353
Views
30
CrossRef citations to date
0
Altmetric
Reviews

Lessons from high-throughput protein crystallization screening: 10 years of practical experience

, &
Pages 465-480 | Published online: 22 Mar 2011

Bibliography

  • Berman HM, Westbrook J, Feng Z, The Protein Data Bank. Nucleic Acids Res 2000;28(1):235-42
  • Leach AR, Gillet VJ, Lewis RA, Three-dimensional pharmacophore methods in drug discovery. J Med Chem 2010;53(2):539-58
  • Scapin G. Structural biology and drug discovery. Curr Pharm Des 2006;12(17):2087-97
  • Arinaminpathy Y, Khurana E, Engelman DM, Computational analysis of membrane proteins: the largest class of drug targets. Drug Discov Today 2009;14(23-24):1130-5
  • Grey J, Thompson D. Challenges and opportunities for new protein crystallization strategies in structure-based drug design. Expert Opin Drug Discov 2010;5(11):1039-45
  • Chen L, Oughtred R, Berman HM, Target DB: a target registration database for structural genomics projects. Bioinformatics 2004;20(16):2860-2
  • Luft JR, DeTitta GT. Protein crystallization. In: Bergfors TM, ed. Protein crystallization. 2nd edition. International University Line: La Jolla, California; 2009. p. 11-45
  • Giege R, Ducruix A. Crystallization of nucleic acids and proteins – a practical approach. Oxford University Press: Oxford; 1992
  • Jancarik J, Kim S-H. Sparse matrix sampling: a screening method for crystallization of proteins. J Appl Cryst 1991;24:409-11
  • Cudney B, Patel S, Weisgraber K, Screening and optimization strategies for macromolecular crystal-growth. Acta Crystallogr D 1994;50:414-23
  • Berger I, Kang CH, Sinha N, A highly efficient 24-condition matrix for the crystallization of nucleic acid fragments. Acta Crystallogr D 1996;52:465-8
  • Garavito M. In: Michel H, editor, Crystallization of membrane proteins. CRC Press 1991:89-105
  • Carter CW. Response surface methods for optimizing and improving reproducibility of crystal growth. Methods Enzymol 1997;276:74-99
  • Arakali SV, Luft JR, Detitta GT. Nonideality of aqueous-solutions of polyethylene-glycol - consequences for its use as a macromolecular crystallizing Agent in vapor-diffusion experiments. Acta Crystallogr D Biol Crystallogr 1995;51:772-9
  • Berman HM, Westbrook J, Feng Z, The Protein Data Bank. Nucleic Acids Res 2000;28(1):235-42
  • Garcia-Ruiz JM, Otalora F, Novella ML, A supersaturation wave of protein crystallization. J Crystal Growth 2001;232(1-4):149-55
  • Kelders HA, Kalk KH, Gros P, Automated protein crystallization and a new crystal form of a subtilisin:eglin complex. Protein Eng 1987;1(4):301-3
  • Cox MJ, Weber PC. Experiments with automated protein crystallization. J Appl Crystallogr 1987;20:366-73
  • Jones N, Deeter J, Swartzendruber J, APOCALYPSE: an automated proten crystallization system. American Crystalligraphic Association Annual Meeting; University of Texas, Austin Texas; 1987. p. 27
  • Jones N, Ward K, Perozzo M. CrystalPlate: The new ACA protein crystallization plate. American Crystalligraphic Association Annual Meeting; Philadelphia, PA; 1988. p. 109
  • Swartzendruber J, Jones N. APOCALYPSE: an automated protein crystallization system; III. In: The Beginning: The Genesis software. American Crystallographic Association Annual Meeting; Philadelphia, PA; 1988
  • Ward KB, Perozzo MA, Zuk WM. Automatic preparation of protein crystals using laboratory robotics and automated visual inspection. J Cryst Growth 1988;90:325-39
  • Chayen NE, Stewart PDS, Maeder DL, An automated-system for microbatch protein crystallization and screening. J Appl Crystallogr 1990;23:297-302
  • Rubin B, Talafous J, Larson D. Minimal intervention robotic protein crystallization. J Crystal Growth 1991;110(1-2):156-63
  • Eisele JL. Preparation of protein crystallization buffers with a computer-controlled motorized pipette - pipex. J Appl Crystallogr 1993;26:92-6
  • Sadaoui N, Janin J, Lewitbentley A. Taos - an automatic system for protein crystallization. J Appl Crystallogr 1994;27:622-6
  • Mueller U, Nyarsik L, Horn M, Development of a technology for automation and miniaturization of protein crystallization. J Biotechnol 2001;85:7-14
  • Luft JR, Wolfley J, Jurisica I, Macromolecular crystallization in a high throughput laboratory - the search phase. J Crystal Growth 2001;232:591-5
  • Mohsen-Nia M, Modarress H, Rasa H. Measurement and modeling of density, kinematic viscosity, and refractive index for poly(ethylene glycol) aqueous solution at different temperatures. J Chem Eng Data 2005;50(5):1662-6
  • Christopher GK, Phipps AG, Gray RJ. Temperature-dependent solubility of selected proteins. J Cryst Growth 1998;191(4):820-6
  • Snell EH, Luft JR, Potter SA, Establishing a training set through the visual analysis of crystallization trials. Part I: similar to 150 000 images. Acta Crystallogr D 2008;64:1123-30
  • Snell EH, Lauricella AM, Potter SA, Establishing a training set through the visual analysis of crystallization trials. Part II: crystal examples. Acta Crystallogr D 2008;64:1131-7
  • Gilliland GL. A Biological macromolecule crystallization database - a basis for a crystallization strategy. J Cryst Growth 1988;90(1-3):51-9
  • Gilliland GL, Tung M, Ladner J. The biological macromolecule crystallization database and NASA protein crystal growth archive. J Res Natl Inst Stan 1996;101(3):309-20
  • Gilliland GL, Tung M, Ladner JE. The biological macromolecule crystallization database: crystallization procedures and strategies. Acta Crystallogr D 2002 58:916-20
  • Audic S, Lopez F, Claverie JM, SAmBA: an interactive software for optimizing the design of biological macromolecules crystallization experiments. Proteins 1997;29(2):252-7
  • McPherson A, Cudney B. Searching for silver bullets: an alternative strategy for crystallizing macromolecules. J Struct Biol 2006;156(3):387-406
  • Jancarik J, Kim SH. Sparse-matrix sampling – a screening method for crystallization of proteins. J Appl Crystallogr 1991;24:409-11
  • Cudney R, Patel S, Weisgraber K, Screening and optimization strategies for macromolecular crystal growth. Acta Crystallogr D Biol Crystallogr 1994;50(Pt 4):414-23
  • Santarsiero BD, Yegian DT, Lee CC, An approach to rapid protein crystallization using nanodroplets. J Appl Crystallogr 2002;35:278-81
  • Stock D, Perisic O, Lowe J. Robotic nanolitre protein crystallisation at the MRC laboratory of molecular biology. Prog Biophys Mol Biol 2005;88(3):311-27
  • Newman J, Pham TM, Peat TS. Phoenito experiments: combining the strengths of commercial crystallization automation. Acta Crystallogr Sect F Struct Biol Cryst Commun 2008;64(Pt 11):991-6
  • Mueller-Dieckmann J. The open-access high-throughput crystallization facility at EMBL Hamburg. Acta Crystallogr D 2006;62:1446-52
  • Cumbaa CA, Jurisica I. Protein crystallization analysis on the World Community Grid. J Struct Funct Genomics 2010 11(1):61-9
  • Snell EH, Nagel RM, Wojtaszcyk A, The application and use of chemical space mapping to interpret crystallization screening results. Acta Cryst D 2008;64:1240-9
  • Nagel RM, Luft JR, Snell EH. AutoSherlock: a program for effective crystallization data analysis. J Appl Crystallogr 2008;41(Pt 6):1173-6
  • Zheng B, Tice JD, Roach LS, A droplet-based, composite PDMS/glass capillary microfluidic system for evaluating protein crystallization conditions by microbatch and vapor-diffusion methods with on-chip X-ray diffraction. Angew Chem Int Ed 2004;43(19):2508-11
  • Yadav MK, Gerdts CJ, Sanishvili R, In situ data collection and structure refinement from microcapillary protein crystallization. J Appl Crystallogr 2005;38(6):900-5
  • Jacquamet L, Ohana J, Joly J, Automated analysis of vapor diffusion crystallization drops with an X-ray beam. Structure 2004;12(7):1219-25
  • Ng JD, Clark PJ, Stevens RC, In situ X-ray analysis of protein crystals in low-birefringent and X-ray transmissive plastic microchannels. Acta Crystallogr D Biol Crystallogr 2008;64:189-97
  • Luft JR, Wolfley JR, Said MI, Efficient optimization of crystallization conditions by manipulation of drop volume ratio and temperature. Protein Sci 2007;16(4):715-22
  • van der Woerd M, Ferree D, Pusey M. The promise of macromolecular crystallization in microfluidic chips. J Struct Biol 2003;142(1):180-7
  • Hansen CL, Skordalakes E, Berger JM, A robust and scalable microfluidic metering method that allows protein crystal growth by free interface diffusion. Proc Natl Acad Sci 2002, 99(26):16531-6
  • Segelke B. Macromolecular crystallization with microfluidic free-interface diffusion. Expert Rev Proteomics 2005;2(2):165-72
  • Koszelak-Rosenblum M, Krol A, Mozumdar N, Determination and application of empirically derived detergent phase boundaries to effectively crystallize membrane proteins. Protein Sci 2009;18(9):1828-39
  • Grant T, Luft JR, Montelione GT, Small angle X-ray scattering as a complementary tool in a high-throughput crystallization laboratory. Biopolymers 2011
  • Kuhn P, Wilson K, Patch MG, The genesis of high-throughput structure-based drug discovery using protein crystallography. Curr Opin Chem Biol 2002;6(5):704-10
  • Mooij WT, Mitsiki E, Perrakis A. Protein CCD: enabling the design of protein truncation constructs for expression and crystallization experiments. Nucleic Acids Res 2009;37(Web Server issue):W402-5
  • Price WN II, Chen Y, Handelman SK, Understanding the physical properties that control protein crystallization by analysis of large-scale experimental data. Nat Biotechnol 2009;27(1):51-7
  • Sledz P, Zheng HP, Murzyn K, New surface contacts formed upon reductive lysine methylation: Improving the probability of protein crystallization. Protein Sci 2010;19(7):1395-404
  • Cooper DR, Boczek T, Grelewska K, Protein crystallization by surface entropy reduction: optimization of the SER strategy. Acta Crystallogr D Biol Crystallogr 2007;63(Pt 5):636-45
  • Dong A, Xu X, Edwards AM, In situ proteolysis for protein crystallization and structure determination. Nat Methods 2007;4(12):1019-21
  • Viola R, Carman P, Walsh J, Automated robotic harvesting of protein crystals-addressing a critical bottleneck or instrumentation overkill? J Struct Funct Genomics 2007;8(4):145-52
  • Viola R, Carman P, Walsh J, Operator-assisted harvesting of protein crystals using a universal micromanipulation robot. J Appl Crystallogr 2007;40(Pt 3):539-45
  • Zhang Z, Sauter NK, van den Bedem H, Automated diffraction image analysis and spot searching for high-throughput crystal screening. J Appl Crystallogr 2006;39:112-19
  • Holton JM, Frankel KA. The minimum crystal size needed for a complete diffraction data set. Acta Crystallogr D Biol Crystallogr 2010;66(Pt 4):393-408
  • Chapman HN, Fromme P, Barty A, Femtosecond X-ray protein nanocrystallography. Nature 2011;470(7332):73-7
  • Larson ET, Parussini F, Huynh MH, Toxoplasma gondii cathepsin L is the primary target of the invasion-inhibitory compound morpholinurea-leucyl-homophenyl-vinyl sulfone phenyl. J Biol Chem 2009;284(39):26839-50
  • Johnson TA, Qiu J, Plaut AG, Active-site gating regulates substrate selectivity in a chymotrypsin-like serine protease the structure of haemophilus influenzae immunoglobulin A1 protease. J Mol Biol 2009;389(3):559-74
  • Liu L, O'Grady C, Dalrymple SA, Crystallization and preliminary X-ray studies of the N-domain of the Wilson disease associated protein. Acta Crystallogr Sect F Struct Biol Cryst Commun 2009;65(Pt 6):621-4
  • Guhaniyogi J, Sohar I, Das K, Crystal structure and autoactivation pathway of the precursor form of human tripeptidyl-peptidase 1, the enzyme deficient in late infantile ceroid lipofuscinosis. J Biol Chem 2009;284(6):3985-97
  • Ho JD, Yeh R, Sandstrom A, Crystal structure of human aquaporin 4 at 1.8 A and its mechanism of conductance. Proc Natl Acad Sci USA 2009;106(18):7437-42
  • Shah MB, Ingram-Smith C, Cooper LL, The 2.1 A crystal structure of an acyl-CoA synthetase from Methanosarcina acetivorans reveals an alternate acyl-binding pocket for small branched acyl substrates. Proteins 2009;77(3):685-98
  • Larson ET, Parussini F, Huynh MH, Toxoplasma gondii cathepsin l is the primary target of the invasion inhibitory compound LHVS. J Biol Chem 2009;284(39):26839-50
  • Lee MM, Isaza CE, White JD, Insight into the substrate length restriction of M32 carboxypeptidases: characterization of two distinct subfamilies. Proteins 2009;77(3):647-57
  • Immormino RM, Metzger LEt, Reardon PN, Different poses for ligand and chaperone in inhibitor-bound Hsp90 and GRP94: implications for paralog-specific drug design. J Mol Biol 2009;388(5):1033-42
  • Prudden J, Perry JJ, Arvai AS, Molecular mimicry of SUMO promotes DNA repair. Nat Struct Mol Biol 2009;16(5):509-16
  • Fallon JL, Baker MR, Xiong L, Crystal structure of dimeric cardiac L-type calcium channel regulatory domains bridged by Ca2+* calmodulins. Proc Natl Acad Sci USA 2009;106(13):5135-40
  • Lima S, Sundararaju B, Huang C, The crystal structure of the Pseudomonas dacunhae aspartate-beta-decarboxylase dodecamer reveals an unknown oligomeric assembly for a pyridoxal-5′-phosphate-dependent enzyme. J Mol Biol 2009;388(1):98-108
  • Koksal AC, Nardozzi JD, Cingolani G. Dimeric quaternary structure of the prototypical dual specificity phosphatase VH1. J Biol Chem 2009;284(15):10129-37
  • Alontaga AY, Rodriguez JC, Schonbrunn E, Structural characterization of the hemophore HasAp from Pseudomonas aeruginosa: NMR spectroscopy reveals protein-protein interactions between Holo-HasAp and hemoglobin. Biochemistry 2009;48(1):96-109
  • Xia S, Monzingo AF, Robertus JD. Structure of NS1A effector domain from the influenza A/Udorn/72 virus. Acta Crystallogr D Biol Crystallogr 2009;65(Pt 1):11-17
  • Craven SH, Ezezika OC, Haddad S, Inducer responses of BenM, a LysR-type transcriptional regulator from Acinetobacter baylyi ADP1. Mol Microbiol 2009;72(4):881-94
  • Drake EJ, Gulick AM. Three-dimensional structures of Pseudomonas aeruginosa PvcA and PvcB, two proteins involved in the synthesis of 2-isocyano-6,7-dihydroxycoumarin. J Mol Biol 2008;384(1):193-205
  • Persson M, Tars K, Liljas L. The capsid of the small RNA phage PRR1 is stabilized by metal ions. J Mol Biol 2008;383(4):914-22
  • Larson ET, Deng W, Krumm BE, Structures of substrate- and inhibitor-bound adenosine deaminase from a human malaria parasite show a dramatic conformational change and shed light on drug selectivity. J Mol Biol 2008;381(4):975-88
  • Reger AS, Wu R, Dunaway-Mariano D, Structural characterization of a 140 degrees domain movement in the two-step reaction catalyzed by 4-chlorobenzoate:CoA ligase. Biochemistry 2008;47(31):8016-25
  • Merritt EA, Holmes M, Buckner FS, Structure of a Trypanosoma brucei alpha/beta-hydrolase fold protein with unknown function. Acta Crystallogr Sect F Struct Biol Cryst Commun 2008;64(Pt 6):474-8
  • Slade DJ, Lovelace LL, Chruszcz M, Crystal structure of the MACPF domain of human complement protein C8 alpha in complex with the C8 gamma subunit. J Mol Biol 2008;379(2):331-42
  • Biswas T, Tsodikov OV. Hexameric ring structure of the N-terminal domain of Mycobacterium tuberculosis DnaB helicase. FEBS J 2008;275(12):3064-71
  • Korotkov KV, Hol WG. Structure of the GspK-GspI-GspJ complex from the enterotoxigenic Escherichia coli type 2 secretion system. Nat Struct Mol Biol 2008;15(5):462-8
  • Greenhagen BT, Shi K, Robinson H, Crystal structure of the pyocyanin biosynthetic protein PhzS. Biochemistry 2008;47(19):5281-9
  • Stack CM, Caffrey CR, Donnelly SM, Structural and functional relationships in the virulence-associated cathepsin L proteases of the parasitic liver fluke, Fasciola hepatica. J Biol Chem 2008;283(15):9896-908
  • Arakaki TL, Buckner FS, Gillespie JR, Characterization of Trypanosoma brucei dihydroorotate dehydrogenase as a possible drug target; structural, kinetic and RNAi studies. Mol Microbiol 2008;68(1):37-50
  • Wang A, Zeng Y, Han H, Biochemical and structural characterization of Pseudomonas aeruginosa Bfd and FPR: ferredoxin NADP+ reductase and not ferredoxin is the redox partner of heme oxygenase under iron-starvation conditions. Biochemistry 2007;46(43):12198-211
  • Lee J, Page R, Garcia-Contreras R, Structure and function of the Escherichia coli protein YmgB: a protein critical for biofilm formation and acid-resistance. J Mol Biol 2007;373(1):11-26
  • Sullivan SM, Holyoak T. Structures of rat cytosolic PEPCK: insight into the mechanism of phosphorylation and decarboxylation of oxaloacetic acid. Biochemistry 2007;46(35):10078-88
  • Lima S, Khristoforov R, Momany C, Crystal structure of Homo sapiens kynureninase. Biochemistry 2007;46(10):2735-44
  • Ross B, Kristensen O, Favre D, High resolution crystal structures of the p120 RasGAP SH3 domain. Biochem Biophys Res Commun 2007;353(2):463-8
  • Kajander T, Cortajarena AL, Mochrie S, Structure and stability of designed TPR protein superhelices: unusual crystal packing and implications for natural TPR proteins. Acta Crystallogr D Biol Crystallogr 2007;63(Pt 7):800-11
  • Ezezika OC, Haddad S, Clark TJ, Distinct effector-binding sites enable synergistic transcriptional activation by BenM, a LysR-type regulator. J Mol Biol 2007;367(3):616-29
  • Paddock ML, Wiley SE, Axelrod HL, MitoNEET is a uniquely folded 2Fe 2S outer mitochondrial membrane protein stabilized by pioglitazone. Proc Natl Acad Sci USA 2007;104(36):14342-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.