamp” via transient dimerization of the N-terminal domains. EMBO J 2000;19:4383-92
  • Richter K, Muschler P, Hainzl O, Coordinated ATP Hydrolysis by the Hsp90 Dimer. J Biol Chem 2001;276:33689-96
  • Bron P, Giudice E, Rolland J-P, Apo-Hsp90 coexists in two open conformational states in solution. Biol Cell 2008;100:413-25
  • Roe SM, Ali MM, Meyer P, The mechanism of Hsp90 regulation by the protein kinase-specific cochaperone p50(cdc37). Cell 2004;116:87-98
  • Onuoha SC, Coulstock ET, Grossmann JG, Structural studies on the co-chaperone Hop and its complexes with Hsp90. J Mol Biol 2008;379:732-44
  • Retzlaff M, Hagn F, Mitschke L, Asymmetric activation of the Hsp90 dimer by its cochaperone aha1. Mol Cell 2010 37:344-54
  • Vaughan CK, Gohlke U, Sobott F, Structure of an Hsp90–Cdc37–Cdk4 complex. Mol Cell 2006;23:697-707
  • Pearl LH. Hsp90 and Cdc37—a chaperone cancer conspiracy. Curr Opin Genet Dev 2005;15:55-61
  • Kim YS, Alarcon SV, Lee S, Update on Hsp90 inhibitors in clinical trial. Curr Top Med Chem 2009;9:1479-92
  • Smith JR, Workman P. Targeting CDC37. Cell Cycle 2009;8:362-72
  • Plescia J, Salz W, Xia F, Rational design of shepherdin, a novel anticancer agent. Cancer Cell 2005;7:457-68
  • Donnelly A, Blagg BSJ. Novobiocin and additional inhibitors of the Hsp90 C-terminal nucleotide-binding pocket. Curr Med Chem 2008;15:2702-17
  • Uehara Y, Hori M, Takeuchi T, Phenotypic change from transformed to normal induced by benzoquinonoid ansamycins accompanies inactivation of p60src in rat kidney cells infected with Rous sarcoma virus. Mol Cell Biol 1986;6:2198-206
  • Whitesell L, Mimnaugh EG, De Costa B, Inhibition of heat shock protein Hsp90-pp60v-src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation. Proc Natl Acad Sci USA 1994;91:8324-8
  • Taldone T, Sun W, Chiosis G. Discovery and development of heat shock protein 90 inhibitors. Bioorg Med Chem 2009;17:2225-35
  • Hollingshead M, Alley M, Burger AM, In vivo antitumor efficacy of 17-DMAG (17-dimethylaminoethylamino-17-demethoxygeldanamycin hydrochloride), a water-soluble geldanamycin derivative. Cancer Chemother Pharmacol 2005;56:115-25
  • Gao Z, Garcia-Echeverria C, Jensen MR. Hsp90 inhibitors: clinical development and future opportunities in oncology therapy. Curr Opin Drug Discovery Dev 2010;13:193-202
  • Roe SM, Prodromou C, O'Brien R, Structural basis for inhibition of the Hsp90 molecular chaperone by the antitumor antibiotics radicicol and geldanamycin. J Med Chem 1999;42:260-6
  • Stebbins CE, Russo AA, Schneider C, Crystal structure of an Hsp90-geldanamycin complex: targeting of a protein chaperone by an antitumor agent. Cell 1997;89:239-50
  • Neckers L. Chaperoning oncogenes: Hsp90 as a target of geldanamycin. Handb Exp Pharmacol 2006;172:259-77
  • Mimnaugh EG, Chavany C, Neckers L. Polyubiquitination and proteasomal degradation of the p185c-erbB-2 receptor protein-tyrosine kinase induced by geldanamycin. J Biol Chem 1996;271:22796-801
  • Chiosis G, Timaul MN, Lucas B, A small molecule designed to bind to the adenine nucleotide pocket of Hsp90 causes Her2 degradation and the growth arrest and differentiation of breast cancer cells. Chem Biol 2001;8:289-99
  • Taldone T, Chiosis G. Purine-scaffold Hsp90 inhibitors. Curr Top Med Chem 2009;9:1436-46
  • Rodina A, Vilenchik M, Moulick K, Selective compounds define Hsp90 as a major inhibitor of apoptosis in small-cell lung cancer. Nat Chem Biol 2007;3:498-507
  • Breinig M, Caldas-Lopes E, Goeppert B, Targeting heat shock protein 90 with non-quinone inhibitors: a novel chemotherapeutic approach in human hepatocellular carcinoma. Hepatology 2009;50:102-12
  • Caldas-Lopes E, Cerchietti L, Ahn JH, Hsp90 inhibitor PU-H71, a multimodal inhibitor of malignancy, induces complete responses in triple-negative breast cancer models. Proc Natl Acad Sci USA 2009;106:8368-73
  • Cerchietti LC, Lopes EC, Yang SN, A purine scaffold Hsp90 inhibitor destabilizes BCL-6 and has specific antitumor activity in BCL-6-dependent B cell lymphomas. Nat Med 2009;15:1369-76
  • Marubayashi S, Koppikar P, Taldone T, HSP90 is a therapeutic target in JAK2-dependent myeloproliferative neoplasms in mice and humans. J Clin Invest 2010;120:3578-93
  • Kasibhatla SR, Hong K, Biamonte MA, Rationally designed high-affinity 2-amino-6-halopurine heat shock protein 90 inhibitors that exhibit potent antitumor activity. J Med Chem 2007;50:2767-78
  • Bao R, Lai C-J, Qu H, CUDC-305, a novel synthetic HSP90 inhibitor with unique pharmacologic properties for cancer therapy. Clin Cancer Res 2009;15:4046-57
  • Rowlands MG, Newbatt YM, Prodromou C, High-throughput screening assay for inhibitors of heat-shock protein 90 ATPase activity. Anal Biochem 2004;327:176
  • Drysdale MJ, Brough PA. Medicinal chemistry of Hsp90 inhibitors. Curr Top Med Chem 2008;8:859-68
  • Nakashima T, Ishii T, Tagaya H, New molecular and biological mechanism of antitumor activities of KW-2478, a novel nonansamycin heat shock protein 90 inhibitor, in multiple myeloma cells. Clin Cancer Res 2010;16:2792-802
  • Zhou V, Han S, Brinker A, A time-resolved fluorescence resonance energy transfer-based HTS assay and a surface plasmon resonance-based binding assay for heat shock protein 90 inhibitors. Anal Biochem 2004;331:349-57
  • Kung P-P, Funk L, Meng J, Dihydroxylphenyl amides as inhibitors of the Hsp90 molecular chaperone. Bioorg Med Chem Lett 2008;18:6273-8
  • Kung P-P, Huang B, Zhang G, Dihydroxyphenylisoindoline amides as orally bioavailable inhibitors of the heat shock protein 90 (Hsp90) molecular chaperone. J Med Chem 2010;53:499-503
  • Gopalsamy A, Shi M, Golas J, Discovery of benzisoxazoles as potent inhibitors of chaperone heat shock protein 90. J Med Chem 2008;51:373-5
  • Feldman RI, Mintzer B, Zhu D, Potent triazolothione inhibitor of heat-shock protein-90. Chem Biol Drug Des 2009;74:43-50
  • Du Y, Moulick K, Rodina A, High-throughput screening fluorescence polarization assay for tumor-specific Hsp90. J Biomol Screen 2007;12:915-24
  • Ganesh T, Min J, Thepchatri P, Discovery of aminoquinolines as a new class of potent inhibitors of heat shock protein 90 (Hsp90): synthesis, biology, and molecular modeling. Bioorg Med Chem 2008;16:6903-10
  • Fadden P, Huang KH, Veal JM, Application of chemoproteomics to drug discovery: identification of a clinical candidate targeting Hsp90. Chem Biol 2010;17:686-94
  • Huang KH, Veal JM, Fadden RP, Discovery of novel 2-aminobenzamide inhibitors of heat shock protein 90 as potent, selective and orally active antitumor agents. J Med Chem 2009;52:4288-305
  • Stadler M, Anke H, Dekermendjian K, Novel bioactive azaphilones from fruit bodies and mycelial cultures of the ascomycete bulgaria inquinans. Nat Prod Lett 1995;7:7-14
  • Musso L, Dallavalle S, Merlini L, Natural and semisynthetic azaphilones as a new scaffold for Hsp90 inhibitors. Bioorg Med Chem 2010;18:6031-43
  • Barril X, Brough P, Drysdale M, Structure-based discovery of a new class of Hsp90 inhibitors. Bioorg Med Chem Lett 2005;15:5187-91
  • Park H, Kim Y-J, Hahn J-S. A novel class of Hsp90 inhibitors isolated by structure-based virtual screening. Biorg Med Chem Lett 2007;17:6345-9
  • Hong T-J, Park H, Kim Y-J, Identification of new Hsp90 inhibitors by structure-based virtual screening. Bioorg Med Chem Lett 2009;19:4839-42
  • Murray CW, Carr MG, Callaghan O, Fragment-based drug discovery applied to Hsp90. Discovery of two lead series with high ligand efficiency. J Med Chem 2010;53:5942-55
  • Woodhead AJ, Angove H, Carr MG, Discovery of (2,4-dihydroxy-5-isopropylphenyl)-[5-(4-methylpiperazin-1-ylmethyl)-1,3-dihydroisoindol-2-yl]methanone (AT13387), a novel inhibitor of the molecular chaperone Hsp90 by fragment based drug design. J Med Chem 2010;53:5956-69
  • Curry J, Angove H, Graham B, Significance of the long term pharmacodynamic actions of Hsp90 inhibitor AT13387. AACR abstract 2009
  • Brough PA, Barril X, Borgognoni J, Combining hit identification strategies: Fragment-based and in silico approaches to orally active 2-aminothieno[2,3-d]pyrimidine inhibitors of the Hsp90 molecular chaperone. J Med Chem 2009;52:4794-809
  • Huth JR, Park C, Petros AM, Discovery and design of novel HSP90 inhibitors using multiple fragment-based design strategies. Chem Biol Drug Des 2007;70:1-12
  • Barker JJ, Barker O, Boggio R, Fragment-based identification of Hsp90 inhibitors. ChemMedChem 2009;4:963-6
  • Oh SH, Woo JK, Yazici YD, Structural basis for depletion of heat shock protein 90 client proteins by deguelin. J Natl Cancer Inst 2007;99:949-61
  • Harris SF, Shiau AK, Agard DA. The crystal structure of the carboxy-terminal dimerization domain of htpG, the Escherichia coli Hsp90, reveals a potential substrate binding site. Structure 2004;12:1087-97
  • Brandt GEL, Blagg BSJ. Alternate strategies of Hsp90 modulation for the treatment of cancer and other diseases. Curr Top Med Chem 2009;9:1447-61
  • Rosenhagen MC, Soti C, Schmidt U, The heat shock protein 90-targeting drug cisplatin selectively inhibits steroid receptor activation. Mol Endocrinol 2003;17:1991-2001
  • Palermo CM, Westlake CA, Gasiewicz TA. Epigallocatechin gallate inhibits aryl hydrocarbon receptor gene transcription through an indirect mechanism involving binding to a 90 KDa heat shock protein. Biochemistry 2005;44:5041-52
  • Yu Y, Hamza A, Zhang T, Withaferin A targets heat shock protein 90 in pancreatic cancer cells. Biochem Pharmacol 2010;79:542-51
  • Siligardi G, Panaretou B, Meyer P, Regulation of Hsp90 ATPase activity by the co-chaperone Cdc37p/p50cdc37. J Biol Chem 2002;277:20151-9
  • Smith JR, Clarke PA, de Billy E, Silencing the cochaperone CDC37 destabilizes kinase clients and sensitizes cancer cells to HSP90 inhibitors. Oncogene 2009;28:157-69
  • Hieronymus H, Lamb J, Ross KN, Gene expression signature-based chemical genomic prediction identifies a novel class of Hsp90 pathway modulators. Cancer Cell 2006;10:321-30
  • Zhang T, Hamza A, Cao X, A novel Hsp90 inhibitor to disrupt Hsp90/Cdc37 complex against pancreatic cancer cells. Mol Cancer Ther 2008;7:162-70
  • Sreeramulu S, Gande SL, Gobel M, Molecular mechanism of inhibition of the human protein complex Hsp90–Cdc37, a kinome chaperone–cochaperone, by triterpene celastrol. Angew Chem Int Ed 2009;48:5853-5
  • Yang H, Chen D, Cui QC, Celastrol, a triterpene extracted from the Chinese “Thunder of God Vine,” is a potent proteasome inhibitor and suppresses human prostate cancer growth in nude mice. Cancer Res 2006;66:4758-65
  • Scheufler C, Brinker A, Bourenkov G, Structure of TPR domain-peptide complexes: critical elements in the assembly of the Hsp70-Hsp90 multichaperone machine. Cell 2000;101:199-210
  • Cortajarena AL, Yi F, Regan L. Designed TPR modules as novel anticancer agents. ACS Chem Biol 2008;3:161-6
  • Yi F, Zhu P, Southall N, An AlphaScreen™-based high-throughput screen to identify inhibitors of Hsp90-cochaperone interaction. J Biomol Screen 2009;14:273-81
  • Yi F, Regan L. A novel class of small molecule inhibitors of Hsp90. ACS Chem Biol 2008;3:645-54
  • Panaretou B, Siligardi G, Meyer P, Activation of the ATPase activity of Hsp90 by the stress-regulated cochaperone aha1. Mol Cell 2002;10:1307-18
  • Meyer P, Prodromou C, Liao C, Structural basis for recruitment of the ATPase activator Aha1 to the Hsp90 chaperone machinery. EMBO J 2004;23:1402-10
  • Holmes JL, Sharp SY, Hobbs S, Silencing of HSP90 cochaperone AHA1 expression decreases client protein activation and increases cellular sensitivity to the HSP90 inhibitor 17-allylamino-17-demethoxygeldanamycin. Cancer Res 2008;68:1187-96
  • Fortugno P, Beltrami E, Plescia J, Regulation of survivin function by Hsp90. Proc Natl Acad Sci USA 2003;100:13791-6
  • Meli M, Pennati M, Curto M, Small-molecule targeting of heat shock protein 90 chaperone function: rational identification of a new anticancer lead. J Med Chem 2006;49:7721-30
  • Georget V, Terouanne B, Nicolas J-C, Mechanism of antiandrogen action: Key role of Hsp90 in conformational change and transcriptional activity of the androgen receptor. Biochemistry 2002;41:11824-31
  • Liu S, Yuan Y, Okumura Y, Camptothecin disrupts androgen receptor signaling and suppresses prostate cancer cell growth. Biochem Biophys Res Commun 2010;394:297-302
  • Kovacs JJ, Murphy PJ, Gaillard S, HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol Cell 2005;18:601-7
  • Martinez-Ruiz A, Villanueva L, Gonzalez de Orduna C, S-Nitrosylation of Hsp90 promotes the inhibition of its ATPase and endothelial nitric oxide synthase regulatory activities. Proc Natl Acad Sci USA 2005;102:8525-30
  • Retzlaff M, Stahl M, Eberl HC, Hsp90 is regulated by a switch point in the C-terminal domain. EMBO Rep 2009;10:1147-53
  • Wandinger SK, Suhre MH, Wegele H, The phosphatase Ppt1 is a dedicated regulator of the molecular chaperone Hsp90. EMBO J 2006;25:367-76
  • Bali P, Pranpat M, Bradner J, Inhibition of histone deacetylase 6 acetylates and disrupts the chaperone function of heat shock protein 90: a novel basis for antileukemia activity of histone deacetylase inhibitors. J Biol Chem 2005;280:26729-34
  • Yang Y, Rao R, Shen J, Role of acetylation and extracellular location of heat shock protein 90alpha in tumor cell invasion. Cancer Res 2008;68:4833-42
  • Scroggins BT, Robzyk K, Wang D, An acetylation site in the middle domain of Hsp90 regulates chaperone function. Mol Cell 2007;25:151-9
  • Rao R, Fiskus W, Yang Y, HDAC6 inhibition enhances 17-AAG-mediated abrogation of Hsp90 chaperone function in human leukemia cells. Blood 2008;112:1886-93
  • Nishioka C, Ikezoe T, Yang J, MS-275, a novel histone deacetylase inhibitor with selectivity against HDAC1, induces degradation of FLT3 via inhibition of chaperone function of heat shock protein 90 in AML cells. Leuk Res 2008;32:1382-92
  • George P, Bali P, Annavarapu S, Combination of the histone deacetylase inhibitor LBH589 and the Hsp90 inhibitor 17-AAG is highly active against human CML-BC cells and AML cells with activating mutation of FLT-3. Blood 2005;105:1768-76
  • Morra G, Verkhivker G, Colombo G. Modeling signal propagation mechanisms and ligand-based conformational dynamics of the Hsp90 molecular chaperone full-length dimer. PLoS Comput Biol 2009;5:e1000323
  • Zhao YG, Gilmore R, Leone G, Hsp90 phosphorylation is linked to its chaperoning function. Assembly of the reovirus cell attachment protein. J Biol Chem 2001;276:32822-7
  • Mimnaugh EG, Worland PJ, Whitesell L, Possible role for serine/threonine phosphorylation in the regulation of the heteroprotein complex between the Hsp90 stress protein and the pp60v-src tyrosine kinase. J Biol Chem 1995;270:28654-9
  • Miyata Y. CK2: the kinase controlling the Hsp90 chaperone machinery. Cell Mol Life Sci 2009;66:1840-9
  • Mollapour M, Tsutsumi S, Donnelly AC, Swe1Wee1-dependent tyrosine phosphorylation of Hsp90 regulates distinct facets of chaperone function. Mol Cell 2010;37:333-43
  • Fujiwara H, Yamakuni T, Ueno M, IC101 induces apoptosis by Akt dephosphorylation via an inhibition of heat shock protein 90-ATP binding activity accompanied by preventing the interaction with Akt in L1210 cells. J Pharmacol Exp Ther 2004;310:1288-95
  • Koga F, Xu W, Karpova TS, Hsp90 inhibition transiently activates Src kinase and promotes Src-dependent Akt and Erk activation. Proc Natl Acad Sci USA 2006;103:11318-22
  • Donze O, Abbas-Terki T, Picard D. The Hsp90 chaperone complex is both a facilitator and a repressor of the dsRNA-dependent kinase PKR. EMBO J 2001;20:3771-80
  • Yano A, Tsutsumi S, Soga S, Inhibition of Hsp90 activates osteoclast c-Src signaling and promotes growth of prostate carcinoma cells in bone. Proc Natl Acad Sci USA 2008;105:15541-6
  • Price JT, Quinn JM, Sims NA, The heat shock protein 90 inhibitor, 17-allylamino-17-demethoxygeldanamycin, enhances osteoclast formation and potentiates bone metastasis of a human breast cancer cell line. Cancer Res 2005;65:4929-38
  • McCollum AK, TenEyck CJ, Stensgard B, P-Glycoprotein–mediated resistance to Hsp90-directed therapy is eclipsed by the heat shock response. Cancer Res 2008;68:7419-27
  • Eiseman JL, Lan J, Lagattuta TF, Pharmacokinetics and pharmacodynamics of 17-demethoxy-17-[[(2-dimethylamino)ethyl]amino]geldanamycin (17DMAG, NSC 707545) in C.B-17 SCID mice bearing MDA-MB-231 human breast cancer xenografts. Cancer Chemother Pharmacol 2005;55:21-32
  • Leow CC, Chesebrough J, Coffman KT, Antitumor efficacy of IPI-504, a selective heat shock protein 90 inhibitor against human epidermal growth factor receptor 2-positive human xenograft models as a single agent and in combination with trastuzumab or lapatinib. Mol Cancer Ther 2009;8:2131-41
  • Holland JP, Caldas-Lopes E, Divilov V, Measuring the pharmacodynamic effects of a novel Hsp90 inhibitor on HER2/neu expression in mice using Zr-DFO-trastuzumab. PLoS One 2010;5:e8859
  • Lundgren K, Zhang H, Brekken J, BIIB021, an orally available, fully synthetic small-molecule inhibitor of the heat shock protein Hsp90. Mol Cancer Ther 2009;8:921-9
  • Jensen MR, Schoepfer J, Radimerski T, NVP-AUY922: a small molecule HSP90 inhibitor with potent antitumor activity in preclinical breast cancer models. Breast Cancer Res 2008;10:R33
  • Chandarlapaty S, Sawai A, Ye Q, SNX2112, a synthetic heat shock protein 90 inhibitor, has potent antitumor activity against HER kinase-dependent cancers. Clin Cancer Res 2008;14:240-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.