1,702
Views
159
CrossRef citations to date
0
Altmetric
Reviews

The design of semi-synthetic and synthetic glycoconjugate vaccines

, &
Pages 1045-1066 | Published online: 06 Sep 2011

Bibliography

  • Avery OT, Goebel WF. Chemo-immunological studies on conjugated carbohydrate-proteins : ii. immunological specificity of synthetic sugar-protein antigens. J Exp Med 1929;50(4):533-50
  • Finland M, Sutliff WD. Specific antibody response of human subjects to intracutaneous injection of pneumococcus products. J Exp Med 1932;55(6):853-65
  • Macleod CM, Hodges RG, Heidelberger M, Bernhard WG. Prevention of pneumococcal pneumonia by immunization with specific capsular polysaccharides. J Exp Med 1945;6(6):445-65
  • Peltola H, Makela H, Kayhty H, Clinical efficacy of meningococcus group A capsular polysaccharide vaccine in children three months to five years of age. N Engl J Med 1977;297(13):686-91
  • Makela PH, Peltola H, Kayhty H, Polysaccharide vaccines of group A Neisseria meningtitidis and Haemophilus influenzae type b: a field trial in Finland. J Infect Dis 1977;136(Suppl):S43-50
  • Artenstein MS, Gold R, Zimmerly JG, Prevention of meningococcal disease by group C polysaccharide vaccine. N Engl J Med 1970;282(8):417-20
  • Gold R, Artenstein MS. Meningococcal infections. 2. Field trial of group C meningococcal polysaccharide vaccine in 1969 – 70. Bull World Health Organ 1971;45(3):279-82
  • Peltola H, Kayhty H, Sivonen A, Makela H. Haemophilus influenzae type b capsular polysaccharide vaccine in children: a double-blind field study of 100,000 vaccinees 3 months to 5 years of age in Finland. Pediatrics 1977;60(5):730-7
  • Schneerson R, Barrera O, Sutton A, Robbins JB. Preparation, characterization, and immunogenicity of Haemophilus influenzae type b polysaccharide-protein conjugates. J Exp Med 1980;152(2):361-76
  • Eskola J, Peltola H, Takala AK, Efficacy of Haemophilus influenzae type b polysaccharide-diphtheria toxoid conjugate vaccine in infancy. N Engl J Med 1987;317(12):717-22
  • Black SB, Shinefield HR, Fireman B, Efficacy in infancy of oligosaccharide conjugate Haemophilus influenzae type b (HbOC) vaccine in a United States population of 61,080 children. The Northern California Kaiser Permanente Vaccine Study Center Pediatrics Group. Pediatr Infect Dis J 1991;10(2):97-104
  • Anderson PW, Pichichero ME, Insel RA, Vaccines consisting of periodate-cleaved oligosaccharides from the capsule of Haemophilus influenzae type b coupled to a protein carrier: structural and temporal requirements for priming in the human infant. J Immunol 1986;137(4):1181-6
  • Costantino P, Viti S, Podda A, Development and phase 1 clinical testing of a conjugate vaccine against meningococcus A and C. Vaccine 1992;10(10):691-8
  • Eby R. Pneumococcal conjugate vaccines. Pharm Biotechnol 1995;6:695-718
  • Ravenscroft N, Averani G, Bartoloni A, Size determination of bacterial capsular oligosaccharides used to prepare conjugate vaccines. Vaccine 1999;17(22):2802-16
  • Costantino P, Norelli F, Giannozzi A, Size fractionation of bacterial capsular polysaccharides for their use in conjugate vaccines. Vaccine 1999;17(9-10):1251-63
  • Lakshman R, Finn A. Meningococcal serogroup C conjugate vaccine. Expert Opin Biol Ther 2002;2(1):87-96
  • Paoletti LC, Kasper DL. Glycoconjugate vaccines to prevent group B streptococcal infections. Expert Opin Biol Ther 2003;3(6):975-84
  • Snape MD, Perrett KP, Ford KJ, Immunogenicity of a tetravalent meningococcal glycoconjugate vaccine in infants: a randomized controlled trial. JAMA 2008;299(2):173-84
  • Bardotti A, Averani G, Berti F, Physicochemical characterisation of glycoconjugate vaccines for prevention of meningococcal diseases. Vaccine 2008;26(18):2284-96
  • Broker M, Dull PM, Rappuoli R, Costantino P. Chemistry of a new investigational quadrivalent meningococcal conjugate vaccine that is immunogenic at all ages. Vaccine 2009;27(41):5574-80
  • Black S, Klein NP, Shah J, Immunogenicity and tolerability of a quadrivalent meningococcal glycoconjugate vaccine in children 2-10 years of age. Vaccine 2010;28(3):657-63
  • Taylor CM, Roberts IS. Capsular polysaccharides and their role in virulence. Contrib Microbiol 2005;12:55-66
  • Ravenscroft N. Saccharide based vaccines. AIM Mag 2001;55(1):40-6
  • Dintzis RZ. Rational design of conjugate vaccines. Pediatr Res 1992;32(4):376-85
  • Anderson PW, Pichichero ME, Stein EC, Effect of oligosaccharide chain length, exposed terminal group, and hapten loading on the antibody response of human adults and infants to vaccines consisting of Haemophilus influenzae type b capsular antigen unterminally coupled to the diphtheria protein CRM197. J Immunol 1989;142(7):2464-8
  • Laferriere CA, Sood RK, de Muys JM, The synthesis of Streptococcus pneumoniae polysaccharide-tetanus toxoid conjugates and the effect of chain length on immunogenicity. Vaccine 1997;15(2):179-86
  • Laferriere CA, Sood RK, de Muys JM, Streptococcus pneumoniae type 14 polysaccharide-conjugate vaccines: length stabilization of opsonophagocytic conformational polysaccharide epitopes. Infect Immun 1998;66(6):2441-6
  • Michon F, Huang CH, Farley EK, Structure activity studies on group C meningococcal polysaccharide-protein conjugate vaccines: effect of O-acetylation on the nature of the protective epitope. Dev Biol (Basel) 2000;103:151-60
  • Seppala I, Makela O. Antigenicity of dextran-protein conjugates in mice. Effect of molecular weight of the carbohydrate and comparison of two modes of coupling. J Immunol 1989;143(4):1259-64
  • Pozsgay V, Chu C, Pannell L, Protein conjugates of synthetic saccharides elicit higher levels of serum IgG lipopolysaccharide antibodies in mice than do those of the O-specific polysaccharide from Shigella dysenteriae type 1. Proc Natl Acad Sci USA 1999;96(9):5194-7
  • Bromuro C, Romano M, Chiani P, Beta-glucan-CRM197 conjugates as candidates antifungal vaccines. Vaccine 2010;28(14):2615-23
  • Schofield L, Hewitt MC, Evans K, Synthetic GPI as a candidate anti-toxic vaccine in a model of malaria. Nature 2002;418(6899):785-9
  • Astronomo RD, Burton DR. Carbohydrate vaccines: developing sweet solutions to sticky situations? Nat Rev Drug Discov 2010;9(4):308-24
  • Chackerian B. Virus-like particle based vaccines for Alzheimer disease. Hum Vaccin 2010;6(11):926-30
  • Lemere CA, Masliah E. Can Alzheimer disease be prevented by amyloid-beta immunotherapy? Nat Rev Neurol 2010;6(2):108-19
  • Buskas T, Thompson P, Boons GJ. Immunotherapy for cancer: synthetic carbohydrate-based vaccines. Chem Commun (Camb) 2009;36(36):5335-49
  • Zhu J, Warren JD, Danishefsky SJ. Synthetic carbohydrate-based anticancer vaccines: the Memorial Sloan-Kettering experience. Expert Rev Vaccines 2009;8(10):1399-413
  • Wagner S, Jasinska J, Breiteneder H, Delayed tumor onset and reduced tumor growth progression after immunization with a Her-2/neu multi-peptide vaccine and IL-12 in c-neu transgenic mice. Breast Cancer Res Treat 2007;106(1):29-38
  • Krug LM, Ragupathi G, Ng KK, Vaccination of small cell lung cancer patients with polysialic acid or N-propionylated polysialic acid conjugated to keyhole limpet hemocyanin. Clin Cancer Res 2004;10(3):916-23
  • Do TH, Chen Y, Nguyen VT, Phisitkul S. Vaccines in the management of hypertension. Expert Opin Biol Ther 2010;10(7):1077-87
  • Lai Z, Schreiber JR. Antigen processing of glycoconjugate vaccines; the polysaccharide portion of the pneumococcal CRM(197) conjugate vaccine co-localizes with MHC II on the antigen processing cell surface. Vaccine 2009;27(24):3137-44
  • Avci FY, Kasper DL. How bacterial carbohydrates influence the adaptive immune system. Annu Rev Immunol 2010;28:107-30
  • Pollard AJ, Perrett KP, Beverley PC. Maintaining protection against invasive bacteria with protein-polysaccharide conjugate vaccines. Nat Rev Immunol 2009;9(3):213-20
  • Ada G, Isaacs D. Carbohydrate-protein conjugate vaccines. Clin Microbiol Infect 2003;9(2):79-85
  • Kelly DF, Pollard AJ, Moxon ER. Immunological memory: the role of B cells in long-term protection against invasive bacterial pathogens. JAMA 2005;294(23):3019-23
  • Szymanski CM, Yao R, Ewing CP, Evidence for a system of general protein glycosylation in Campylobacter jejuni. Mol Microbiol 1999;32(5):1022-30
  • Kelly J, Jarrell H, Millar L, Biosynthesis of the N-linked glycan in Campylobacter jejuni and addition onto protein through block transfer. J Bacteriol 2006;188(7):2427-34
  • Feldman MF, Wacker M, Hernandez M, Engineering N-linked protein glycosylation with diverse O antigen lipopolysaccharide structures in Escherichia coli. Proc Natl Acad Sci USA 2005;102(8):3016-21
  • Ihssen J, Kowarik M, Dilettoso S, Production of glycoprotein vaccines in Escherichia coli. Microb Cell Fact 2010;9:61
  • Chu C, Schneerson R, Robbins JB, Rastogi SC. Further studies on the immunogenicity of Haemophilus influenzae type b and pneumococcal type 6A polysaccharide-protein conjugates. Infect Immun 1983;40(1):245-56
  • Zou W, Jennings HJ. Preparation of glycoconjugate vaccines. In Carbohydrate-Based Vaccines and Immunotherapies 2009, Eds Zhongwu Guo and Geert-Jan Boons. John Wiley & Sons, Inc; Hoboken, New Jersey; 2009. p. 55-88
  • Marburg S, Jorn D, Tolman RL, Bimolecular chemistry of macromolecules: synthesis of bacterial polysaccharide conjugates with Neisseria meningitidis membrane protein. J Am Chem Soc 1986;108(17):5282-7
  • Giannini G, Rappuoli R, Ratti G. The amino-acid sequence of two non-toxic mutants of diphtheria toxin: CRM45 and CRM197. Nucleic Acids Res 1984;12(10):4063-9
  • Verez-Bencomo V, Fernandez-Santana V, Hardy E, A synthetic conjugate polysaccharide vaccine against Haemophilus influenzae type b. Science 2004;305(5683):522-5
  • Matjila MJ, Phohu TC, Banzhoff A, Safety and immunogenicity of two Haemophilus influenzae type b conjugate vaccines. S Afr Med J 2004;94(1):43-6
  • Prymula R, Schuerman L. 10-valent pneumococcal nontypeable Haemophilus influenzae PD conjugate vaccine: Synflorix. Expert Rev Vaccines 2009;8(11):1479-500
  • Finne J, Bitter-Suermann D, Goridis C, Finne U. An IgG monoclonal antibody to group B meningococci cross-reacts with developmentally regulated polysialic acid units of glycoproteins in neural and extraneural tissues. J Immunol 1987;138(12):4402-7
  • Bruge J, Bouveret-Le Cam N, Danve B, Clinical evaluation of a group B meningococcal N-propionylated polysaccharide conjugate vaccine in adult, male volunteers. Vaccine 2004;22(9-10):1087-96
  • Cox AD, St Michael F, Neelamegan D, Investigating the candidacy of LPS-based glycoconjugates to prevent invasive meningococcal disease: chemical strategies to prepare glycoconjugates with good carbohydrate loading. Glycoconj J 2010;27(4):401-17
  • Wittrock S, Becker T, Kunz H. Synthetic vaccines of tumor-associated glycopeptide antigens by immune-compatible thioether linkage to bovine serum albumin. Angew Chem Int Ed Engl 2007;46(27):5226-30
  • Fattom A, Schneerson R, Watson DC, Laboratory and clinical evaluation of conjugate vaccines composed of Staphylococcus aureus type 5 and type 8 capsular polysaccharides bound to Pseudomonas aeruginosa recombinant exoprotein A. Infect Immun 1993;61(3):1023-32
  • Floyd N, Vijayakrishnan B, Koeppe JR, Davis BG. Thiyl glycosylation of olefinic proteins: S-linked glycoconjugate synthesis. Angew Chem Int Ed Engl 2009;48(42):7798-802
  • Robbins JB, Kubler-Kielb J, Vinogradov E, Synthesis, characterization, and immunogenicity in mice of Shigella sonnei O-specific oligosaccharide-core-protein conjugates. Proc Natl Acad Sci USA 2009;106(19):7974-8
  • Wan Q, Chen J, Chen G, Danishefsky SJ. A potentially valuable advance in the synthesis of carbohydrate-based anticancer vaccines through extended cycloaddition chemistry. J Org Chem 2006;71(21):8244-9
  • Peeters CC, Evenberg D, Hoogerhout P, Synthetic trimer and tetramer of 3-beta-D-ribose-(1-1)-D-ribitol-5-phosphate conjugated to protein induce antibody responses to Haemophilus influenzae type b capsular polysaccharide in mice and monkeys. Infect Immun 1992;60(5):1826-33
  • Benaissa-Trouw B, Lefeber DJ, Kamerling JP, Synthetic polysaccharide type 3-related di-, tri-, and tetrasaccharide-CRM(197) conjugates induce protection against Streptococcus pneumoniae type 3 in mice. Infect Immun 2001;69(7):4698-701
  • Phalipon A, Tanguy M, Grandjean C, A synthetic carbohydrate-protein conjugate vaccine candidate against Shigella flexneri 2a infection. J Immunol 2009;182(4):2241-7
  • Wessels MR, Paoletti LC, Guttormsen HK, Structural properties of group B streptococcal type III polysaccharide conjugate vaccines that influence immunogenicity and efficacy. Infect Immun 1998;66(5):2186-92
  • Peeters JM, Hazendonk TG, Beuvery EC, Tesser GI. Comparison of four bifunctional reagents for coupling peptides to proteins and the effect of the three moieties on the immunogenicity of the conjugates. J Immunol Methods 1989;120(1):133-43
  • Buskas T, Li Y, Boons GJ. The immunogenicity of the tumor-associated antigen Lewis(y) may be suppressed by a bifunctional cross-linker required for coupling to a carrier protein. Chemistry (Easton) 2004;10(14):3517-24
  • Bartoloni A, Norelli F, Ceccarini C, Immunogenicity of meningococcal B polysaccharide conjugated to tetanus toxoid or CRM197 via adipic acid dihydrazide. Vaccine 1995;13(5):463-70
  • Cox AD, St Michael F, Neelamegan D, Investigating the candidacy of LPS-based glycoconjugates to prevent invasive meningococcal disease: immunology of glycoconjugates with high carbohydrate loading. Glycoconj J 2010;27(7-9):643-8
  • Lipinski T, Luu T, Kitov PI, A structurally diversified linker enhances the immune responce to a small carbohydrate hapten. Glycoconj J 2011;28:149-64
  • Poolman J, Frasch C, Nurkka A, Impact of the conjugation method on the immunogenicity of Streptococcus pneumoniae 19F polysaccharide in conjugate vaccines. Clin Vaccine Immunol 2010;18(2):327-36
  • Berry DS, Lynn F, Lee CH, Effect of O acetylation of Neisseria meningitidis serogroup A capsular polysaccharide on development of functional immune responses. Infect Immun 2002;70(7):3707-13
  • Gudlavalleti SK, Lee CH, Norris SE, Comparison of Neisseria meningitidis serogroup W135 polysaccharide-tetanus toxoid conjugate vaccines made by periodate activation of O-acetylated, non-O-acetylated and chemically de-O-acetylated polysaccharide. Vaccine 2007;25(46):7972-80
  • Fusco PC, Farley EK, Huang CH, Protective meningococcal capsular polysaccharide epitopes and the role of O acetylation. Clin Vaccine Immunol 2007;14(5):577-84
  • Pace D. Quadrivalent meningococcal ACYW-135 glycoconjugate vaccine for broader protection from infancy. Expert Rev Vaccines 2009;8(5):529-42
  • Ruggeberg JU, Pollard AJ. Meningococcal vaccines. Paediatr Drugs 2004;6(4):251-66
  • Rennels M, King J Jr, Ryall R, Dosage escalation, safety and immunogenicity study of four dosages of a tetravalent meninogococcal polysaccharide diphtheria toxoid conjugate vaccine in infants. Pediatr Infect Dis J 2004;23(5):429-35
  • Hwang KW. Haemophilus influenza type b (Hib) vaccine and its carrier proteins. Arch Pharm Res 2010;33(6):793-5
  • Ostergaard L, Lebacq E, Poolman J, Immunogenicity, reactogenicity and persistence of meningococcal A, C, W-135 and Y-tetanus toxoid candidate conjugate (MenACWY-TT) vaccine formulations in adolescents aged 15-25 years. Vaccine 2009;27(1):161-8
  • Kabanova A, Margarit I, Berti F, Evaluation of a Group A Streptococcus synthetic oligosaccharide as vaccine candidate. Vaccine 2010;29(1):104-14
  • Micoli F, Rondini S, Pisoni I, Vi-CRM 197 as a new conjugate vaccine against Salmonella Typhi. Vaccine 2011;29(4):712-20
  • Donnelly JJ, Deck RR, Liu MA. Immunogenicity of a Haemophilus influenzae polysaccharide-Neisseria meningitidis outer membrane protein complex conjugate vaccine. J Immunol 1990;145(9):3071-9
  • Forsgren A, Riesbeck K, Janson H. Protein D of Haemophilus influenzae: a protective nontypeable H. influenzae antigen and a carrier for pneumococcal conjugate vaccines. Clin Infect Dis 2008;46(5):726-31
  • Szu SC, Stone AL, Robbins JD, Vi capsular polysaccharide-protein conjugates for prevention of typhoid fever. Preparation, characterization, and immunogenicity in laboratory animals. J Exp Med 1987;166(5):1510-24
  • Decker MD, Edwards KM, Bradley R, Palmer P. Comparative trial in infants of four conjugate Haemophilus influenzae type b vaccines. J Pediatr 1992;120(2 Pt 1):184-9
  • Granoff DM, Anderson EL, Osterholm MT, Differences in the immunogenicity of three Haemophilus influenzae type b conjugate vaccines in infants. J Pediatr 1992;121(2):187-94
  • Halperin SA, Gupta A, Jeanfreau R, Comparison of the safety and immunogenicity of an investigational and a licensed quadrivalent meningococcal conjugate vaccine in children 2-10 years of age. Vaccine 2010;28(50):7865-72
  • Southern J, Borrow R, Andrews N, Immunogenicity of a reduced schedule of meningococcal group C conjugate vaccine given concomitantly with the Prevenar and Pediacel vaccines in healthy infants in the United Kingdom. Clin Vaccine Immunol 2009;16(2):194-9
  • Jackson LA, Baxter R, Reisinger K, Phase III comparison of an investigational quadrivalent meningococcal conjugate vaccine with the licensed meningococcal ACWY conjugate vaccine in adolescents. Clin Infect Dis 2009;49(1):e1-10
  • Dagan R, Poolman J, Siegrist CA. Glycoconjugate vaccines and immune interference: a review. Vaccine 2010;28(34):5513-23
  • Pollabauer EM, Petermann R, Ehrlich HJ. The influence of carrier protein on the immunogenicity of simultaneously administered conjugate vaccines in infants. Vaccine 2009;27(11):1674-9
  • Usonis V, Bakasenas V, Lockhart S, A clinical trial examining the effect of increased total CRM(197) carrier protein dose on the antibody response to Haemophilus influenzae type b CRM(197) conjugate vaccine. Vaccine 2008;26(35):4602-7
  • Shinefield HR. Overview of the development and current use of CRM(197) conjugate vaccines for pediatric use. Vaccine 2010;28(27):4335-9
  • Bar-Zeev N, Buttery JP. Combination conjugate vaccines. Expert Opin Drug Saf 2006;5(3):351-60
  • Fattom A, Cho YH, Chu C, Epitopic overload at the site of injection may result in suppression of the immune response to combined capsular polysaccharide conjugate vaccines. Vaccine 1999;17(2):126-33
  • Knuf M, Szenborn L, Moro M, Immunogenicity of routinely used childhood vaccines when coadministered with the 10-valent pneumococcal non-typeable Haemophilus influenzae protein D conjugate vaccine (PHiD-CV). Pediatr Infect Dis J 2009;28(4 Suppl):S97-108
  • Esposito S, Tansey S, Thompson A, Safety and immunogenicity of a 13-valent pneumococcal conjugate vaccine compared to those of a 7-valent pneumococcal conjugate vaccine given as a three-dose series with routine vaccines in healthy infants and toddlers. Clin Vaccine Immunol 2010;17(6):1017-26
  • Dinleyici EC, Yargic ZA. Current knowledge regarding the investigational 13-valent pneumococcal conjugate vaccine. Expert Rev Vaccines 2009;8(8):977-86
  • Dinleyici EC, Yargic ZA. Pneumococcal conjugated vaccine: PHiD-CV. Expert Rev Anti Infect Ther 2009;7(9):1063-74
  • Gasparini R, Conversano M, Bona G, Randomized trial on the safety, tolerability, and immunogenicity of MenACWY-CRM, an investigational quadrivalent meningococcal glycoconjugate vaccine, administered concomitantly with a combined tetanus, reduced diphtheria, and acellular pertussis vaccine in adolescents and young adults. Clin Vaccine Immunol 2010;17(4):537-44
  • Knuf M, Kowalzik F, Kieninger D. Comparative effects of carrier proteins on vaccine-induced immune response. Vaccine 2011;29:4881-90
  • Falugi F, Petracca R, Mariani M, Rationally designed strings of promiscuous CD4(+) T cell epitopes provide help to Haemophilus influenzae type b oligosaccharide: a model for new conjugate vaccines. Eur J Immunol 2001;31(12):3816-24
  • Baraldo K, Mori E, Bartoloni A, Combined conjugate vaccines: enhanced immunogenicity with the N19 polyepitope as a carrier protein. Infect Immun 2005;73(9):5835-41
  • Danishefsky SJ, Allen JR. From the laboratory to the clinic: a retrospective on fully synthetic carbohydrate-based anticancer vaccines. Angew Chem Int Ed Engl 2000;39(5):836-63
  • Bengt GW, Minthon L, Floesser A, Results of the first-in-man study with the active Abeta Immunotherapy CAD106 in Alzheimer patients. Alzheimer's & dementia: the journal of the Alzheimer's Association 2009;5(4):P113-14
  • Snippe H, Jansen WT, Kamerling JP, Lefeber DJ. Towards a synthetic pneumococcal vaccine: synthetic oligosaccharides as tools for improving the specificity of enzyme-linked immunosorbent assays. Clin Diagn Lab Immunol 2000;7(2):325
  • Jansen WT, Hogenboom S, Thijssen MJ, Synthetic 6B di-, tri-, and tetrasaccharide-protein conjugates contain pneumococcal type 6A and 6B common and 6B-specific epitopes that elicit protective antibodies in mice. Infect Immun 2001;69(2):787-93
  • Safari D, Dekker HA, Joosten JA, Identification of the smallest structure capable of evoking opsonophagocytic antibodies against Streptococcus pneumoniae type 14. Infect Immun 2008;76(10):4615-23
  • Kubler-Kielb J, Vinogradov E, Mocca C, Immunochemical studies of Shigella flexneri 2a and 6, and Shigella dysenteriae type 1 O-specific polysaccharide-core fragments and their protein conjugates as vaccine candidates. Carbohydr Res 2010;345(11):1600-8
  • Pozsgay V. Recent developments in synthetic oligosaccharide-based bacterial vaccines. Curr Top Med Chem 2008;8(2):126-40
  • Wu X, Lipinski T, Paszkiewicz E, Bundle DR. Synthesis and immunochemical characterization of S-linked glycoconjugate vaccines against Candida albicans. Chemistry (Easton) 2008;14(21):6474-82
  • Slattegard R, Teodorovic P, Kinfe HH, Synthesis of structures corresponding to the capsular polysaccharide of Neisseria meningitidis group A. Org Biomol Chem 2005;3(20):3782-7
  • Nakouzi A, Zhang T, Oscarson S, Casadevall A. The common Cryptococcus neoformans glucuronoxylomannan M2 motif elicits non-protective antibodies. Vaccine 2009;27(27):3513-18
  • Gening ML, Maira-Litran T, Kropec A, Synthetic {beta}-(1-> 6)-linked N-acetylated and nonacetylated oligoglucosamines used to produce conjugate vaccines for bacterial pathogens. Infect Immun 2010;78(2):764-72
  • Kabanova A, Margarit I, Berti F, Evaluation of a Group A Streptococcus synthetic oligosaccharide as vaccine candidate. Vaccine 2010;29(1):104-14
  • Seeberger PH. Automated oligosaccharide synthesis. Chem Soc Rev 2008;37:19-28
  • Jaipuri FA, Pohl NL. Toward solution-phase automated iterative synthesis: fluorous-tag assisted solution-phase synthesis of linear and branched mannose oligomers. Org Biomol Chem 2008;6(15):2686-91
  • Xin H, Dziadek S, Bundle DR, Cutler JE. Synthetic glycopeptide vaccines combining beta-mannan and peptide epitopes induce protection against candidiasis. Proc Natl Acad Sci USA 2008;105(36):13526-31
  • Chong P, Chan N, Kandil A, A strategy for rational design of fully synthetic glycopeptide conjugate vaccines. Infect Immun 1997;65(12):4918-25
  • Alexander J, del Guercio MF, Maewal A, Linear PADRE T helper epitope and carbohydrate B cell epitope conjugates induce specific high titer IgG antibody responses. J Immunol 2000;164(3):1625-33
  • Ravenscroft N, D'Ascenzi S, Proietti D, Physicochemical characterisation of the oligosaccharide component of vaccines. Dev Biol (Basel) 2000;103:35-47
  • Ravenscroft N, Wheeler JX, Jones C. Bioanalysis of meningococcal vaccines. Bioanalysis 2010;2(2):343-61
  • Jones C. NMR assays for carbohydrate-based vaccines. J Pharm Biomed Anal 2005;38(5):840-50
  • Suker J, Feavers IM, Corbel MJ, Control and lot release of meningococcal group C conjugate vaccines. Expert Rev Vaccines 2004;3(5):533-40
  • Egan W, Frasch CE, Anthony BF. Lot-release criteria, postlicensure quality control, and the Haemophilus influenzae type b conjugate vaccines. JAMA 1995;273(11):888-9
  • Jones C. Vaccines based on the cell surface carbohydrates of pathogenic bacteria. An Acad Bras Cienc 2005;77(2):293-324
  • Finn OJ. Cancer vaccines: between the idea and the reality. Nat Rev Immunol 2003;3(8):630-41
  • Springer GF. T and Tn, general carcinoma autoantigens. Science 1984;224(4654):1198-206
  • Sakamoto J, Furukawa K, Cordon-Cardo C, Expression of Lewisa, Lewisb, X, and Y blood group antigens in human colonic tumors and normal tissue and in human tumor-derived cell lines. Cancer Res 1986;46(3):1553-61
  • Lloyd KO. The chemistry and immunochemistry of blood group A, B, H, and Lewis antigens: past, present and future. Glycoconj J 2000;17(7-9):531-41
  • Hakomori S. Antigen structure and genetic basis of histo-blood groups A, B and O: their changes associated with human cancer. Biochim Biophys Acta 1999;1473(1):247-66
  • Taylor-Papadimitriou J, Burchell J, Miles DW, Dalziel M. MUC1 and cancer. Biochim Biophys Acta 1999;1455(2-3):301-13
  • Hanisch FG. O-glycosylation of the mucin type. Biol Chem 2001;382(2):143-9
  • Hakomori S. Tumor-associated carbohydrate antigens defining tumor malignancy: basis for development of anti-cancer vaccines. Adv Exp Med Biol 2001;491:369-402
  • Kunz H, Birnbach S. Synthesis of O-Glycopeptides of the Tumor-Associated TN- and T-antigen type and their binding to bovine serum albumin. Angew Chem Int Ed Engl 1986;25(4):360-2
  • Zhu J, Wan Q, Lee D, From synthesis to biologics: preclinical data on a chemistry derived anticancer vaccine. J Am Chem Soc 2009;131(26):9298-303
  • Krug LM, Ragupathi G, Hood C, Vaccination of patients with small-cell lung cancer with synthetic fucosyl GM-1 conjugated to keyhole limpet hemocyanin. Clin Cancer Res 2004;10(18 Pt 1):6094-100
  • Kudryashov V, Glunz PW, Williams LJ, Toward optimized carbohydrate-based anticancer vaccines: epitope clustering, carrier structure, and adjuvant all influence antibody responses to Lewis(y) conjugates in mice. Proc Natl Acad Sci USA 2001;98(6):3264-9
  • Kaiser A, Gaidzik N, Westerlind U, A synthetic vaccine consisting of a tumor-associated sialyl-T(N)-MUC1 tandem-repeat glycopeptide and tetanus toxoid: induction of a strong and highly selective immune response. Angew Chem Int Ed Engl 2009;48(41):7551-5
  • Hoffmann-Roder A, Kaiser A, Wagner S, Synthetic antitumor vaccines from tetanus toxoid conjugates of MUC1 glycopeptides with the Thomsen-Friedenreich antigen and a fluorine-substituted analogue. Angew Chem Int Ed Engl 2010;49(45):8498-503
  • Sorensen AL, Reis CA, Tarp MA, Chemoenzymatically synthesized multimeric Tn/STn MUC1 glycopeptides elicit cancer-specific anti-MUC1 antibody responses and override tolerance. Glycobiology 2006;16(2):96-107
  • Li Q, Rodriguez LG, Farnsworth DF, Gildersleeve JC. Effects of hapten density on the induced antibody repertoire. ChemBioChem 2010;11(12):1686-91
  • Ingale S, Wolfert MA, Gaekwad J, Robust immune responses elicited by a fully synthetic three-component vaccine. Nat Chem Biol 2007;3(10):663-7
  • Finn OJ. Cancer immunology. N Engl J Med 2008;358(25):2704-15
  • Apostolopoulos V, Yuriev E, Ramsland PA, A glycopeptide in complex with MHC class I uses the GalNAc residue as an anchor. Proc Natl Acad Sci USA 2003;100(25):15029-34
  • Xu Y, Gendler SJ, Franco A. Designer glycopeptides for cytotoxic T cell-based elimination of carcinomas. J Exp Med 2004;199(5):707-16
  • Renaudet O, BenMohamed L, Dasgupta G, Towards a self-adjuvanting multivalent B and T cell epitope containing synthetic glycolipopeptide cancer vaccine. ChemMedChem 2008;3(5):737-41
  • Wiedermann U, Wiltschke C, Jasinska J, A virosomal formulated Her-2/neu multi-peptide vaccine induces Her-2/neu-specific immune responses in patients with metastatic breast cancer: a phase I study. Breast Cancer Res Treat 2010;119(3):673-83
  • Riemer AB, Kurz H, Klinger M, Vaccination with cetuximab mimotopes and biological properties of induced anti-epidermal growth factor receptor antibodies. J Natl Cancer Inst 2005;97(22):1663-70
  • Wagner S, Krepler C, Allwardt D, Reduction of human melanoma tumor growth in severe combined immunodeficient mice by passive transfer of antibodies induced by a high molecular weight melanoma-associated antigen mimotope vaccine. Clin Cancer Res 2008;14(24):8178-83
  • Helling F, Zhang S, Shang A, GM2-KLH conjugate vaccine: increased immunogenicity in melanoma patients after administration with immunological adjuvant QS-21. Cancer Res 1995;55(13):2783-8
  • Buskas T, Thompson P, Boons G-J. Semisynthetic and fully synthetic carbohydrate-based cancer vaccines. In Carbohydrate-Based Vaccines and Immunotherapies. Eds Zhongwu Guo and Geert-Jan Boons. John Wiley & Sons, Inc. Hoboken, New Jersey; 2009. p. 263-311
  • Wandall HH, Tarp MA. Therapeutic cancer vaccines: clinical trials and applications. In Carbohydrate-Based Vaccines and Immunotherapies, Eds Zhongwu Guo and Geert-Jan Boons. John Wiley & Sons, Inc. Hoboken, New Jersey; 2009. p. 333-66
  • Lemere CA, Maier M, Jiang L, Amyloid-beta immunotherapy for the prevention and treatment of Alzheimer disease: lessons from mice, monkeys, and humans. Rejuvenation Res 2006;9(1):77-84
  • Tabira T. Immunization therapy for Alzheimer disease: a comprehensive review of active immunization strategies. Tohoku J Exp Med 2010;220(2):95-106
  • Moreno AY, Janda KD. Immunopharmacotherapy: vaccination strategies as a treatment for drug abuse and dependence. Pharmacol Biochem Behav 2009;92(2):199-205
  • Kinsey BM, Jackson DC, Orson FM. Anti-drug vaccines to treat substance abuse. Immunol Cell Biol 2009;87(4):309-14
  • Cerny EH, Cerny T. Vaccines against nicotine. Hum Vaccin 2009;5(4):200-5
  • Meijler MM, Matsushita M, Altobell LJ III, A new strategy for improved nicotine vaccines using conformationally constrained haptens. J Am Chem Soc 2003;125(24):7164-5
  • Adams WG, Deaver KA, Cochi SL, Decline of childhood Haemophilus influenzae type b (Hib) disease in the Hib vaccine era. JAMA 1993;269(2):221-6
  • Ruggeberg J, Heath PT. Safety and efficacy of meningococcal group C conjugate vaccines. Expert Opin Drug Saf 2003;2(1):7-19
  • Black S, Shinefield H, Baxter R, Impact of the use of heptavalent pneumococcal conjugate vaccine on disease epidemiology in children and adults. Vaccine 2006;24(Suppl 2):S279-80

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.