578
Views
15
CrossRef citations to date
0
Altmetric
Reviews

X-ray structural information of GPCRs in drug design: what are the limitations and where do we go?

Pages 607-620 | Published online: 29 Mar 2013

Bibliography

  • Overington J, Al-Lazikani B, Hopkins A. How many drug targets are there? Nat Rev Drug Discov 2006;5:993–6
  • Rajagopal K, Lefkowitz RJ, Rockman HA. When 7 transmembrane receptors are not G protein-coupled receptors. J Clin Invest 2005;115:2971–4
  • Violin D, Lefkowitz RJ. beta-arrestin-biased ligands at seven-transmembrane. Trends Pharmacol Sci 2007;28:416–21
  • Urban JD, Clarke WP, von Zastrow M, et al. Functional selectivity and classical concepts of quantitative pharmacology. J Pharmacol Exp Ther 2007;320:1–13
  • Grisotto M, Garin A, Martin A, et al. The human herpes virus 8 chemokine receptor vGPCR triggers autonomous proliferation of endothelial cells. J Clin Invest 2006;116:1264–73
  • Palczewski K, Kumasaka T, Hori T, et al. Crystal structure of rhodopsin: a G protein-coupled receptor. Science 2000;289:739–45
  • Jacobson K, Costanzi S. New insights for drug design from the X-ray crystallographic structures of G-protein-coupled receptors. Mol Pharmacol 2012;82:361–71
  • Kunishima N, Shimada Y, Tsuji Y, et al. Structural basis of glutamate recognition by a dimeric metabotropic glutamate receptor. Nature 2000;407:971–7
  • Tsuchiya D, Kunishima N, Kamiya N, et al. Structural views of the ligand-binding cores of a metabotropic glutamate receptor complexed with an antagonist and both glutamate and Gd3+. Proc Natl Acad Sci USA 2002;99:2660–5
  • Muto T, Tsuchiya D, Morikawa K, et al. Structures of the extracellular regions of the group II/III metabotropic glutamate receptors. Proc Natl Acad Sci USA 2007;104:3759–64
  • Rasmussen SG, Choi HJ, Rosenbaum DM, et al. Crystal structure of the human beta2 adrenergic G-protein-coupled receptor. Nature 2007;450:383–8
  • Cherezov V, Rosenbaum D, Hanson M, et al. High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 2007;318:1258–65
  • Rosenbaum D, Cherezov V, Hanson M, et al. GPCR engineering yields high-resolution structural insights into beta2-adrenergic receptor function. Science 2007;318:1266–73
  • Caffrey M. Crystallizing membrane proteins for structure determination: use of lipidic mesophases. Ann Rev Biophys 2009;38:29–51
  • Li D, Lee J, Caffrey M. Crystallizing membrane proteins in lipidic mesophases. A host lipid. Cryst Growth Des 2011;11:530–7
  • Landau E, Rosenbusch J. Lipidic cubic phases: a novel concept for the crystallization of membrane proteins. Proc Natl Acad Sci USA 1996;93:14532–5
  • Pebay-Peyroula E, Rummel G, Rosenbusch J, et al. X-ray structure of bacteriorhodopsin at 2.5Å from microcrystals grown in lipidic cubic phases. Science 1997;277:1676–81
  • Luecke H, Schobert B, Richter H-T. Structure of bacteriorhodopsin at 1.55Å resolution. J Mol Biol 1999;291:899–911
  • Caffrey M, Li DD, Dukkipati A. Membrane protein structure determination using crystallography and lipidic mesophases: recent Advances and Successes. Biochemistry 2012;51:6266–88
  • Cherezov V. Lipidic cubic phase technologies for membrane protein structural studies. Curr Opin Struct Biol 2011;21:559–66
  • Khelashvili G, Albornoz P, Johner N. Why GPCRs behave differently in cubic and lamellar lipidic mesophases. J Am Chem Soc 2012;134:15858–68
  • Nollert P, Qiu H, Caffrey M. Molecular mechanism for the crystallization of bacteriorhodopsin in lipidic cubic phases. FEBS Lett 2001;504:179–86
  • Caffrey M. On the mechanism of membrane protein crystallization in lipidic mesophases. Cryst Growth Des 2008;8:4244–54
  • Caffrey M. A lipid's eye view of membrane protein crystallization in mesophases. Curr Opin Struct Biol 2000;10:486–97
  • Smith J, Fischetti R, Yamamoto M. Micro-crystallography comes of age. Curr Opin Struct Biol 2012;22:602–12
  • Fischetti R, Su S, Yoder D, et al. Mini-beam collimator enables microcrystallography experiments on standard beamlines. J Synchrotron Radiat 2009;16:217–25
  • Yoder D, Sanishvili R, Vogt D, et al. One-micron beams for macromolecular crystallography at GM/CA-CAT. AIP Conf Proc 2010;1234:419–22
  • Rasmussen S, DeVree B, Zou Y, et al. Crystal structure of the beta2 adrenergic receptor-Gs protein complex. Nature 2011;477:549–55
  • Zou Y, Weis WI, Kobilka BK. N-Terminal T4 lysozyme fusion facilitates crystallization of a G protein coupled receptor. PLoS One 2012;7:e46039
  • Thompson A, Liu W, Chun E. Structure of the nociceptin/orphanin FQ receptor in complex with a peptide mimetic. Nature 2012;485:395–9
  • Serrano-Vega MJ, Magnani F, Shibata Y, et al. Conformational thermostabilization of the beta1-adrenergic receptor in a detergent-resistant form. Proc Natl Acad Sci USA 2008;105:877–82
  • Magnani F, Shibata Y, Serrano-Vega MJ, et al. Co-evolving stability and conformational homogeneity of the human adenosine A2a receptor. Proc Natl Acad Sci USA 2008;105:10744–9
  • Shibata Y, White JF, Serrano-Vega MJ, et al. Thermostabilization of the neurotensin receptor NTS1. J Mol Biol 2009;390:262–77
  • Warne T, Serrano-Vega MJ, Baker JG, et al. Structure of a beta1 adrenergic G-protein-coupled receptor. Nature 2008;454:486–91
  • White J, Noinaj N, Shibata Y, et al. Structure of the agonist-bound neurotensin receptor. Nature 2012;490:508–13
  • Rosenbaum D, Zhang C, Lyons J, et al. Structure and function of an irreversible agonist-beta2 adrenoceptor complex. Nature 2011;469:236–40
  • Heisenberg W. Ueber den anschaulichen Inhalt der quantentheoretischen Kinematik and Mechanik. Zeitschrift für Physik 1927;43:172–98
  • Ballesteros J, Weinstein H. Integrated methods for the construction of threedimensional models and computational probing of structure-function relations in G protein-coupled receptors. Methods Neurosci 1995;25:366–428
  • Moro S, Deflorian F, Bacilieri M, et al. Ligand-based homology modeling as attractive tool to inspect GPCR structural plasticity. Curr Pharm Des 2006;12:2175–85
  • Topiol S, Sabio M. X-ray structure breakthroughs in the GPCR transmembrane region. Biochem Pharmacol 2009;78:11–20
  • Sabio M, Topiol S. X-ray structure developments for GPCR drug targets. In Shifting paradigms in GPCR pharmacology Gilchrist A EdWiley. Hoboken 2010;434-459
  • Weis W, Kobilka BK. Structural iInsights into G-protein-coupled receptor activation. Curr Opin Struct Biol 2008;18:734–40
  • Mustafi D, Palczewski K. Topology of class A G protein-coupled receptors: insights gained from crystal structures of rhodopsins, adrenergic and adenosine receptors. Mol Pharmacol 2009;75:1–12
  • Ivanov A, Barak D, Jacobson K. Evaluation of homology modeling of G-protein-coupled receptors in light of the A2a adenosine receptor crystallographic structure. J Med Chem 2009;52:3284–92
  • Soriano-Ursúa M, Trujillo-Ferrara J, Correa-Basurto J. Scope and difficulty in generating theoretical insights regarding ligand recognition and activation of the beta2 adrenergic receptor. J Med Chem 2010;53:923–32
  • Hanson M, Cherezov V, Griffith M, et al. A specific cholesterol binding site is established by the 2.8 Å structure of the human beta2 adrenergic receptor. Structure 2008;16:897–905
  • Jaakola V, Griffith M, Hanson M, et al. The 2.6 Angstrom crystal structure of a human A2a adenosine receptor bound to an antagonist. Science 2008;322:1211–17
  • Shimamura T, Hiraki K, Takahashi N, et al. Crystal structure of squid rhodopsin with intracellularly extended cytoplasmic region. J Biol Chem 2008;283:17753–6
  • Murakami M, Kouyama T. Crystal structure of squid rhodopsin. Nature 2008;453:363–8
  • Park J, Scheerer P, Hofmann K, et al. Crystal structure of the ligand-free G-protein-coupled receptor opsin. Nature 2008;454:183–8
  • Scheerer P, Park J, Hildebrand P, et al. Crystal structure of opsin in its G-protein-interacting conformation. Nature 2008;455:497–503
  • Shoichet BK, Kobilka BK. Structure-based drug screening for G-protein-coupled receptors. Trends Pharmacol Sci 2012;33:268–72
  • Audet M, Bouvier M. Restructuring G-protein coupled receptor activation. Cell 2012;151:14–23
  • Wacker D, Fenalti G, Brown M, et al. Conserved binding mode of human beta2 adrenergic receptor inverse agonists and antagonist revealed by X-ray crystallography. J Am Chem Soc 2010;132:11443–5
  • Moukhametzianov R, Warne T, Edwards P, et al. Two distinct conformations of helix 6 observed in antagonist-bound structures of a beta1 adrenergic receptor. Proc Natl Acad Sci USA 2011;108:8228–32
  • Dore AS, Robertson N, Errey JC, et al. Structure of the adenosine A2a receptor in complex with ZM241385 and the xanthines XAC and caffeine. Structure 2011;19:1283–93
  • Hino T, Arakawa T, Iwanari H, et al. G-protein coupled receptor inactivation by an allosteric inverse-agonist antibody. Nature 2012;482:237–40
  • Rasmussen S, Choi H, Fung J, et al. Structure of a nanobody stabilized active state of the beta2 adrenoceptor. Nature 2011;469:175–80
  • Liu W, Chun E, Thompson A, et al. Structural basis for allosteric regulation of GPCRs by sodium ions. Science 2012;337:232–6
  • Chien E, Liu W, Zhao Q, et al. Structure of the human dopamine D3 receptor in complex with a D2/D3 selective antagonist. Science 2010;330:1091–5
  • Wu B, Chien E, Mol C, et al. Structures of the CXCR4 chemokine GPCR with small molecule and cyclic peptide antagonists. Science 2010;330:1066–71
  • Shimamura T, Shiroishi M, Weyand S, et al. Structure of the human histamine H1 receptor complex with doxepin. Nature 2011;475:65–70
  • Haga K, Kruse A, Asada H, et al. Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist. Nature 2012;482:547–51
  • Kruse A, Hu J, Pan A, et al. Structure and dynamics of the M3 muscarinic acetylcholine receptor. Nature 2012;482:552–6
  • Warne T, Edwards C, Leslie AGW, et al. Crystal structures of a stabilized beta1-adrenoceptor bound to the biased agonists bucindolol and carvedilol. Structure 2012;20:841–9
  • Manglik A, Kruse A, Kobilka T, et al. Crystal structure of the mu-opioid receptor bound to a morphinan antagonist. Nature 2012;485:321–6
  • Wu H, Wacker D, Milen I, et al. Structure of the human kappa-opioid receptor in complex with JDTic. Nature 2012;485:327–32
  • Granier S, Manglik A, Kruse A, et al. Structure of the delta-opioid receptor bound to naltrindole. Nature 2012;485:400–4
  • Filizola M, Devi L. How opioid drugs bind to receptors. Nature 2012;485:314–16
  • Hanson M, Roth C, Jo E, et al. Crystal structure of a lipid G protein coupled receptor. Science 2012;335:851–5
  • Hurst D, Grossfield A, Lynch D, et al. A lipid pathway for ligand binding is necessary for a cannabinoid G protein-coupled receptor. J Biol Chem 2010;285:17954–64
  • Scha¨del S, Heck MM, Maretzki D, et al. Ligand channeling within a G-protein-coupled receptor: the entry and exit of retinals in native opsin. J Biol Chem 2003;278:24896–903
  • Filipek S, Stenkamp R, Teller D, et al. G protein-coupled receptor rhodopsin: a prospectus. Ann Rev Physiol 2003;65:851–79
  • Zhang C, Srinivasan Y, Arlow DH, et al. High-resolution crystal structure of human protease-activated receptor 1. Nature 2012;492:387–94
  • Warne T, Moukhametzianov R, Baker J, et al. The structural basis for agonist and partial agonist action on a beta1 adrenergic receptor. Nature 2011;469:241–4
  • Xu F, Wu H, Katritch V, et al. Structure of an agonist-bound human A2a adenosine receptor. Science 2011;332:322–7
  • Lebon G, Warne T, Edwards P, et al. Agonist-bound adenosine A2A receptor structures reveal common features of GPCR activation. Nature 2011;474:521–55
  • Rodríguez D, Piñeiro Á, Gutiérrez-de-Terán H. Molecular dynamics simulations reveal insights into key structural elements of adenosine receptors. Biochemistry 2011;50:4194–208
  • Rozenfeld R, Gomez I, Devi L. Opioid receptor dimerization. In: Pasternak GW, edition The opiate receptors. Volume 23, Humana, New York; 2011. p. 407–37
  • Milligan G. The role of dimerisation in the cellular trafficking of G-protein-coupled receptors. Curr Opin Pharmacol 2009;10:1–7
  • Birdsall N. Class A GPCR heterodimers: evidence from binding studies. Trends Pharmacol Sci 2010;31:499–508
  • González-Maeso J, Ang RL, Yuen T, et al. Identification of a serotonin/glutamate receptor complex implicated in psychosis. Nature 2008;452:93–8
  • Huang P, Li JJ, Chen C, et al. Functional role of a conserved motif in TM6 of the rat mu opioid receptor: constitutively active and inactive receptors result from substitutions of Thr6.34(279) with Lys and Asp. Biochemistry 2001;40:13501–9
  • Topiol S, Sabio M. Use of the X-ray structure of the Beta2-adrenergic receptor for drug discovery Bioorg Med Chem Lett 2008;18:1598–602
  • Sabio M, Jones K, Topiol S. Use of the X-ray structure of the beta2-adrenergic receptor for drug discovery. Part 2: identification of active compounds. Bioorg Med Chem Lett 2008;18:5391–5
  • Irwin JJ, Shoichet BK. ZINC – a free database of commercially available compounds for virtual screening. J Chem Inf Model 2005;45:177–82
  • Kolb P, Rosenbaum D, Irwin J, et al. Structure-based discovery of beta2-adrenergic receptor ligands. Proc Natl Acad Sci USA 2009;106:6843–8
  • Michino M, Abola E. GPCR Dock 2008 participants, et al. Community-wide assessment of GPCR structure modelling and ligand docking: GPCR Dock 2008, Nature Rev Drug Disc 2008;455-63; Kufareva I Rueda M Katritch V, et al. Status of GPCR modeling and docking as reflected by community-wide GPCR Dock 2010 assessment. Structure 2011;19:1108–26
  • Carlsson J, Yoo L, Gao Z-G, et al. Structure-based discovery of A2a adenosine receptor ligands. J Med Chem 2010;3748–55
  • Katritch V, Jaakola V-P, Lane JR, et al. Structure-based discovery of novel chemotypes for adenosine A2a receptor antagonists. J Med Chem 2010;53:1799–809
  • Carlsson J, Coleman RG, Setola V, et al. Ligand Discovery from a dopamine D3 receptor homology model and crystal structure. Nat Chem Biol 2011;7:769–78
  • Mysinger MM, Weiss DR, Ziarek JJ, et al. Structure-based ligand discovery for the protein–protein interface of chemokine receptor CXCR4. Proc Natl Acad Sci USA 2012;109:5517–22
  • de Graaf C, Kooistra AJ, Vischer HF, et al. Crystal structure-based virtual screening for fragment-like ligands of the human histamine H(1) receptor. J Med Chem 54:8195–206
  • Katritch V, Kufareva I, Abagyan R. Structure based prediction of subtype-selectivity for adenosine receptor antagonists. Neuropharmacology 2011;60:108–15
  • Marco I, Valhondo M, Martiń–Fontecha M, et al. New serotonin 5-HT1A receptor agonists with neuroprotective effect against ischemic cell damage. J Med Chem 2011;54:7986–99
  • Liu A, Crider A, Ansbro D, et al. A structure-based approach to understanding somatostatin receptor-4 agonism (sst4). J Chem Inf Model 2012;52:171–86
  • Tosh D, Paoletta S, Deflorian F, et al. Structural sweet spot for A1 adenosine receptor activation by truncated (N)-methanocarba nucleosides: receptor docking and potent anticonvulsant activity. J Med Chem 2012;55:8075–90
  • Hou X, Majik M, Kim K, et al. Structure−activity relationships of truncated C2- or C8-substituted adenosine derivatives as dual acting A2a and A3 adenosine receptor ligands. J Med Chem 2012;55:342–56
  • de Graaf C, Rognan D. Selective structure-based virtual screening for full and partial agonists of the beta 2 adrenergic receptor. J Med Chem 2008;51:4978–85
  • Katritch V, Reynolds K, Cherezov V, et al. Analysis of full and partial agonists binding to beta (2)-adrenergic receptor suggests a role of transmembrane helix V in agonist-specific conformational changes. J Mol Recognit 2009;22:307–18
  • Newman A, Beuming T, Banala A, et al. Molecular determinants of selectivity and efficacy at the dopamine D3 receptor. J Med Chem 2012;55:6689–99
  • Sanders M, Roumen L, van der Horst E, et al. A prospective cross-screening study on G protein-coupled receptors: lessons learned in virtual compound library design. J Med Chem 2012;55:5311–25
  • Jo E, Bhatarai B, Repetto E, et al. Novel selective allosteric and bitopic ligands for the S1P3 receptor. ACS Chem Biol no. 10.1021/cb300392z 2012
  • Langmead C, Andrews A, Congreve M, et al. Identification of novel adenosine A2a receptor antagonists by virtual screening. J Med Chem 2012;55:1904–9
  • Congreve M, Andrews S, Doré A, et al. Discovery of 1,2,4-triazine derivatives as adenosine A2a antagonists using structure based drug design. J Med Chem 2012;55:1898–903
  • Nobelprize.org. 2012. Available from: http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2012/
  • Beuming T, Sherman W. Current Assessment of docking into GPCR crystal structures and homology models: successes, challenges, and guidelines. J Chem Inf Model 2012;52:3263–77
  • Zhukov A, Andrews S, Errey J, et al. Biophysical mapping of the adenosine A2A receptor. J Med Chem 2011;54:4312–23
  • Periole X, Knepp A, Sakmar T, et al. Structural determinants of the supramolecular organization of G protein-coupled receptors in bilayers. J Am Chem Soc 2012;134:10959–65
  • Fiona M, McRobb F, Crosby I, et al. Homobivalent ligands of the atypical antipsychotic clozapine: design, synthesis, and pharmacological evaluation. J Med Chem 2012;55:1622–34
  • Choi W-T, Kumar S, Madani N, et al. A novel synthetic bivalent ligand to probe chemokine receptor CXCR4 dimerization and inhibit HIV 1 entry. Biochemistry 2012;51:7078–86
  • Koschatzky S, Tschammer N, Gmeine P. Cross-receptor interactions between dopamine D2L and neurotensin NTS1 receptors modulate binding affinities of dopaminergics. ACS Chem Neurosci 2011;2:308–16
  • Park S, Das B, Casagrande F, et al. Structure of the chemokine receptor CXCR1 in phospholipid bilayers. Nature 2012;491:779–83
  • Schrodinger, Maestro v9.2, Portland, 2011

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.