877
Views
56
CrossRef citations to date
0
Altmetric
Reviews

Stabilized helical peptides: overview of the technologies and therapeutic promises

&
Pages 937-963 | Published online: 22 Jul 2011

Bibliography

  • Venkatesan K, Rual J-F, Vazquez A, An empirical framework for binary interactome mapping. Nat Methods 2009;6:83-90
  • Jochim AL, Arora PS. Systematic analysis of helical protein interfaces reveals targets for synthetic inhibitors. ACS Chem Biol 2010;5:919-23
  • Chakrabartty A, Baldwin RL. Stability of alpha-helices. Adv Protein Chem 1995;46:141-76
  • Richardson JS, Richardson DC. Amino acid preferences for specific locations at the ends of alpha helices. Science 1988;240:1648-52
  • Aurora R, Rose GD. Helix capping. Protein Sci 1998;7:21-38
  • Donald JE, Kulp DW, DeGrado WF. Salt bridges: geometrically specific, designable interactions. Proteins 2011;79:898-915
  • Marqusee S, Baldwin RL. Helix stabilization by Glu-...Lys+ salt bridges in short peptides of de novo design. Proc Natl Acad Sci USA 1987;84:8898-902
  • Robson Marsden H, Kros A. Self-Assembly of coiled coils in synthetic biology: inspiration and Progress. Angew Chem Int Ed 2010;49:2988-3005
  • Imperiali B, Ottesen J. Uniquely folded mini-protein motifs. J Pept Res 1999;54:177-84
  • Martin L, Vita C. Engineering novel bioactive mini-proteins from small size natural and de novo designed scaffolds. Curr Protein Pept Sci 2000;1:403-30
  • Blundell TL, Pitts JE, Tickle IJ, X-ray analysis (1. 4-A resolution) of avian pancreatic polypeptide: Small globular protein hormone. Proc Natl Acad Sci USA 1981;78:4175-9
  • Zondlo NJ, Schepartz A. Highly Specific DNA Recognition by a Designed Miniature Protein. J Am Chem Soc 1999;121:6938-9
  • Gemperli AC, Rutledge SE, Maranda A, Schepartz A. Paralog-selective ligands for bcl-2 proteins. J Am Chem Soc 2005;127:1596-7
  • Woolfson DN, David ADP, John MS. The Design of Coiled-Coil Structures and Assemblies. Adv Protein Chem 2005;70:79-112
  • Apostolovic B, Danial M, Klok H-A. Coiled coils: attractive protein folding motifs for the fabrication of self-assembled, responsive and bioactive materials. Chem Soc Rev 2010;39:3541-75
  • Andrews MJI, Tabor AB. Forming stable helical peptides using natural and artificial amino acids. Tetrahedron 1999;55:11711-43
  • Henchey LK, Jochim AL, Arora PS. Contemporary strategies for the stabilization of peptides in the [alpha]-helical conformation. Curr Opin Chem Biol 2008;12:692-7
  • Edwards T, Wilson A. Helix-mediated protein–protein interactions as targets for intervention using foldamers. Amino acids 2011;41:743-754
  • Baptiste B, Godde F, Huc I. How can folded biopolymers and synthetic foldamers recognize each other? ChemBioChem 2009;10:1765-7
  • Guichard G, Huc I. Synthetic foldamers. Chem Commun 2011;47:5933-41
  • Toniolo C, Crisma M, Formaggio F, Peggion C. Control of peptide conformation by the Thorpe-Ingold effect (C alpha-tetrasubstitution). Biopolymers 2001;60:396-419
  • Benedetti E, Bavoso A, Di Blasio B, Peptaibol antibiotics: a study on the helical structure of the 2-9 sequence of emerimicins III and IV. Proc Natl Acad Sci USA 1982;79:7951-4
  • Bavoso A, Benedetti E, Di Blasio B, Long polypeptide 3(10)-helices at atomic resolution. Proc Natl Acad Sci USA 1986;83:1988-92
  • Crisma M, Bisson W, Formaggio F, Factors governing 3(10)-helix vs alpha-helix formation in peptides: percentage of C(alpha)-tetrasubstituted alpha-amino acid residues and sequence dependence. Biopolymers 2002;64:236-45
  • Pengo P, Pasquato L, Moro S, Quantitative correlation of solvent polarity with the alpha-/3(10)-helix equilibrium: a heptapeptide behaves as a solvent-driven molecular spring. Angew Chem Int Ed Engl 2003;42:3388-92
  • Bellanda M, Mammi S, Geremia S, Solvent polarity controls the helical conformation of short peptides rich in Calpha-tetrasubstituted amino acids. Chem Eur J 2007;13:407-16
  • Carpino LA, Beyermann M, Wenschuh H, Bienert M. Peptide synthesis via amino acid halides. Acc Chem Res 1996;29:268-74
  • Subiros-Funosas R, Acosta GA, El-Faham A, Albericio F. Microwave irradiation and COMU: a potent combination for solid-phase peptide synthesis. Tetrahedron Lett 2009;50:6200-2
  • Sakurai K, Schubert C, Kahne D. Crystallographic analysis of an 8-mer p53 peptide analogue complexed with MDM2. J Am Chem Soc 2006;128:11000-1
  • Toniolo C, Bruckner H. Peptaibiotics. Fungal peptides containing alpha-dialkyl alpha-amino acids. Verlag Helvetica Chimica Acta; Zurich: 2009
  • Ravi A, Prasad BVV, Balaram P. Cyclic peptide disulfides. Solution and solid-state conformation of Boc-Cys- Pro-Aib-Cys-NHMe with a disulfide bridge from Cys to Cys, a disulfide-bridged peptide helix. J Am Chem Soc 1983;105:105-9
  • Leduc AM, Trent JO, Wittliff JL, Helix-stabilized cyclic peptides as selective inhibitors of steroid receptor-coactivator interactions. Proc Natl Acad Sci USA 2003;100:11273-8
  • Ghadiri MR, Choi C. Secondary structure nucleation in peptides. Transition metal ion stabilized alpha.-helices. J Am Chem Soc 1990;112:1630-2
  • Nicoll AJ, Miller DJ, Futterer K, Designed High Affinity Cu2+-Binding alpha-Helical Foldamer. J Am Chem Soc 2006;128:9187-93
  • Osapay G, Taylor JW. Multicyclic polypeptide model compounds. 1. Synthesis of a tricyclic amphiphilic. alpha.-helical peptide using an oxime resin, segment-condensation approach. J Am Chem Soc 1990;112:6046-51
  • Osapay G, Taylor JW. Multicyclic polypeptide model compounds. 2. Synthesis and conformational properties of a highly alpha-helical uncosapeptide constrained by three side-chain to side-chain lactam bridges. J Am Chem Soc 1992;114:6966-73
  • Bracken C, Gulyas J, Taylor JW, Baum J. Synthesis and nuclear magnetic resonance structure determination of an alpha-Helical, Bicyclic, Lactam-Bridged Hexapeptide. J Am Chem Soc 1994;116:6431-2
  • Michael EH Jr, Cindy LG, Cyril MK, Robert SH. Lactam bridge stabilization of alpha-helical peptides: ring size, orientation and positional effects. J Pept Sci 1995;1:274-82
  • Schievano E, Bisello A, Chorev M, Aib-Rich peptides containing lactam-bridged side chains as models of the 310-Helix. J Am Chem Soc 2001;123:2743-51
  • Taylor JW. The synthesis and study of side-chain lactam-bridged peptides. Biopolymers 2002;66:49-75
  • Shepherd NE, Hoang HN, Abbenante G, Fairlie DP. Single turn peptide alpha helices with exceptional stability in water. J Am Chem Soc 2005;127:2974-83
  • Harrison RS, Shepherd NE, Hoang HN, Downsizing human, bacterial, and viral proteins to short water-stable alpha helices that maintain biological potency. Proc Natl Acad Sci USA 2010;107:11686-91
  • Shepherd NE, Abbenante G, Fairlie DP. Consecutive cyclic pentapeptide modules form short alpha-helices that are very stable to water and denaturants. Angew Chem Int Ed Engl 2004;43:2687-90
  • Jackson DY, King DS, Chmielewski J, General approach to the synthesis of short alpha-helical peptides. J Am Chem Soc 1991;113:9391-2
  • Phelan JC, Skelton NJ, Braisted AC, McDowell RS. A general method for constraining short peptides to an alpha-Helical conformation. J Am Chem Soc 1997;119:455-60
  • Yu C, Taylor JW. Synthesis and study of peptides with semirigid i and i+7 side-chain bridges designed for [alpha]-helix stabilization. Bioorg Med Chem 1999;7:161-75
  • Blackwell HE, Sadowsky JD, Howard RJ, Ring-closing metathesis of olefinic peptides: design, synthesis, and structural characterization of macrocyclic helical peptides. J Org Chem 2001;66:5291-302
  • Boal AK, Guryanov I, Moretto A, Facile and E-selective intramolecular ring-closing metathesis reactions in 310-Helical peptides: a 3D structural study. J Am Chem Soc 2007;129:6986-7
  • Schafmeister CE, Po J, Verdine GL. An All-Hydrocarbon cross-linking system for enhancing the helicity and metabolic stability of peptides. J Am Chem Soc 2000;122:5891-2
  • Stewart ML, Fire E, Keating AE, Walensky LD. The MCL-1 BH3 helix is an exclusive MCL-1 inhibitor and apoptosis sensitizer. Nat Chem Biol 2010;6:595-601
  • Brunel FM, Dawson PE. Synthesis of constrained helical peptides by thioether ligation: application to analogs of gp41. Chem Commun (Camb) 2005;2552-4
  • Cardoso RMF, Brunel FM, Ferguson S, Structural basis of enhanced binding of extended and helically constrained peptide epitopes of the broadly neutralizing HIV-1 antibody 4E10. J Mol Biol 2007;365:1533-44
  • Cantel S, Isaad Ale C, Scrima M, Synthesis and conformational analysis of a cyclic peptide obtained via i to i+4 intramolecular side-chain to side-chain azide-alkyne 1,3-dipolar cycloaddition. J Org Chem 2008;73:5663-74
  • Jacobsen O, Maekawa H, Ge N-H, Stapling of a 310-Helix with Click Chemistry. J Org Chem 2011;76:1228-38
  • Kim YW, Verdine GL. Stereochemical effects of all-hydrocarbon tethers in i,i+4 stapled peptides. Bioorg Med Chem Lett 2009;19:2533-6
  • Forood B, Reddy HK, Nambiar KP. Extraordinary helicity in short peptides via end capping design. J Am Chem Soc 1994;116:6935-6
  • Kemp DS, Curran TP, Boyd JG, Allen TJ. Studies of N-terminal templates for. alpha.-helix formation. Synthesis and conformational analysis of peptide conjugates of (2S,5S,8S,11S)-1-acetyl-1,4-diaza-3-keto-5-carboxy-10-thiatricyclo[2.8.1.04,8]tridecane (Ac-Hel1-OH). J Org Chem 1991;56:6683-97
  • Kemp DS, Allen TJ, Oslick SL, Boyd JG. The structure and energetics of helix formation by short templated peptides in aqueous solution. 2. Characterization of the helical structure of Ac-Hel1-Ala6-OH. J Am Chem Soc 1996;118:4240-8
  • Cabezas E, Satterthwait AC. The hydrogen bond mimic approach: solid-phase synthesis of a peptide stabilized as an alpha-Helix with a hydrazone link. J Am Chem Soc 1999;121:3862-75
  • Chapman RN, Dimartino G, Arora PS. A highly stable short alpha-helix constrained by a main-chain hydrogen-bond surrogate. J Am Chem Soc 2004;126:12252-3
  • Wang D, Chen K, Dimartino G, Arora PS. Nucleation and stability of hydrogen-bond surrogate-based alpha-helices. Org Biomol Chem 2006;4:4074-81
  • Trnka TM, Grubbs RH. The Development of L2X2RuCHR Olefin metathesis catalysts: an organometallic success story. Acc Chem Res 2000;34:18-29
  • Chapman RN, Arora PS. Optimized synthesis of hydrogen-bond surrogate helices: surprising effects of microwave heating on the activity of Grubbs catalysts. Org Lett 2006;8:5825-8
  • Patgiri A, Witten MR, Arora PS. Solid phase synthesis of hydrogen bond surrogate derived alpha-helices: resolving the case of a difficult amide coupling. Org Biomol Chem 2010;8:1773-6
  • Wang D, Lu M, Arora PS. Inhibition of HIV-1 fusion by hydrogen-bond-surrogate-based alpha helices. Angew Chem Int Ed Engl 2008;47:1879-82
  • Henchey LK, Kushal S, Dubey R, Inhibition of hypoxia inducible factor 1-Transcription coactivator interaction by a hydrogen bond surrogate alpha-Helix. J Am Chem Soc 2009;132:941-3
  • Goodman CM, Choi S, Shandler S, DeGrado WF. Foldamers as versatile frameworks for the design and evolution of function. Nat Chem Biol 2007;3:252-62
  • Hill DJ, Mio MJ, Prince RB, A Field Guide to foldamers. Chem Rev 2001;101:3893-4012
  • Seebach D, Beck AK, Bierbaum DJ. The world of beta- and gamma-peptides comprised of homologated proteinogenic amino acids and other components. Chem Biodivers 2004;1:1111-239
  • Fowler SA, Blackwell HE. Structure-function relationships in peptoids: recent advances toward deciphering the structural requirements for biological function. Org Biomol Chem 2009;7:1508-24
  • Fischer L, Guichard G. Folding and self-assembly of aromatic and aliphatic urea oligomers: towards connecting structure and function. Org Biomol Chem 2010;8:3101-17
  • Horne WS, Gellman SH. Foldamers with heterogeneous backbones. Acc Chem Res 2008;41:1399-408
  • Claudon P, Violette A, Lamour K, Consequences of isostructural main-chain modifications for the design of antimicrobial foldamers: helical mimics of host-defense peptides based on a heterogeneous amide/urea backbone. Angew Chem Int Ed Engl 2010;49:333-6
  • Liu M, Pazgier M, Li C, A left-handed solution to peptide inhibition of the p53-MDM2 interaction. Angew Chem Int Ed Engl 2010;49:3649-52
  • Bautista AD, Craig CJ, Harker EA, Schepartz A. Sophistication of foldamer form and function in vitro and in vivo. Curr Opin Chem Biol 2007;11:685-92
  • Zasloff M. Antimicrobial peptides of multicellular organisms. Nature 2002;415:389-95
  • Hancock RE. Peptide antibiotics. Lancet 1997;349:418-22
  • Dathe M, Wieprecht T. Structural features of helical antimicrobial peptides: their potential to modulate activity on model membranes and biological cells. Biochim Biophys Acta 1999;1462:71-87
  • Tossi A, Sandri L, Giangaspero A. Amphipathic, alpha-helical antimicrobial peptides. Biopolymers 2000;55:4-30
  • Kono K, Kimura S. Imanishi Y. pH-dependent interaction of amphiphilic polypeptide poly(Lys-Aib-Leu-Aib) with lipid bilayer membrane. Biochemistry 1990;29:3631-7
  • Yokum TS, Elzer PH, McLaughlin ML. Antimicrobial alpha, alpha-dialkylated amino acid rich peptides with in-vivo activity against an intracellular pathogen. J Med Chem 1996;39:3603-5
  • Yokum TS, Hammer RP, McLaughlin ML, Elzer PH. Peptides with indirect in vivo activity against an intracellular pathogen: selective lysis of infected macrophages. J Pept Res 2002;59:9-17
  • Porter EA, Wang X, Lee HS, Non-haemolytic beta-amino-acid oligomers. Nature 2000;404:565
  • Porter EA, Weisblum B, Gellman SH. Mimicry of host-defense peptides by unnatural oligomers: antimicrobial beta-peptides. J Am Chem Soc 2002;124:7324-30
  • Raguse TL, Porter EA, Weisblum B, Gellman SH. Structure-activity studies of 14-helical antimicrobial beta-peptides: probing the relationship between conformational stability and antimicrobial potency. J Am Chem Soc 2002;124:12774-85
  • Arvidsson PI, Ryder NS, Weiss HM, Antibiotic and hemolytic activity of a beta2/beta3 peptide capable of folding into a 12/10-Helical secondary structure. Chembiochem 2003;4:1345-7
  • Chongsiriwatana NP, Patch JA, Czyzewski AM, Peptoids that mimic the structure, function, and mechanism of helical antimicrobial peptides. Proc Natl Acad Sci USA 2008;105:2794-9
  • Violette A, Fournel S, Lamour K, Mimicking helical antibacterial peptides with nonpeptidic folding oligomers. Chem Biol 2006;13:531-8
  • Chen HC, Brown JH, Morell JL, Huang CM. Synthetic magainin analogues with improved antimicrobial activity. FEBS Lett 1988;236:462-6
  • Gurunath R, Beena TK, Adiga PR, Balaram P. Enhancing peptide antigenicity by helix stabilization. FEBS Lett 1995;361:176-8
  • Tam JP. Recent advances in multiple antigen peptides. J Immunol Methods 1996;196:17-32
  • Tsikaris V, Sakarellos C, Cung MT, Concept and design of a new class of sequential oligopeptide carriers (SOC) for covalent attachment of multiple antigenic peptides. Biopolymers 1996;38:291-3
  • Sakarellos-Daitsiotis M, Tsikaris V, Sakarellos C, A new helicoid-type sequential oligopeptide carrier (SOC(n)) for developing potent antigens and immunogens. Vaccine 1999;18:302-10
  • Destouches D, Page N, Hamma-Kourbali Y, A simple approach to cancer therapy afforded by multivalent pseudopeptides that target cell-surface nucleoproteins. Cancer Res 2011;71:3296-305
  • Chapter MC, White CM, DeRidder A, Chemical modification of Class II G protein-coupled receptor ligands: frontiers in the development of peptide analogs as neuroendocrine pharmacological therapies. Pharmacol Ther 2010;125:39-54
  • Shimizu N, Guo J, Gardella TJ. Parathyroid hormone (PTH)-(1-14) and -(1-11) analogs conformationally constrained by alpha-Aminoisobutyric acid mediate full agonist responses via the juxtamembrane region of the PTH-1 receptor. J Biol Chem 2001;276:49003-12
  • Hernandez JF, Kornreich W, Rivier C, Synthesis and relative potencies of new constrained CRF antagonists. J Med Chem 1993;36:2860-7
  • Chang M, Peng YL, Dong SL, Structure-activity studies on different modifications of nociceptin/orphanin FQ: identification of highly potent agonists and antagonists of its receptor. Regul Pept 2005;130:116-22
  • Fry DC, Madison VS, Greeley DN, Solution structures of cyclic and dicyclic analogues of growth hormone releasing factor as determined by two-dimensional NMR and CD spectroscopies and constrained molecular dynamics. Biopolymers 1992;32:649-66
  • Gulyas J, Rivier C, Perrin M, Potent, structurally constrained agonists and competitive antagonists of corticotropin-releasing factor. Proc Natl Acad Sci USA 1995;92:10575-9
  • Campbell RM, Bongers J, Felix AM. Rational design, synthesis, and biological evaluation of novel growth hormone releasing factor analogues. Biopolymers 1995;37:67-88
  • Sebokova E, Christ AD, Wang H, Taspoglutide, an analog of human glucagon-like peptide-1 with enhanced stability and in vivo potency. Endocrinology 2010;151:2474-82
  • Rivier JE, Kirby DA, Lahrichi SL, Constrained corticotropin releasing factor antagonists (astressin analogues) with long duration of action in the rat. J Med Chem 1999;42:3175-82
  • Wang L, Million M, Rivier J, CRF receptor antagonist Astressin-B reverses and prevents alopecia in CRF Over-expressing mice. PLoS ONE 2010;6:e16377
  • Parthier C, Reedtz-Runge S, Rudolph R, Stubbs MT. Passing the baton in class B GPCRs: peptide hormone activation via helix induction? Trends Biochem Sci 2009;34:303-10
  • Underwood CR, Garibay P, Knudsen LB, Crystal structure of glucagon-like peptide-1 in complex with the extracellular domain of the glucagon-like peptide-1 receptor. J Biol Chem 2010;285:723-30
  • Neumann J-M, Couvineau A, Murail S, Class-B GPCR activation: is ligand helix-capping the key? Trends Biochem Sci 2008;33:314-19
  • Murage EN, Gao G, Bisello A, Ahn JM. Development of potent glucagon-like peptide-1 agonists with high enzyme stability via introduction of multiple lactam bridges. J Med Chem 2010;53:6412-20
  • Kirby DA, Koerber SC, Craig AG, Defining structural requirements for neuropeptide Y receptors using truncated and conformationally restricted analogues. J Med Chem 1993;36:385-93
  • Harrison RS, Ruiz-Gomez G, Hill TA, Novel Helix-Constrained nociceptin derivatives are potent agonists and antagonists of ERK phosphorylation and thermal analgesia in mice. J Med Chem 2010;53:8400-8
  • Wild C, Greenwell T, Matthews T. A synthetic peptide from HIV-1 gp41 is a potent inhibitor of virus-mediated cell-cell fusion. AIDS Res Hum Retroviruses 1993;9:1051-3
  • Chan DC, Chutkowski CT, Kim PS. Evidence that a prominent cavity in the coiled coil of HIV type 1 gp41 is an attractive drug target. Proc Natl Acad Sci USA 1998;95:15613-17
  • Dwyer JJ, Wilson KL, Davison DK, Design of helical, oligomeric HIV-1 fusion inhibitor peptides with potent activity against enfuvirtide-resistant virus. Proc Natl Acad Sci USA 2007;104:12772-7
  • He Y, Cheng J, Lu H, Potent HIV fusion inhibitors against Enfuvirtide-resistant HIV-1 strains. Proc Natl Acad Sci USA 2008;105:16332-7
  • Naito T, Izumi K, Kodama E, SC29EK, a peptide fusion inhibitor with enhanced alpha-helicity, inhibits replication of human immunodeficiency virus type 1 mutants resistant to enfuvirtide. Antimicrob Agents Chemother 2009;53:1013-18
  • Sia SK, Carr PA, Cochran AG, Short constrained peptides that inhibit HIV-1 entry. Proc Natl Acad Sci USA 2002;99:14664-9
  • Welch BD, VanDemark AP, Heroux A, Potent D-peptide inhibitors of HIV-1 entry. Proc Natl Acad Sci USA 2007;104:16828-33
  • Horne WS, Johnson LM, Ketas TJ, Structural and biological mimicry of protein surface recognition by alpha/beta-peptide foldamers. Proc Natl Acad Sci USA 2009;106:14751-6
  • Stephens OM, Kim S, Welch BD, Inhibiting HIV fusion with a beta-peptide foldamer. J Am Chem Soc 2005;127:13126-7
  • Bird GH, Madani N, Perry AF, Hydrocarbon double-stapling remedies the proteolytic instability of a lengthy peptide therapeutic. Proc Natl Acad Sci USA 2010;107:14093-8
  • Eckert DM, Kim PS. Mechanisms of viral membrane fusion and its inhibition. Annu Rev Biochem 2001;70:777-810
  • English EP, Chumanov RS, Gellman SH, Compton T. Rational development of beta-peptide inhibitors of human cytomegalovirus entry. J Biol Chem 2006;281:2661-7
  • Chene P. Inhibiting the p53-MDM2 interaction: an important target for cancer therapy. Nat Rev Cancer 2003;3:102-9
  • Murray JK, Gellman SH. Targeting protein–protein interactions: Lessons from p53/MDM2. Biopolymers 2007;88:657-86
  • Kussie PH, Gorina S, Marechal V, Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 1996;274:948-53
  • Garcia-Echeverria C, Chene P, Blommers MJ, Furet P. Discovery of potent antagonists of the interaction between human double minute 2 and tumor suppressor p53. J Med Chem 2000;43:3205-8
  • Chene P, Fuchs J, Bohn J, A small synthetic peptide, which inhibits the p53-hdm2 interaction, stimulates the p53 pathway in tumour cell lines. J Mol Biol 2000;299:245-53
  • Bernal F, Tyler AF, Korsmeyer SJ, Reactivation of the p53 tumor suppressor pathway by a stapled p53 peptide. J Am Chem Soc 2007;129:2456-7
  • Bernal F, Wade M, Godes M, A stapled p53 Helix Overcomes HDMX-Mediated suppression of p53. Cancer Cell 2010;18:411-22
  • Kritzer JA, Lear JD, Hodsdon ME, Schepartz A. Helical beta-peptide inhibitors of the p53-hDM2 interaction. J Am Chem Soc 2004;126:9468-9
  • Michel J, Harker EA, Tirado-Rives J, In silico improvement of beta3-peptide inhibitors of p53.hDM2 and p53.hDMX. J Am Chem Soc 2009;131:6356-7
  • Bautista AD, Appelbaum JS, Craig CJ, Bridged beta3-peptide inhibitors of p53-hDM2 complexation: correlation between affinity and cell permeability. J Am Chem Soc 2010;132:2904-6
  • Hintersteiner M, Kimmerlin T, Garavel G, A highly potent and cellularly active beta-peptidic inhibitor of the p53/hDM2 interaction. Chembiochem 2009;10:994-8
  • Liu M, Li C, Pazgier M, D-peptide inhibitors of the p53-MDM2 interaction for targeted molecular therapy of malignant neoplasms. Proc Natl Acad Sci USA 2010;107:14321-6
  • Darnell JE Jr. Transcription factors as targets for cancer therapy. Nat Rev Cancer 2002;2:740-9
  • Moellering RE, Cornejo M, Davis TN, Direct inhibition of the NOTCH transcription factor complex. Nature 2009;462:182-8
  • Labi V, Grespi F, Baumgartner F, Villunger A. Targeting the Bcl-2-regulated apoptosis pathway by BH3 mimetics: a breakthrough in anticancer therapy? Cell Death Differ 2008;15:977-87
  • Walensky LD, Kung AL, Escher I, Activation of apoptosis in vivo by a hydrocarbon-stapled BH3 helix. Science 2004;305:1466-70
  • Walensky LD, Pitter K, Morash J, A stapled BID BH3 helix directly binds and activates BAX. Mol Cell 2006;24:199-210
  • Danial NN, Walensky LD, Zhang C-Y, Dual role of proapoptotic BAD in insulin secretion and beta cell survival. Nat Med 2008;14:144-53
  • Gavathiotis E, Suzuki M, Davis ML, BAX activation is initiated at a novel interaction site. Nature 2008;455:1076-81
  • Gavathiotis E, Reyna DE, Davis ML, BH3-Triggered structural reorganization drives the activation of proapoptotic BAX. Mol Cell 2010;40:481-92
  • Horne WS, Boersma MD, Windsor MA, Gellman SH. Sequence-Based design of alpha/beta-Peptide foldamers that mimic BH3 domains. Angew Chem Int Ed 2008;47:2853-6
  • Sadowsky JD, Fairlie WD, Hadley EB, (alpha/beta+alpha)-Peptide antagonists of BH3 Domain/Bcl-x(L) recognition: toward general strategies for foldamer-based inhibition of protein-protein interactions. J Am Chem Soc 2007;129:139-54
  • Lee EF, Sadowsky JD, Smith BJ, High-Resolution structural characterization of a helical alpha/beta-Peptide foldamer bound to the Anti-Apoptotic protein Bcl-xL. Angew Chem Int Ed Engl 2009;48:4318-22
  • Sticht J, Humbert M, Findlow S, A peptide inhibitor of HIV-1 assembly in vitro. Nat Struct Mol Biol 2005;12:671-7
  • Ternois F, Sticht J, Duquerroy S, The HIV-1 capsid protein C-terminal domain in complex with a virus assembly inhibitor. Nat Struct Mol Biol 2005;12:678-82
  • Zhang H, Zhao Q, Bhattacharya S, A Cell-penetrating helical peptide as a potential HIV-1 inhibitor. J Mol Biol 2008;378:565-80
  • Bhattacharya S, Zhang H, Debnath AK, Cowburn D. Solution structure of a hydrocarbon stapled peptide inhibitor in complex with monomeric C-terminal domain of HIV-1 capsid. J Biol Chem 2008;283:16274-78
  • Liu J, Wang D, Zheng Q, Atomic structure of a short alpha-Helix stabilized by a main chain hydrogen-bond surrogate. J Am Chem Soc 2008;130:4334-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.