656
Views
28
CrossRef citations to date
0
Altmetric
Reviews

Strategies of multi-objective optimization in drug discovery and development

, , , , &
Pages 871-884 | Published online: 27 May 2011

Bibliography

  • Greer J, Erickson JW, Baldwin JJ, Varney MD. Application of the three-dimensional structures of protein target molecules in structure-based drug design. J Med Chem 1994;37:1035-54
  • Traxler P, Bold G, Buchdunger E, Tyrosine kinase inhibitors: from rational design to clinical trials. Med Res Rev 2001;6:499-512
  • Silverman RA. The organic chemistry of drug design and drug action. Elsevier Academic Press, Amsterdam; 2004
  • Marnett LJ, Kalgutkar AS. Design of selective inhibitors of cyclooxygenase-2 as nonulcerogenic anti-inflammatory agents. Curr Opin Chem Biol 1998;2:482-90
  • Matthews T, Salgo M, Greenberg M, Enfuvirtide: the first therapy to inhibit the entry of HIV-1 into host CD4 lymphocytes. Nat Rev Drug Discov 2004;3:215-25
  • Schames JR, Henchman RH, Siegel JS, Discovery of a novel binding trench in HIV integrase. J Med Chem 2004;47:1879-81
  • van de Waterbeemd H, Gifford E. ADMET in silico modelling: towards prediction paradise? Nat Rev Drug Discov 2003;2:192-204
  • Nicolotti O, Gillet VJ, Fleming PJ, Green DVS. Multiobjective optimization in quantitative structure-activity relationships: deriving accurate and interpretable QSARs. J Med Chem 2002;45:5069-80
  • Anisseh M, Yusuff RM. A fuzzy group decision making model for multiple criteria based on Borda count. Int J Phys Sci 2011;6:425-33
  • Reilly B. Social choice in the South Seas: electoral innovation and the Borda count in the Pacific Island Countries. Int Pol Sci Rev 2002;23:355-72
  • Chuu SJ. Group decision-making model using fuzzy multiple attributes analysis for the evaluation of advanced manufacturing technology. Fuzzy Sets Syst 2009;160:586-602
  • Nicolaou CA, Brown N, Pattichis CS. Molecular optimization using computational multi-objective methods. Curr Opin Drug Discov Devel 2007;10:316-24
  • Van Veldhuizen DA, Lamont GB. Multiobjective evolutionary algorithms: analyzing the state-of-the-art. Evol Comput 2000;8:125-47
  • Goldreich O. Computational complexity: a conceptual perspective. CUP, Cambridge; 2008
  • Gillet VJ, Willett P, Bradshaw J, Green DVS. Selecting combinatorial libraries to optimize diversity and physical properties. J Chem Inf Comput Sci 1999;39:169-77
  • Brown F. Editorial opinion: chemoinformatics – a ten year update. Curr Opin Drug Discov Devel 2005;8:298-302
  • DeSimone RW, Currie KS, Mitchell SA, Privileged structures: applications in drug discovery. Comb Chem High Throughput Screen 2004;7:473-94
  • Evans BE, Rittle KE, Bock MG, Methods for drug discovery: development of potent, selective, orally effective cholecystokinin antagonists. J Med Chem 1988;31:2235-46
  • Boolell M, Allen MJ, Ballard SA, Sildenafil: an orally active type 5 cyclic GMP-specific phosphodiesterase inhibitor for the treatment of penile erectile dysfunction. Int J Impot Res 1996;8:47-52
  • Welsch ME, Snyder SA, Stockwell BR. Privileged scaffolds for library design and drug discovery. Curr Opin Chem Biol 2010;14:1-15
  • Handschuh S, Wagener M, Gasteiger J. Superposition of three-dimensional chemical structures allowing for conformational flexibility by a hybrid method. J Chem Inf Comput Sci 1998;38:220-32
  • Morphy R, Kay C, Rankovic Z. From magic bullets to designed multiple ligands. Drug Discov Today 2004;9:641-51
  • Jones G, Willett P, Glen RC. A genetic algorithm for flexible molecular overlay and pharmacophore elucidation. J Comput Aided Mol Des 1995;9:532-49
  • Jones G. GAPE: an improved genetic algorithm for pharmacophore elucidation. J Chem Inf Model 2010;50:2001-18
  • Gardiner EJ, Cosgrove DA, Taylor R, Gillet VJ. Multiobjective optimization of pharmacophore hypotheses: bias toward low-energy conformations. J Chem Inf Model 2009;49:2761-73
  • Cottrell SJ, Gillet VJ, Taylor R. Incorporating partial matches within multi-objective pharmacophore identification. J Comput Aided Mol Des 2006;20:735-49
  • Clark RD, Abrahamian E. Using a staged multi-objective optimization approach to find selective pharmacophore models. J Comput Aided Mol Des 2009;23:765-71
  • Caballero J. 3D-QSAR (CoMFA and CoMSIA) and pharmacophore (GALAHAD) studies on the differential inhibition of aldose reductase by flavonoid compounds. J Mol Graph Model 2010;29:363-71
  • Hansch C, Maloney PP, Fujita T, Muir RM. Correlation of biological activity of phenoxyacetic acids with Hammett substituent constants and partition coefficients. Nature 1962;194:178-90
  • Liu H, Papa E, Gramatica P. QSAR prediction of estrogen activity for a large set of diverse chemicals under the guidance of OECD principles. Chem Res Toxicol 2006;19:1540-8
  • Nicolotti O, Altomare C, Pellegrini-Calace M, Carotti A. Neuronal nicotinic acetylcholine receptor agonists: pharmacophores, evolutionary QSAR and 3D-QSAR models. Curr Top Med Chem 2004;4:335-60
  • Selwood DL, Livingstone DJ, Comley JC, Structure-activity relationships of antifilarial antimycin analogues: a multivariate pattern recognition study. J Med Chem 1990;33:136-42
  • Rogers D, Hopfinger AJ. Application of genetic function approximation to quantitative structure-activity relationships and quantitative structure-property relationships. J Chem Inf Comput Sci 1994;34:854-66
  • Kubinyi H. Variable selection in QSAR studies. I. An evolutionary algorithm. Quant Struct Act Relat 1994;13:285-94
  • Nicolotti O, Carotti A. QSAR and QSPR studies of a highly structured physicochemical domain. J Chem Inf Model 2006;46:264-76
  • Huuskonen J. Estimation of aqueous solubility for a diverse set of organic compounds based on molecular topology. J Chem Inf Comput Sci 2000;40:773-7
  • McElroy NR, Jurs PC. Prediction of aqueous solubility of heteroatom-containing organic compounds from molecular structure. J Chem Inf Comput Sci 2001;41:1237-47
  • Stockfisch TP. Partially unified multiple property recursive partitioning (PUMP-RP): a new method for predicting and understanding drug selectivity. J Chem Inf Comput Sci 2003;43:1608-13
  • Cruz-Monteagudo M, Borges F, Cordeiro MN. Desirability-based multiobjective optimization for global QSAR studies: application to the design of novel NSAIDs with improved analgesic, antiinflammatory, and ulcerogenic profiles. J Comput Chem 2008;29:2445-59
  • Derringer G, Suich R. Simultaneous optimization of several response variables. J Qual Technol 1980;12:214-19
  • Cruz-Monteagudo M, Borges F, Cordeiro MN, Desirability-based methods of multiobjective optimization and ranking for global QSAR studies. Filtering safe and potent drug candidates from combinatorial libraries. J Comb Chem 2008;10:897-913
  • Machado A, Tejera E, Cruz-Monteagudo M, Rebelo I. Application of desirability-based multi(bi)-objective optimization in the design of selective arylpiperazine derivates for the 5-HT1A serotonin receptor. Eur J Med Chem 2009;44:5045-54
  • Rajamani R, Good AC. Ranking poses in structure-based lead discovery and optimization: current trends in scoring function development. Curr Opin Drug Discov Devel 2007;10:308-15
  • Kroemer RT. Structure-based drug design: docking and scoring. Curr Protein Pept Sci 2007;8:312-28
  • Janson S, Merkle D. A new multi-objective particle swarm optimization algorithm using clustering applied to automated docking. In: Blesa MJ, Blum C, Roli A, editors, Hybrid Metaheuristics Second International Workshop, HM 2005, Barcelona, Spain, August 29-30, 2005, Proceedings. Springer-Verlag, Berlin, Germany; 2005. p. 128-41
  • Fuhrmann J, Rurainski A, Lenhof HP, Neumann D. A new Lamarckian genetic algorithm for flexible ligand-receptor docking. J Comput Chem 2010;31:1911-18
  • Nicolotti O, Giangreco I, Miscioscia TF, Carotti A. Improving quantitative structure-activity relationships through multiobjective optimization. J Chem Inf Model 2009;49:2290-302
  • Nicolotti O, Miscioscia TF, Carotti A, An integrated approach to ligand- and structure-based drug design: development and application to a series of serine protease inhibitors. J Chem Inf Model 2008;48:1211-26
  • Bohm M, Sturzebecher J, Klebe G. Three-dimensional quantitative structure-activity relationship analyses using comparative molecular field analysis and comparative molecular similarity indices analysis to elucidate selectivity differences of inhibitors binding to trypsin, thrombin, and factor Xa. J Med Chem 1999;42:458-77
  • Schneider G, Lee ML, Stahl M, Schneider P. De novo design of molecular architectures by evolutionary assembly of drug-derived building blocks. J Comput Aided Mol Des 2000;14:487-94
  • Firth-Clark S, Todorov NP, Alberts IL, Exhaustive de novo design of low-molecular-weight fragments against the ATP-binding site of DNA-gyrase. J Chem Inf Model 2006;46:1168-73
  • Douguet D, Munier-Lehmann H, Labesse G, Pochet S. LEA3D: a computer-aided ligand design for structure-based drug design. J Med Chem 2005;48:2457-68
  • Brown N, McKay B, Gilardoni F, Gasteiger J. A graph-based genetic algorithm and its application to the multiobjective evolution of median molecules. J Chem Inf Comput Sci 2004;44:1079-87
  • Brown N, McKay B, Gasteiger J. A novel workflow for the inverse QSPR problem using multiobjective optimization. J Comput Aided Mol Des 2006;20:333-41
  • Lameijer EW, Kok JN, Back T, Ijerman AP. The molecule evoluator. An interactive evolutionary algorithm for the design of drug-like molecules. J Chem Inf Model 2006;46:545-52
  • Hajduk PJ. Puzzling through fragment-based drug design. Nat Chem Biol 2006;2:658-9
  • Wyatt PG, Woodhead AJ, Berdini V, Identification of N-(4-piperidinyl)-4-(2,6-dichlorobenzoylamino)-1H-pyrazole-3-carboxamide (AT7519), a novel cyclin dependent kinase inhibitor using fragment-based X-ray crystallography and structure based drug design. J Med Chem 2008;51:4986-99
  • Howard S, Berdini V, Boulstridge JA, Fragment-based discovery of the pyrazol-4-yl urea (AT9283), a multitargeted kinase inhibitor with potent aurora kinase activity. J Med Chem 2009;52:379-88
  • Murray CW, Carr MG, Callaghan O, Fragment-based drug discovery applied to Hsp90. Discovery of two lead series with high ligand efficiency. J Med Chem 2010;53:5942-55
  • Woodhead AJ, Angove H, Carr MG, Discovery of (2,4-dihydroxy-5-isopropylphenyl)-[5-(4-methylpiperazin-1-ylmethyl)-1,3-dihydroisoindol-2-yl]methanone (AT13387), a novel inhibitor of the molecular chaperone Hsp90 by fragment based drug design. J Med Chem 2010;53:5956-69
  • Dey F, Caflisch A. Fragment-based de novo ligand design by multiobjective evolutionary optimization. J Chem Inf Model 2008;48:679-90
  • Manoharan P, Vijayan RS, Ghoshal N. Rationalizing fragment based drug discovery for BACE1: insights from FB-QSAR, FB-QSSR, multi objective (MO-QSPR) and MIF studies. J Comput Aided Mol Des 2010;24:843-64
  • Nicolaou CA, Apostolakis J, Pattichis CS. De novo drug design using multiobjective evolutionary graphs. J Chem Inf Model 2009;49:295-307
  • Choe Y, Leonetti F, Greenbaum DC, Substrate profiling of cysteine proteases using a combinatorial peptide library identifies functionally unique specificities. J Biol Chem 2006;281:12824-32
  • Merrifield RB. Solid phase synthesis. Nobel lecture, 8 December 1984
  • Gillet VJ, Khatib W, Willett P, Combinatorial library design using a multiobjective genetic algorithm. J Chem Inf Comput Sci 2002;42:375-85
  • Pellegrino G, Leonetti F, Carotti A, Solid phase synthesis of a molecular library of pyrimidines, pyrazoles, and isoxazoles with biological potential. Tetrahedron Lett 2010;51:1702-5
  • Gillet VJ, Nicolotti O. Evaluation of reactant-based and product-based approaches to the design of combinatorial libraries. Persp Drug Discov Des 2000;20:265-87
  • Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 2001;46:3-26
  • Gillet VJ, Willett P, Bradshaw J. Identification of biological activity profiles using substructural analysis and genetic algorithms. J Chem Inf Comput Sci 1998;38:165-79
  • Gillet VJ, Willett P, Bradshaw J, Green DVS. Selecting combinatorial libraries to optimize diversity and physical properties. J Chem Inf Comput Sci 1999;39:169-77
  • Zheng W, Hung ST, Saunders JT, Seibel GL. PICCOLO: a tool for combinatorial library design via multicriterion optimization. Pac Symp Biocomput 2000;5:585-96
  • Rassokhin DN, Agrafiotis DK. Kolmogorov-Smirnov statistic and its application in library design. J Mol Graph Model 2000;18:368-82
  • Agrafiotis DK. Multiobjective optimization of combinatorial libraries. Mol Divers 2000;5:209-30
  • Le Bailly de Tilleghem C, Beck B, Boulanger B, Govaerts B. A fast exchange algorithm for designing focused libraries in lead optimization. J Chem Inf Model 2005;45:758-67
  • Gillet VJ, Khatib W, Willett P, Combinatorial library design using a multiobjective genetic algorithm. J Chem Inf Comput Sci 2002;42:375-85
  • Gillet VJ, Willet P, Fleming PJ, Green DVS. Designing focused libraries using MoSELECT. J Mol Graph Model 2002;20:491-8
  • Fonseca CM, Fleming PJ. Multiobjective optimization and multiple constraint handling with evolutionary algorithms. I: a unified formulation. IEEE Trans Syst Man Cybernet 1998;28:26-37
  • Wright T, Gillet VJ, Green DVS, Pickett SD. Optimizing the size and configuration of combinatorial libraries. J Chem Inf Comput Sci 2003;43:381-90
  • Soltanshahi F, Mansley TE, Choi S, Clark RD. Balancing focused combinatorial libraries based on multiple GPCR ligands. J Comput Aided Mol Des 2006;20:529-38
  • Hohm T, Limbourg P, Hoffman D. A multiobjective evolutionary method for the design of peptidic mimotopes. J Comput Biol 2006;13:113-25
  • Fischer JR, Lessel U, Rarey M. LoFT: similarity-driven multiobjective focused library design. J Chem Inf Model 2010;50:1-21

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.