587
Views
23
CrossRef citations to date
0
Altmetric
Reviews

Latest in vitro and in vivo models of celiac disease

, &
Pages 445-457 | Published online: 08 Jan 2013

Bibliography

  • Rubio-Tapia A, Kyle RA, Kaplan EL, Increased prevalence and mortality in undiagnosed celiac disease. Gastroenterology 2009;137(1):88-93
  • Jabri B, Sollid LM. Mechanisms of disease: immunopathogenesis of celiac disease. Nat Clin Pract Gastroenterol Hepatol 2006;3(9):516-25
  • Fasano A. Zonulin and its regulation of intestinal barrier function: the biological door to inflammation, autoimmunity, and cancer. Physiol Rev 2011;91(1):151-75
  • Bodd M, Kim CY, Lundin KE, Sollid LM. T-cell response to gluten in patients with HLA-DQ2.2 reveals requirement of peptide-MHC stability in celiac disease. Gastroenterology 2012;142(3):552-61
  • Molberg O, McAdam SN, Korner R, Tissue transglutaminase selectively modifies gliadin peptides that are recognized by gut-derived T cells in celiac disease. Nat Med 1998;4(6):713-17
  • Abadie V, Sollid LM, Barreiro LB, Jabri B. Integration of genetic and immunological insights into a model of celiac disease pathogenesis. Annu Rev Immunol 2011;29:493-525
  • Jelinkova L, Tuckova L, Cinova J, Gliadin stimulates human monocytes to production of IL-8 and TNF-alpha through a mechanism involving NF-kappaB. FEBS Lett 2004;571(1-3):81-5
  • Palova-Jelinkova L, Rozkova D, Pecharova B, Gliadin fragments induce phenotypic and functional maturation of human dendritic cells. J Immunol 2005;175(10):7038-45
  • Barone MV, Zanzi D, Maglio M, Gliadin-mediated proliferation and innate immune activation in celiac disease are due to alterations in vesicular trafficking. PLoS ONE 2011;6(2):e17039
  • Marietta EV, Schuppan D, Murray JA. In vitro and in vivo models of celiac disease. Exp Opin Drug Dis 2009;4(11):1113-23
  • Clemente MG, De Virgiliis S, Kang JS, Early effects of gliadin on enterocyte intracellular signalling involved in intestinal barrier function. Gut 2003;52(2):218-23
  • Reinke Y, Behrendt M, Schmidt S, Impairment of protein trafficking by direct interaction of gliadin peptides with actin. Exp Cell Res 2011;317(15):2124-35
  • Zimmer KP, Fischer I, Mothes T, Endocytotic segregation of gliadin peptide 31-49 in enterocytes. Gut 2010;59(3):300-10
  • Barone MV, Nanayakkara M, Paolella G, Gliadin peptide P31-43 localises to endocytic vesicles and interferes with their maturation. PLoS ONE 2010;5(8):e12246
  • Caputo I, Secondo A, Lepretti M, Gliadin Peptides Induce Tissue Transglutaminase Activation and ER-Stress through Ca(2+) Mobilization in Caco-2 cells. PLoS ONE 2012;7(9):e45209
  • Collado MC, Donat E, Ribes-Koninckx C, Specific duodenal and faecal bacterial groups associated with paediatric coeliac disease. J Clin Pathol 2009;62(3):264-9
  • Nadal I, Donat E, Ribes-Koninckx C, Imbalance in the composition of the duodenal microbiota of children with coeliac disease. J Med Microbiol 2007;56(Pt 12):1669-74
  • Sanchez E, Laparra JM, Sanz Y. Discerning the role of Bacteroides fragilis in celiac disease pathogenesis. Appl Environ Microbiol 2012;78(18):6507-15
  • Bromley SK, Thomas SY, Luster AD. Chemokine receptor CCR7 guides T cell exit from peripheral tissues and entry into afferent lymphatics. Nat Immunol 2005;6(9):895-901
  • De Palma G, Kamanova J, Cinova J, Modulation of phenotypic and functional maturation of dendritic cells by intestinal bacteria and gliadin: relevance for celiac disease. J Leukoc Biol 2012;92(5):1043-54
  • Harris KM, Fasano A, Mann DL. Monocytes differentiated with IL-15 support Th17 and Th1 responses to wheat gliadin: implications for celiac disease. Clin Immunol 2010;135(3):430-9
  • Molberg O, Kett K, Scott H, Gliadin specific, HLA DQ2-restricted T cells are commonly found in small intestinal biopsies from coeliac disease patients, but not from controls. Scand J Immunol 1997;46(3):103-9
  • Lundin KE, Scott H, Hansen T, Gliadin-specific, HLA-DQ(alpha 1*0501,beta 1*0201) restricted T cells isolated from the small intestinal mucosa of celiac disease patients. J Exp Med 1993;178(1):187-96
  • Vader W, Stepniak D, Kooy Y, The HLA-DQ2 gene dose effect in celiac disease is directly related to the magnitude and breadth of gluten-specific T cell responses. Proc Natl Acad Sci USA 2003;100(21):12390-5
  • Xia J, Siegel M, Bergseng E, Inhibition of HLA-DQ2-mediated antigen presentation by analogues of a high affinity 33-residue peptide from alpha2-gliadin. J Am Chem Soc 2006;128(6):1859-67
  • Lindfors K, Rauhavirta T, Stenman S, In vitro models for gluten toxicity: relevance for celiac disease pathogenesis and development of novel treatment options. Exp Biol Med (Maywood) 2012;237(2):119-25
  • de Ritis G, Auricchio S, Jones HW, In vitro (organ culture) studies of the toxicity of specific A-gliadin peptides in celiac disease. Gastroenterology 1988;94(1):41-9
  • Howdle PD, Ciclitira PJ, Simpson FG, Losowsky MS. Are all gliadins toxic in coeliac disease? An in vitro study of alpha, beta, gamma, and w gliadins. Scand J Gastroenterol 1984;19(1):41-7
  • Lebreton C, Menard S, Abed J, Interactions among secretory immunoglobulin A, CD71, and transglutaminase-2 affect permeability of intestinal epithelial cells to gliadin peptides. Gastroenterology 2012;143(3):698-707; e1-4
  • Zanzi D, Stefanile R, Santagata S, IL-15 interferes with suppressive activity of intestinal regulatory T cells expanded in Celiac disease. Am J Gastroenterol 2011;106(7):1308-17
  • Castellanos-Rubio A, Santin I, Martin-Pagola A, Long-term and acute effects of gliadin on small intestine of patients on potentially pathogenic networks in celiac disease. Autoimmunity 2010;43(2):131-9
  • Gianfrani C, Siciliano RA, Facchiano AM, Transamidation of wheat flour inhibits the response to gliadin of intestinal T cells in celiac disease. Gastroenterology 2007;133(3):780-9
  • Zevallos VF, Ellis HJ, Suligoj T, Variable activation of immune response by quinoa (Chenopodium quinoa Willd.) prolamins in celiac disease. Am J Clin Nutr 2012;96(2):337-44
  • Maglio M, Mazzarella G, Barone MV, Immunogenicity of two oat varieties, in relation to their safety for celiac patients. Scand J Gastroenterol 2011;46(10):1194-205
  • Gianfrani C, Maglio M, Rotondi Aufiero V, Immunogenicity of monococcum wheat in celiac patients. Am J Clin Nutr 2012;96(6):1339-45
  • van der Kolk JH, van Putten LA, Mulder CJ, Gluten-dependent antibodies in horses with inflammatory small bowel disease (ISBD). Vet Q 2012;32(1):3-11
  • Batt RM, Carter MW, McLean L. Wheat-sensitive enteropathy in Irish setter dogs: possible age-related brush border abnormalities. Res Vet Sci 1985;39(1):80-3
  • Batt RM, McLean L, Carter MW. Sequential morphologic and biochemical studies of naturally occurring wheat-sensitive enteropathy in Irish setter dogs. Dig Dis Sci 1987;32(2):184-94
  • Hall EJ, Batt RM. Dietary modulation of gluten sensitivity in a naturally occurring enteropathy of Irish setter dogs. Gut 1992;33(2):198-205
  • Polvi A, Garden OA, Houlston RS, Genetic susceptibility to gluten sensitive enteropathy in Irish setter dogs is not linked to the major histocompatibility complex. Tissue Antigens 1998;52(6):543-9
  • Bethune MT, Borda JT, Ribka E, A non-human primate model for gluten sensitivity. PLoS ONE 2008;3(2):e1614
  • Sestak K, Mazumdar K, Midkiff CC, Recognition of epidermal transglutaminase by IgA and tissue transglutaminase 2 antibodies in a rare case of <em>Rhesus</em> dermatitis. J Vis Exp 2011(58):3154
  • Sardy M, Karpati S, Merkl B, Epidermal transglutaminase (TGase 3) is the autoantigen of dermatitis herpetiformis. J Exp Med 2002;195(6):747-57
  • Marietta E, Black K, Camilleri M, A new model for dermatitis herpetiformis that uses HLA-DQ8 transgenic NOD mice. J Clin Invest 2004;114(8):1090-7
  • Bethune MT, Ribka E, Khosla C, Sestak K. Transepithelial transport and enzymatic detoxification of gluten in gluten-sensitive rhesus macaques. PLoS ONE 2008;3(3):e1857
  • Stepankova R, Tlaskalova-Hogenova H, Sinkora J, Changes in jejunal mucosa after long-term feeding of germfree rats with gluten. Scand J Gastroenterol 1996;31(6):551-7
  • Laparra JM, Olivares M, Gallina O, Sanz Y. Bifidobacterium longum CECT 7347 modulates immune responses in a gliadin-induced enteropathy animal model. PLoS ONE 2012;7(2):e30744
  • Olivares M, Laparra M, Sanz Y. Oral administration of Bifidobacterium longum CECT 7347 modulates jejunal proteome in an in vivo gliadin-induced enteropathy animal model. J Proteomics 2012;77:310-20
  • Cinova J, De Palma G, Stepankova R, Role of intestinal bacteria in gliadin-induced changes in intestinal mucosa: study in germ-free rats. PLoS ONE 2011;6(1):e16169
  • Freitag TL, Rietdijk S, Junker Y, Gliadin-primed CD4+CD45RBlowCD25- T cells drive gluten-dependent small intestinal damage after adoptive transfer into lymphopenic mice. Gut 2009;58(12):1597-605
  • Papista C, Gerakopoulos V, Kourelis A, Gluten induces coeliac-like disease in sensitised mice involving IgA, CD71 and transglutaminase 2 interactions that are prevented by probiotics. Lab Invest 2012;92(4):625-35
  • Black KE, Murray JA, David CS. HLA-DQ determines the response to exogenous wheat proteins: a model of gluten sensitivity in transgenic knockout mice. J Immunol 2002;169(10):5595-600
  • Huibregtse IL, Marietta EV, Rashtak S, Induction of antigen-specific tolerance by oral administration of Lactococcus lactis delivered immunodominant DQ8-restricted gliadin peptide in sensitized nonobese diabetic Abo Dq8 transgenic mice. J Immunol 2009;183(4):2390-6
  • Hovhannisyan Z, Weiss A, Martin A, The role of HLA-DQ8 beta57 polymorphism in the anti-gluten T-cell response in coeliac disease. Nature 2008;456(7221):534-8
  • DePaolo RW, Abadie V, Tang F, Co-adjuvant effects of retinoic acid and IL-15 induce inflammatory immunity to dietary antigens. Nature 2011;471(7337):220-4
  • Verdu EF, Huang X, Natividad J, Gliadin-dependent neuromuscular and epithelial secretory responses in gluten-sensitive HLA-DQ8 transgenic mice. Am J Physiol Gastrointest Liver Physiol 2008;294(1):G217-25
  • Natividad JM, Huang X, Slack E, Host responses to intestinal microbial antigens in gluten-sensitive mice. PLoS ONE 2009;4(7):e6472
  • Galipeau HJ, Rulli NE, Jury J, Sensitization to Gliadin Induces Moderate Enteropathy and Insulitis in Nonobese Diabetic-DQ8 Mice. J Immunol 2011;187(8):4338-46
  • Pinier M, Verdu EF, Nasser-Eddine M, Polymeric binders suppress gliadin-induced toxicity in the intestinal epithelium. Gastroenterology 2009;136(1):288-98
  • Pinier M, Fuhrmann G, Galipeau HJ, The copolymer P(HEMA-co-SS) binds gluten and reduces immune response in gluten-sensitized mice and human tissues. Gastroenterology 2012;142(2):316-25; e1-12
  • Silva MA, Jury J, Sanz Y, Increased bacterial translocation in gluten-sensitive mice is independent of small intestinal paracellular permeability defect. Dig Dis Sci 2012;57(1):38-47
  • D'Arienzo R, Maurano F, Luongo D, Adjuvant effect of Lactobacillus casei in a mouse model of gluten sensitivity. Immunol Lett 2008;119(1-2):78-83
  • D'Arienzo R, Stefanile R, Maurano F, A deregulated immune response to gliadin causes a decreased villus height in DQ8 transgenic mice. Eur J Immunol 2009;39(12):3552-61
  • D'Arienzo R, Stefanile R, Maurano F, Immunomodulatory effects of Lactobacillus casei administration in a mouse model of gliadin-sensitive enteropathy. Scand J Immunol 2011;74(4):335-41
  • D'Arienzo R, Maurano F, Lavermicocca P, Modulation of the immune response by probiotic strains in a mouse model of gluten sensitivity. Cytokine 2009;48(3):254-9
  • Senger S, Maurano F, Mazzeo MF, Identification of immunodominant epitopes of alpha-gliadin in HLA-DQ8 transgenic mice following oral immunization. J Immunol 2005;175(12):8087-95
  • Senger S, Luongo D, Maurano F, Intranasal administration of a recombinant alpha-gliadin down-regulates the immune response to wheat gliadin in DQ8 transgenic mice. Immunol Lett 2003;88(2):127-34
  • Bergamo P, Gogliettino M, Palmieri G, Conjugated linoleic acid protects against gliadin-induced depletion of intestinal defenses. Mol Nutr Food Res 2011;55(Suppl 2):S248-56
  • de Kauwe AL, Chen Z, Anderson RP, Resistance to celiac disease in humanized HLA-DR3-DQ2-transgenic mice expressing specific anti-gliadin CD4+ T cells. J Immunol 2009;182(12):7440-50
  • Ciccocioppo R, Rossi M, Pesce I, Effects of gliadin stimulation on bone marrow-derived dendritic cells from HLA-DQ8 transgenic MICE. Dig Liver Dis 2008;40(12):927-35
  • Chen D, Ueda R, Harding F, Characterization of HLA DR3/DQ2 transgenic mice: a potential humanized animal model for autoimmune disease studies. Eur J Immunol 2003;33(1):172-82
  • Du Pre MF, Kozijn AE, van Berkel LA, Tolerance to ingested deamidated gliadin in mice is maintained by splenic, type 1 regulatory T cells. Gastroenterology 2011;141(2):610-20; 20 e1-2
  • Zhou R, Wei H, Sun R, Tian Z. Recognition of double-stranded RNA by TLR3 induces severe small intestinal injury in mice. J Immunol 2007;178(7):4548-56
  • Dafik L, Albertelli M, Stamnaes J, Activation and inhibition of transglutaminase 2 in mice. PLoS ONE 2012;7(2):e30642
  • Ohta N, Hiroi T, Kweon MN, IL-15-dependent activation-induced cell death-resistant Th1 type CD8 alpha beta+NK1.1+ T cells for the development of small intestinal inflammation. J Immunol 2002;169(1):460-8
  • Yokoyama S, Takada K, Hirasawa M, Transgenic mice that overexpress human IL-15 in enterocytes recapitulate both B and T cell-mediated pathologic manifestations of celiac disease. J Clin Immunol 2011;31(6):1038-44
  • Catassi C, Fabiani E, Iacono G, A prospective, double-blind, placebo-controlled trial to establish a safe gluten threshold for patients with celiac disease. Am J Clin Nutr 2007;85(1):160-6
  • Akobeng AK, Thomas AG. Systematic review: tolerable amount of gluten for people with coeliac disease. Aliment Pharmacol Ther 2008;27(11):1044-52
  • Tye-Din JA, Anderson RP, Ffrench RA, The effects of ALV003 pre-digestion of gluten on immune response and symptoms in celiac disease in vivo. Clin Immunol 2010;134(3):289-95
  • Ciacci C, Maiuri L, Caporaso N, Celiac disease: in vitro and in vivo safety and palatability of wheat-free sorghum food products. Clin Nutr 2007;26(6):799-805
  • van den Broeck HC, van Herpen TW, Schuit C, Removing celiac disease-related gluten proteins from bread wheat while retaining technological properties: a study with Chinese Spring deletion lines. BMC Plant Biol 2009;9:41
  • Spaenij-Dekking L, Kooy-Winkelaar Y, van Veelen P, Natural variation in toxicity of wheat: potential for selection of nontoxic varieties for celiac disease patients. Gastroenterology 2005;129(3):797-806
  • Carroccio A, Di Prima L, Noto D, Searching for wheat plants with low toxicity in celiac disease: between direct toxicity and immunologic activation. Dig Liver Dis 2011;43(1):34-9
  • Di Cagno R, De Angelis M, Auricchio S, Sourdough bread made from wheat and nontoxic flours and started with selected lactobacilli is tolerated in celiac sprue patients. Appl Environ Microbiol 2004;70(2):1088-96
  • di Cagno R, de Angelis M, Alfonsi G, Pasta made from durum wheat semolina fermented with selected lactobacilli as a tool for a potential decrease of the gluten intolerance. J Agric Food Chem 2005;53(11):4393-402
  • Greco L, Gobbetti M, Auricchio R, Safety for patients with celiac disease of baked goods made of wheat flour hydrolyzed during food processing. Clin Gastroenterol Hepatol 2011;9(1):24-9
  • Di Cagno R, Barbato M, Di Camillo C, Gluten-free sourdough wheat baked goods appear safe for young celiac patients: a pilot study. J Pediatr Gastroenterol Nutr 2010;51(6):777-83
  • Mazzarella G, Salvati VM, Iaquinto G, Reintroduction of gluten following flour transamidation in adult celiac patients: a randomized, controlled clinical study. Clin Dev Immunol 2012;2012:329150
  • Gass J, Bethune MT, Siegel M, Combination enzyme therapy for gastric digestion of dietary gluten in patients with celiac sprue. Gastroenterology 2007;133(2):472-80
  • Siegel M, Garber ME, Spencer AG, Safety, tolerability, and activity of ALV003: results from two phase 1 single, escalating-dose clinical trials. Dig Dis Sci 2012;57(2):440-50
  • Lahdeaho M, Maki M, Kaukinen K, ALV003, a novel glutenase, attenuates gluten-induced small intestinal mucosal injury in Celiac Disease patients: a randomized controlled phase 2A clinical trial. Gut 2011;60(A12)
  • Stepniak D, Spaenij-Dekking L, Mitea C, Highly efficient gluten degradation with a newly identified prolyl endoprotease: implications for celiac disease. Am J Physiol Gastrointest Liver Physiol 2006;291(4):G621-9
  • Mitea C, Havenaar R, Drijfhout JW, Efficient degradation of gluten by a prolyl endoprotease in a gastrointestinal model: implications for coeliac disease. Gut 2008;57(1):25-32
  • VU University Medical Center. Effect of aspergillus niger prolyl endoprotease (AN-PEP) enzyme on the effects of gluten ingestion in patients with coeliac disease. In: Clinicaltrials.gov [internet]. National Library of Medicine (US); Bethesda (MD): 2000. Available from: http://clinicaltrials.gov/show/NCT00810654 NLM Identifier: NCT00810654 [cited 2012 Apr 16]
  • DSM Food Specialties. Effect of AN-PEP enzyme on gluten digestion. In: Clinicaltrials.gov [internet]. National Library of Medicine (US); Bethesda (MD): 2000. Available from: http://clinicaltrials.gov/show/NCT01335503 NLM Identifier: NCT01335503 [cited 2012 Apr 16]
  • Ehren J, Moron B, Martin E, A food-grade enzyme preparation with modest gluten detoxification properties. PLoS ONE 2009;4(7):e6313
  • Korponay-Szabo IR, Tumpek J, Gyimesi J, Food-grade gluten degrading enzymes to treat dietary transgressions in coeliac adolescents. J Pediatr Gastroenterol Nutr 2010;50:E68
  • Olivares M, Laparra M, Sanz Y. Influence of Bifidobacterium longum CECT 7347 and gliadin peptides on intestinal epithelial cell proteome. J Agric Food Chem 2011;59(14):7666-71
  • Smecuol E, Sugai E, Niveloni S, Permeability, zonulin production, and enteropathy in dermatitis herpetiformis. Clin Gastroenterol Hepatol 2005;3(4):335-41
  • Bashir ME, Andersen P, Fuss IJ, An enteric helminth infection protects against an allergic response to dietary antigen. J Immunol 2002;169(6):3284-92
  • Daveson AJ, Jones DM, Gaze S, Effect of hookworm infection on wheat challenge in celiac disease--a randomised double-blinded placebo controlled trial. PLoS ONE 2011;6(3):e17366
  • McSorley HJ, Gaze S, Daveson J, Suppression of inflammatory immune responses in celiac disease by experimental hookworm infection. PLoS ONE 2011;6(9):e24092
  • Rauhavirta T, Oittinen M, Kivisto R, Are transglutaminase 2 inhibitors able to reduce gliadin-induced toxicity related to celiac disease? A proof-of-concept study. J Clin Immunol 2012. [Epub ahead of print]
  • Gopalakrishnan S, Durai M, Kitchens K, Larazotide acetate regulates epithelial tight junctions in vitro and in vivo. Peptides 2012;35(1):86-94
  • Paterson BM, Lammers KM, Arrieta MC, The safety, tolerance, pharmacokinetic and pharmacodynamic effects of single doses of AT-1001 in coeliac disease subjects: a proof of concept study. Aliment Pharmacol Ther 2007;26(5):757-66
  • Leffler DA, Kelly CP, Abdallah HZ, A randomized, double-blind study of larazotide acetate to prevent the activation of celiac disease during gluten challenge. Am J Gastroenterol 2012;107(10):1554-62
  • Alba Therapeutics. A double-blind Placebo-controlled study to evaluate larazotide acetate for the treatment of celiac disease. In: Clinicaltrials.gov [internet]. National Library of Medicine (US); Bethesda (MD): 2000. Available from: http://clinicaltrials.gov/ct2/show/NCT01396213?term=01396213&rank=1 NLM Identifier: NCT01396213 [cited 2012 Oct 31]
  • Bernardo D, Martinez-Abad B, Vallejo-Diez S, Ascorbate-dependent decrease of the mucosal immune inflammatory response to gliadin in coeliac disease patients. Allergol Immunopathol (Madr) 2012;40(1):3-8
  • Yokoyama S, Watanabe N, Sato N, Antibody-mediated blockade of IL-15 reverses the autoimmune intestinal damage in transgenic mice that overexpress IL-15 in enterocytes. Proc Natl Acad Sci USA 2009;106(37):15849-54
  • Malamut G, El Machhour R, Montcuquet N, IL-15 triggers an antiapoptotic pathway in human intraepithelial lymphocytes that is a potential new target in celiac disease-associated inflammation and lymphomagenesis. J Clin Invest 2010;120(6):2131-43
  • Keech CL, Dromey J, Chen ZJ, Immune Tolerance Induced By Peptide Immunotherapy in An HLA Dq2-Dependent Mouse Model of Gluten Immunity. Gastroenterology 2009;136(5):A57
  • Brown GJ, Daveson J, Marjason JK, A Phase 1 study to determine safety, tolerability, and bioactivityof Nexvax2® in HLA DQ-2+ volunteers with celiac diseas following a long-term, strict gluten-free diet. Gastroenterology 2011;140:S437-8
  • Walters MJ, Wang Y, Lai N, Characterization of CCX282-B, an orally bioavailable antagonist of the CCR9 chemokine receptor, for treatment of inflammatory bowel disease. J Pharmacol Exp Ther 2010;335(1):61-9
  • Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system. Science 2012;336(6086):1268-73

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.