652
Views
25
CrossRef citations to date
0
Altmetric
Reviews

New methods for the discovery and synthesis of PDE7 inhibitors as new drugs for neurological and inflammatory disorders

, &
Pages 733-751 | Published online: 09 Apr 2013

Bibliography

  • Conti M, Beavo J. Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling. Annu Rev Biochem 2007;76:481-511
  • Lugnier C. PDE inhibitors: a new approach to treat metabolic syndrome? Curr Opin Pharmacol 2011;11:698-706
  • Lugnier C. Cyclic nucleotide phosphodiesterase (PDE) superfamily: a new target for the development of specific therapeutic agents. Pharmacol Ther 2006;109:366-98
  • Baeeri M, Foroumadi A, Motamedi M, et al. Safety and efficacy of new 3,6-diaryl-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazine analogs as potential phosphodiesterase-4 inhibitors in NIH-3T3 mouse fibroblastic cells. Chem Biol Drug Des 2011;78:438-44
  • Rahimi R, Ghiasi S, Azimi H, et al. A review of the herbal phosphodiesterase inhibitors; future perspective of new drugs. Cytokine 2010;49:123-9
  • Dyke HJ, Montana JG. Update on the therapeutic potential of PDE4 inhibitors. Expert Opin Investig Drugs 2002;11:1-13
  • Spina D. Phosphodiesterase-4 inhibitors in the treatment of inflammatory lung disease. Drugs 2003;63:2575-94
  • Mohammadi M, Atashpour S, Pourkhalili N, et al. Comparative improvement in function of isolated rat Langerhans islets by various phosphodiesterase 3, 4 and 5 inhibitors. Asian J Anim Vet Adv 2011;6(12):1233-40
  • Ghiasi S, Abdollahi M. A review on the potential benefits of phosphodiesterase inhibitorsin various models of toxicities in animals. Asian J Anim Vet Adv 2012;7(3):210-24
  • Salari-Sharif P, Abdollahi M. Phosphodiesterase 4 inhibitors in inflammatory bowel disease: a comprehensive review. Curr Pharm Des 2010;16:3661-7
  • Salari P, Abdollahi M. Phosphodiesterase inhibitors in inflammatory bowel disease. Expert Opin Investig Drugs 2012;21:261-4
  • Menniti FS, Faraci WS, Schmidt CJ. Phosphodiesterases in the CNS: targets for drug development. Nat Rev Drug Discov 2006;5:660-70
  • O'Donnell JM, Zhang HT. Antidepressant effects of inhibitors of cAMP phosphodiesterase (PDE4). Trends Pharmacol Sci 2004;25:158-63
  • Birk S, Edvinsson L, Olesen J, Kruuse C. Analysis of the effects of phosphodiesterase type 3 and 4 inhibitors in cerebral arteries. Eur J Pharmacol 2004;489:93-100
  • Perez-Torres S, Cortes R, Tolnay M, et al. Alterations on phosphodiesterase type 7 and 8 isozyme mRNA expression in Alzheimer's disease brains examined by in situ hybridization. Exp Neurol 2003;182:322-34
  • Azadbar M, Ranjbar A, Hosseini-Tabatabaei A, et al. Interaction of phosphodiesterase 5 inhibitor with malathion on rat brain mitochondrial-bound hexokinase activity. Pestic Biochem Physiol 2009;95:121-5
  • Rezvanfar MA, Ranjbar A, Baeeri M, et al. Biochemical evidence on positive effects of rolipram a phosphodiesterase-4 inhibitor in malathion-induced toxic stress in rat blood and brain mitochondria. Pestic Biochem Physiol 2010;98:135-43
  • Giembycz MA, Corrigan CJ, Seybold J, et al. Identification of cyclic AMP phosphodiesterases 3, 4 and 7 in human CD4+ and CD8+ T-lymphocytes: role in regulating proliferation and the biosynthesis of interleukin-2. Br J Pharmacol 1996;118:1945-58
  • Manning CD, Burman M, Christensen SB, et al. Suppression of human inflammatory cell function by subtype-selective PDE4 inhibitors correlates with inhibition of PDE4A and PDE4B. Br J Pharmacol 1999;128:1393-8
  • Abdollahi M, Chan TS, Subrahmanyam V, O'Brien PJ. Effects of phosphodiesterase 3,4,5 inhibitors on hepatocyte cAMP levels, glycogenolysis, gluconeogenesis and susceptibility to a mitochondrial toxin. Mol Cell Biochem 2003;252:205-11
  • Michaeli T, Bloom TJ, Martins T, et al. Isolation and characterization of a previously undetected human cAMP phosphodiesterase by complementation of cAMP phosphodiesterase-deficient Saccharomyces cerevisiae. J Biol Chem 1993;268:12925-32
  • Gardner C, Robas N, Cawkill D, Fidock M. Cloning and characterization of the human and mouse PDE7B, a novel cAMP-specific cyclic nucleotide phosphodiesterase. Biochem Biophys Res Commun 2000;272:186-92
  • Sasaki T, Kotera J, Yuasa K, Omori K. Identification of human PDE7B, a cAMP-specific phosphodiesterase. Biochem Biophys Res Commun 2000;271:575-83
  • Hetman JM, Soderling SH, Glavas NA, Beavo JA. Cloning and characterization of PDE7B, a cAMP-specific phosphodiesterase. Proc Natl Acad Sci USA 2000;97:472-6
  • Glavas NA, Ostenson C, Schaefer JB, et al. T cell activation up-regulates cyclic nucleotide phosphodiesterases 8A1 and 7A3. Proc Natl Acad Sci USA 2001;98:6319-24
  • Han P, Zhu X, Michaeli T. Alternative splicing of the high affinity cAMP-specific phosphodiesterase (PDE7A) mRNA in human skeletal muscle and heart. J Biol Chem 1997;272:16152-7
  • Sasaki T, Kotera J, Omori K. Novel alternative splice variants of rat phosphodiesterase 7B showing unique tissue-specific expression and phosphorylation. Biochem J 2002;361:211-20
  • Bloom TJ, Beavo JA. Identification and tissue-specific expression of PDE7 phosphodiesterase splice variants. Proc Natl Acad Sci USA 1996;93:14188-92
  • Bender AT, Beavo JA. Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol Rev 2006;58:488-520
  • Smith SJ, Brookes-Fazakerley S, Donnelly LE, et al. Ubiquitous expression of phosphodiesterase 7A in human proinflammatory and immune cells. Am J Physiol Lung Cell Mol Physiol 2003;284:L279-89
  • Morales-Garcia JA, Redondo M, Alonso-Gil S, et al. Phosphodiesterase 7 inhibition preserves dopaminergic neurons in cellular and rodent models of Parkinson disease. PLoS ONE 2011;6(2):e17240
  • Giembycz MA, Smith SJ. Phosphodiesterase 7A: a new therapeutic target for alleviating chronic inflammation? Curr Pharm Des 2006;12:3207-20
  • Soderling SH, Beavo JA. Regulation of cAMP and cGMP signaling: new phosphodiesterases and new functions. Curr Opin Cell Biol 2000;12:174-9
  • Nakata A, Ogawa K, Sasaki T, et al. Potential role of phosphodiesterase 7 in human T cell function: comparative effects of two phosphodiesterase inhibitors. Clin Exp Immunol 2002;128:460-6
  • Goto M, Kadoshima-Yamaoka K, Murakawa M, et al. Phosphodiesterase 7A inhibitor ASB16165 impairs proliferation of keratinocytes in vitro and in vivo. Eur J Pharmacol 2010;633:93-7
  • Zhang L, Murray F, Zahno A, et al. Cyclic nucleotide phosphodiesterase profiling reveals increased expression of phosphodiesterase 7B in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 2008;105:19532-7
  • Castro A, Jerez MJ, Gil C, Martinez A. Cyclic nucleotide phosphodiesterases and their role in immunomodulatory responses: advances in the development of specific phosphodiesterase inhibitors. Med Res Rev 2005;25:229-44
  • Wallis RM, Corbin JD, Francis SH, et al. Tissue distribution of phosphodiesterase families and the effects of sildenafil on tissue cyclic nucleotides, platelet function, and the contractile responses of trabeculae carneae and aortic rings in vitro. Am J Cardiol 1999;83(5A):3C-12C
  • Rena G, Begg F, Ross A, et al. Molecular cloning, genomic positioning, promoter identification, and characterization of the novel cyclic amp-specific phosphodiesterase PDE4A10. Mol Pharmacol 2001;59(5):996-1011
  • Dent G, White SR, Tenor H, et al. Cyclic nucleotide phosphodiesterase in human bronchial epithelial cells: characterization of isoenzymes and functional effects of PDE inhibitors. Pulm Pharmacol Ther 1998;11(1):47-56
  • Engels P, Fichtel K, Lfibbert H. Expression and regulation of human and rat phosphodiesterase type IV isogenes. FEBS Lett 1994;350:291-5
  • Pelligrino DA, Wang Q. Cyclic nucleotide crosstalk and the regulation of cerebral vasodilation. Prog Neurobiol 1998;56:1-18
  • Antoni FA. Molecular diversity of cyclic AMP signalling. Front Neuroendocrinol 2000;21:103-32
  • Chin KV, Yang WL, Ravatn R, et al. Reinventing the wheel of cyclic AMP: novel mechanisms of cAMP signaling. Ann N Y Acad Sci 2002;968:49-64
  • Ledbetter JA, Parsons M, Martin PJ, et al. Antibody binding to CD5 (Tp67) and Tp44 T cell surface molecules: effects on cyclic nucleotides, cytoplasmic free calcium, and cAMP-mediated suppression. J Immunol 1986;137:3299-305
  • Ottonello L, Morone MP, Dapino P, Dallegri F. Cyclic AMP-elevating agents down-regulate the oxidative burst induced by granulocyte-macrophage colony-stimulating factor (GM-CSF) in adherent neutrophils. Clin Exp Immunol 1995;101:502-6
  • Dumaz N, Marais R. Integrating signals between cAMP and the RAS/RAF/MEK/ERK signalling pathways. Based on the anniversary prize of the Gesellschaft fur Biochemie und Molekularbiologie Lecture delivered on 5 July 2003 at the Special FEBS Meeting in Brussels. FEBS J 2005;272:3491-504
  • Stork PJ, Schmitt JM. Crosstalk between cAMP and MAP kinase signaling in the regulation of cell proliferation. Trends Cell Biol 2002;12:258-66
  • Taussig R, Gilman AG. Mammalian membrane-bound adenylyl cyclases. J Biol Chem 1995;270:1-4
  • Yamamoto S, Sugahara S, Ikeda K, Shimizu Y. Pharmacological profile of a novel phosphodiesterase 7A and -4 dual inhibitor, YM-393059, on acute and chronic inflammation models. Eur J Pharmacol 2006;550(1-3):166-72
  • Dodge-Kafka KL, Kapiloff MS. The mAKAP signaling complex: integration of cAMP, calcium, and MAP kinase signaling pathways. Eur J Cell Biol 2006;85:593-602
  • Francis SH, Corbin JD. Cyclic nucleotide-dependent protein kinases: intracellular receptors for cAMP and cGMP action. Crit Rev Clin Lab Sci 1999;36:275-328
  • Trewhella J. Protein kinase A targeting and activation as seen by small-angle solution scattering. Eur J Cell Biol 2006;85:655-62
  • Zaccolo M. Phosphodiesterases and compartmentalized cAMP signalling in the heart. Eur J Cell Biol 2006;85:693-7
  • Halpin DM. ABCD of the phosphodiesterase family: interaction and differential activity in COPD. Int J Chron Obstruct Pulmon Dis 2008;3:543-61
  • Han P, Sonati P, Rubin C, Michaeli T. PDE7A1, a cAMP-specific phosphodiesterase, inhibits cAMP-dependent protein kinase by a direct interaction with C. J Biol Chem 2006;281:15050-7
  • Kaupp UB, Seifert R. Cyclic nucleotide-gated ion channels. Physiol Rev 2002;82(3):769-824
  • Breckler M, Berthouze M, Laurent AC, et al. Rap-linked cAMP signaling Epac proteins: compartmentation, functioning and disease implications. Cell Signal 2011;23(8):1257-66
  • Rangarajan S, Enserink JM, Kuiperij HB, et al. Cyclic AMP induces integrin-mediated cell adhesion through Epac and Rap1 upon stimulation of the beta 2-adrenergic receptor. J Cell Biol 2003;160(4):487-93
  • Kooistra MR, Corada M, Dejana E, Bos JL. Epac1 regulates integrity of endothelial cell junctions through VE-cadherin. FEBS Lett 2005;579(22):4966-72
  • Li J, O'Connor KL, Cheng X, et al. Cyclic adenosine 5'-monophosphate-stimulated neurotensin secretion is mediated through Rap1 downstream of both Epac and protein kinase A signaling pathways. Mol Endocrinol 2007;21(1):159-71
  • Monaghan TK, Mackenzie CJ, Plevin R, Lutz EM. PACAP-38 induces neuronal differentiation of human SH-SY5Y neuroblastoma cells via cAMP-mediated activation of ERK and p38 MAP kinases. J Neurochem 2008;104(1):74-88
  • Ostroveanu A, van der Zee EA, Eisel UL, et al. Exchange protein activated by cyclic AMP 2 (Epac2) plays a specific and time-limited role in memory retrieval. Hippocampus 2010;20(9):1018-26
  • Sands WA, Woolson HD, Milne GR, et al. Exchange protein activated bycyclic AMP (Epac)-mediated induction of suppressor of cytokine signaling 3 (SOCS-3) in vascular endothelial cells. Hippocampus 2010;20(9):1018-26
  • Borland G, Smith BO, Yarwood SJ. EPAC proteins transduce diverse cellular actions of cAMP. Br J Pharmacol 2009;158(1):70-86
  • Laurent AC, Breckler M, Berthouze M, Lezoualc'h F. Role of Epac in brain and heart. Biochem Soc Trans 2012;40(1):51-7
  • Mosenden R, Taskén K. Cyclic AMP-mediated immune regulation–overview of mechanisms of action in T cells. Cell Signal 2011;23(6):1009-16
  • Gerlo S, Verdood P, Hooghe-Peters EL, Kooijman R. Multiple cAMP-induced signaling cascades regulate prolactin expression in T cells. Cell Mol Life Sci 2006;63(1):92-9
  • Eigler A, Siegmund B, Emmerich U, et al. Anti-inflammatory activities of cAMP-elevating agents: enhancement of IL-10 synthesis and concurrent suppression of TNF production. J Leukoc Biol 1998;63:101-7
  • Bryn T, Mahic M, Enserink JM, et al. The cyclic AMP-Epac1-Rap1 pathway is dissociated from regulation of effector functions in monocytes but acquires immunoregulatory function in mature macrophages. J Immunol 2006;176:7361-70
  • Levy FO, Rasmussen AM, Taskén K, et al. Cyclic AMP-dependent protein kinase (cAK) in human B cells: co-localization of type I cAK (RI alpha 2 C2) with the antigen receptor during anti-immunoglobulin-induced B cell activation. Eur J Immunol 1996;26(6):1290-6
  • Tiwari S, Felekkis K, Moon EY, et al. Among circulating hematopoietic cells, B-CLL uniquely expresses functional EPAC1, but EPAC1-mediated Rap1 activation does not account for PDE4 inhibitor-induced apoptosis. Blood 2004;103(7):2661-7
  • Murray AJ, Shewan DA. Epac mediates cyclic AMP-dependent axon growth, guidance and regeneration. Mol Cell Neurosci 2008;38(4):578-88
  • Allison AC. Immunosuppressive drugs: the first 50 years and a glance forward. Immunopharmacology 2000;47:63-83
  • Essayan DM. Cyclic nucleotide phosphodiesterase (PDE) inhibitors and immunomodulation. Biochem Pharmacol 1999;57:965-73
  • Gil C, Campillo NE, Perez DI, Martinez A. PDE7 inhibitors as new drugs for neurological and inflammatory disorders. Expert Opin Ther Patents 2008;18(10):1127-39
  • Giembycz MA, Smith SJ. Phosphodiesterase 7 (PDE7) as a therapeutic target. Drugs Future 2006;31(3):207-29
  • Sasaki T, Kotera J, Kenji Omori K. Transcriptional activation of phosphodiesterase 7B1 by dopamine D1 receptor stimulation through the cyclic AMP/cyclic AMP dependent protein kinase/cyclic AMP-response element binding protein pathway in primary striatal neurons. J Neurochem 2004;89:474-83
  • Walikonis RS, Poduslo JF. Activity of Cyclic AMP Phosphodiesterases and adenylyl cyclase in peripheral nerve after crush and permanent transection injuries. J Biol Chem 1998;273(15):9070-7
  • Iancu R, Ramamurthy G, Warrier S, et al. Cytoplasmic cAMP concentrations in intact cardiac myocytes. Am J Physiol Cell Physiol 2008;295:C414-22
  • Rezvanfar MA, Rahimi HR, Abdollahi M. ADMET considerations for phosphodiesterase-5 inhibitors. Expert Opin Drug Metab Toxicol 2012;8(10):1231-45
  • Daga PR, Doerksen RJ. Stereoelectronic properties of spiroquinazolinones in differential PDE7 inhibitory activity. J Comput Chem 2008;29:1945-54
  • Zhang KY, Card GL, Suzuki Y, et al. A glutamine switch mechanism for nucleotide selectivity by phosphodiesterases. Mol Cell 2004;15:279-86
  • Jeon YH, Heo YS, Kim CM, et al. Phosphodiesterase: overview of protein structures, potential therapeutic applications and recent progress in drug development. Cell Mol Life Sci 2005;62:1198-220
  • Card GL, England BP, Suzuki Y, et al. Structural basis for the activity of drugs that inhibit phosphodiesterases. Structure 2004;12:2233-47
  • Jin SL, Swinnen JV, Conti M. Characterization of the structure of a low Km, rolipram-sensitive cAMP phosphodiesterase. Mapping of the catalytic domain. J Biol Chem 1992;267:18929-39
  • Wang H, Liu Y, Chen Y, et al. Multiple elements jointly determine inhibitor selectivity of cyclic nucleotide phosphodiesterases 4 and 7. J Biol Chem 2005;280:30949-55
  • Fortin M, D'Anjou H, Higgins ME, et al. A multi-target antisense approach against PDE4 and PDE7 reduces smokeinduced lung inflammation in mice. Respir Res 2009;10:39
  • Li L, Yee C, Beavo JA. CD3- and CD28-dependent induction of PDE7 required for T cell activation. Science 1999;283(5403):848-51
  • Yang G, McIntyre KW, Townsend RM, et al. Phosphodiesterase 7A-deficient mice have functional T cells. J Immunol 2003;171:6414-20
  • Smith SJ, Cieslinski LB, Newton R, et al. Discovery of BRL 50481 [3-(N,N-dimethylsulfonamido)-4-methyl-nitrobenzene], a selective inhibitor of phosphodiesterase 7: in vitro studies in human monocytes, lung macrophages, and CD8+ T-lymphocytes. Mol Pharmacol 2004;66:1679-89
  • Kadoshima-Yamaoka K, Murakawa M, Goto M, et al. ASB16165, a novel inhibitor for phosphodiesterase 7A (PDE7A), suppresses IL-12-induced IFN-gamma production by mouse activated T lymphocytes. Immunol Lett 2009;122(2):193-7
  • Goto M, Murakawa M, Kadoshima-Yamaoka K. Phosphodiesterase 7A inhibitor ASB16165 suppresses proliferation and cytokine production of NKT cells. Cell Immunol 2009;258(2):147-51
  • Kadoshima-Yamaoka K, Murakawa M, Goto M, et al. Effect of phosphodiesterase 7 inhibitor ASB16165 on development and function of cytotoxic T lymphocyte. Int Immunopharmacol 2009;9(1):97-102
  • Murakawa M, Yamaoka K, Tanaka Y, Fukuda Y. Involvement of tumor necrosis factor (TNF)-alpha in phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced skin edema in mice. Biochem Pharmacol 2006;71(9):1331-6
  • Kadoshima-Yamaoka K, Goto M, Murakawa M, et al. ASB16165, a phosphodiesterase 7A inhibitor, reduces cutaneous TNF-alpha level and ameliorates skin edema in phorbol ester 12-O-tetradecanoylphorbol-13-acetate-induced skin inflammation model in mice. Eur J Pharmacol 2009;613(1-3):163-6
  • Paterniti I, Mazzon E, Gil C, et al. PDE 7 inhibitors: new potential drugs for the therapy of spinal cord injury. PLoS One 2011;6(1):e15937
  • Redondo M, Brea J, Perez DI, et al. Effect of phosphodiesterase 7 (PDE7) inhibitors in experimental autoimmune encephalomyelitis mice. Discovery of a new chemically diverse family of compounds. J Med Chem 2012;55:3274-84
  • Zhang L, Murray F, Rassenti LZ, et al. Cyclic nucleotide phosphodiesterase 7B mRNA: an unfavorable characteristic in chronic lymphocytic leukemia. Int J Cancer 2011;129(5):1162-9
  • Seok J, Warren HS, Cuenca AG, et al. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci USA 2013;110(9):3507-12
  • Martinez A, Castro A, Gil C, et al. Benzyl derivatives of 2,1,3-benzo- and benzothieno[3,2-a]thiadiazine 2,2-dioxides: first phosphodiesterase 7 inhibitors. J Med Chem 2000;43:683-9
  • Castro A, Abasolo MI, Gil C, et al. CoMFA of benzyl derivatives of 2,1,3-benzo and benzothieno[3,2-alpha]thiadiazine 2,2-dioxides: clues for the design of phosphodiesterase 7 inhibitors. Eur J Med Chem 2001;36:333-8
  • Barnes MJ, Cooper N, Davenport RJ, et al. Synthesis and structure-activity relationships of guanine analogues as phosphodiesterase 7 (PDE7) inhibitors. Bioorg Med Chem Lett 2001;11:1081-3
  • Lorthiois E, Bernardelli P, Vergne F, et al. Spiroquinazolinones as novel, potent, and selective PDE7 inhibitors. Part 1. Bioorg Med Chem Lett 2004;14:4623-6
  • Bernardelli P, Lorthiois E, Vergne F, et al. Spiroquinazolinones as novel, potent, and selective PDE7 inhibitors. Part 2: optimization of 5,8-disubstituted derivatives. Bioorg Med Chem Lett 2004;14:4627-31
  • Pitts WJ, Vaccaro W, Huynh T, et al. Identification of purine inhibitors of phosphodiesterase 7 (PDE7). Bioorg Med Chem Lett 2004;14:2955-8
  • Vergne F, Bernardelli P, Lorthiois E, et al. Discovery of thiadiazoles as a novel structural class of potent and selective PDE7 inhibitors. Part 1: design, synthesis and structure-activity relationship studies. Bioorg Med Chem Lett 2004;14:4607-13
  • Vergne F, Bernardelli P, Lorthiois E, et al. Discovery of thiadiazoles as a novel structural class of potent and selective PDE7 inhibitors. Part 2: metabolism-directed optimization studies towards orally bioavailable derivatives. Bioorg Med Chem Lett 2004;14:4615-21
  • Kempson J, Pitts WJ, Barbosa J, et al. Fused pyrimidine based inhibitors of phosphodiesterase 7 (PDE7): synthesis and initial structure-activity relationships. Bioorg Med Chem Lett 2005;15:1829-33
  • Castro A, Jerez MJ, Gil C, et al. CODES, a novel procedure for ligand-based virtual screening: PDE7 inhibitors as an application example. Eur J Med Chem 2008;43:1349-59
  • Reddy AS, Pati SP, Kumar PP, et al. Virtual screening in drug discovery - a computational perspective. Curr Protein Pept Sci 2007;8:329-51
  • Guo J, Watson A, Kempson J, et al. Identification of potent pyrimidine inhibitors of phosphodiesterase 7 (PDE7) and their ability to inhibit T cell proliferation. Bioorg Med Chem Lett 2009;19:1935-8
  • Castano T, Wang H, Campillo NE, et al. Synthesis, structural analysis, and biological evaluation of thioxoquinazoline derivatives as phosphodiesterase 7 inhibitors. Chem Med Chem 2009;4:866-76
  • Alaamery MA, Wyman AR, Ivey FD, et al. New classes of PDE7 inhibitors identified by a fission yeast-based HTS. J Biomol Screen 2010;15(4):359-67
  • Gewald R, Rueger C, Grunwald C, et al. Synthesis and structure-activity relationship studies of dihydronaphthyridinediones as a novel structural class of potent and selective PDE7 inhibitors. Bioorg Med Chem Lett 2011;21:6652-6
  • Banerjee A, Yadav PS, Bajpai M, et al. Isothiazole and isoxazole fused pyrimidones as PDE7 inhibitors: SAR and pharmacokinetic evaluation. Bioorg Med Chem Lett 2012;22:3223-8
  • Banerjee A, Patil S, Pawar MY, et al. Imidazopyridazinones as novel PDE7 inhibitors: SAR and in vivo studies in Parkinson's disease model. Bioorg Med Chem Lett 2012;22:6286-91
  • Redondo M, Zarruk JG, Ceballos P, et al. Neuroprotective efficacy of quinazoline type phosphodiesterase 7 inhibitors in cellular cultures and experimental stroke model. Eur J Med Chem 2012;47:175-85

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.