634
Views
36
CrossRef citations to date
0
Altmetric
Reviews

Advances in MRSA drug discovery: where are we and where do we need to be?

, &
Pages 1095-1116 | Published online: 06 Jul 2013

Bibliography

  • Grenet K, Guillemot D, Jarlier V, et al. Antibacterial resistance, Wayampis Amerindians, French Guyana. Emerg Infect Dis 2004;10:1150–4
  • Cosgrove SE, Fowler VG. Management of methicillin-resistant Staphylococcus aureus bacteremia. Clin Infect Dis 2008;46:S386–93
  • Cunha BA. Vancomycin revisited: a reappraisal of clinical use. Crit Care Clin 2008;24:393–420
  • Loffler CA, Macdougall C. Update on prevalence and treatment of methicillin-resistant Staphylococcus aureus infections. Expert Rev Anti Infect Ther 2007;5:961–81
  • Tacconelli E, Cataldo MA. Antimicrobial therapy of Staphylococcus aureus bloodstream infection. Exp Opin Pharmacother 2007;8:2505–18
  • Klevens RM, Edwards JR, Tenover FC, et al. Changes in the epidemiology of methicillin-resistant Staphylococcus aureus in intensive care units in US hospitals, 1992-2003. Clin Infect Dis 2006;42:389–91
  • Gaynes R, Edwards JR. Overview of nosocomial infections caused by Gram-negative bacilli. Healthcare Epidemiol 2005;41:848–54
  • Kluytmans-Vabdenbergh MFQ, Kluytmans JAJW. Community-acquired methicillin-resistant Staphylococcus aureus: current perspectives. Clin Microbial Infect. 2006;12:9–15
  • Klein E, Smith DL, Laxminarayan R. Hospitalizations and deaths caused by methicillin-resistant Staphylococcus aureus. United States, 1999-2005. Emerg Infect Dis 2007;13:1840–6
  • Eady EA, Cove JH. Staphylococcal resistance revisited: community-acquired methicillin-resistant Staphylococcus aureus-an emerging problem for the management of skin and soft tissue infections. Curr Opin Infect Dis 2003;16:103–24
  • Kaneko J, Kamio Y. Bacterial two-component and hetero-heptameric pore-forming cytolytic toxins: structures, pore-forming mechanism, and organization of the genes. Biosci Biotechnol Biochem 2004;68:981–1003
  • Lina G, Piémont Y, Godail-Gamot F. Involvement of Panton-Valentine leukocidin-producing Staphylococcus aureus in primary skin infections and pneumonia. Clin Infect Dis 1999;29:1128–32
  • Diederen BMW, Kluytmans JAJW. The emergence of infections with community-associated methicillin resistant Staphylococcus aureus. J Infect 2006;52:157–68
  • Barbachyn MR, Ford CW. Oxazolidinone structure-activity relationships leading to linezolid. Angew Chem Int Eng 2003;42:2010–23
  • Wilcox MH. Update on linezolid: the first oxazolidinone antibiotic. Exp Opin Pharmacother 2005;6:2315–26
  • Schentag JJ, Hyatt JM, Carr JR, et al. Genesis of methicillin-resistant Staphylococcus aureus (MRSA), how treatment of MRSA infections has selected for vancomycin-resistant Enterococcus faecium, and the importance of antibiotic management and infection control. Clin Infect Dis 1998;26:1204–14
  • Donadio S, Soiso M. Biosynthesis of glycopeptides: prospects for improved antibacterials. Curr Top Med Chem 2008;8:654–66
  • Pace JL, Yang G. Glycopeptides: update on an old successful antibiotic class. Biochem Pharmacol 2006;71:968–80
  • Gales AC, Sader HS, Andrade SS, et al. Emergence of linezolid-resistant Staphylococcus aureus during treatment of pulmonary infection in patient with cystemic fibrosis. Int J Antimicro Agents 2007;27:300–2
  • Woodworth JR, Nyhart EH, Brier GL, et al. Single-dose pharmacokinetics and antibacterial activity of daptomycin, a new lipopeptide antibiotic, in healthy volunteers. Antimicrob Agents Chemother 1992;36:318–25
  • Henken S, Bohling J, Martens-Lobenhoffer M, et al. Efficacy profiles of daptomycin for treatment of invasive and noninvasive pulmonary infections with Streptococcus pneumonia. Antimicrob Agents Chemother 2010;54:707–17
  • Anthony KB, Fishman NO, Linkin DR, et al. Clinical and microbiological outcomes of serious infections with multidrug-resistant Gram-negative organisms treated with tigecycline. Clin Infect Dis 2008;46:567–70
  • Boucher HW, Talbot GH, Bradley JS, et al. Bad bugs, no drugs: no ESKAPE! An update from the infectious diseases society of America. Clin Infect Dis 2009;48:1–12
  • Rybak MJ. The Pharmacokinetic and pharmacodynamic properties of vancomycin. Clin Infect Dis 2006;42:S35–9
  • Robles-Piedras AL, González-López EH. Therapeutic drug monitoring of vancomycin. Proc West Pharmacol Soc 2009;52:21–3
  • Micek ST. Alternatives to vancomycin for the treatment of Methicillin-Resistant Staphylococcus aureus Infections. Clin Infect Dis 2007;45:S184–90
  • Schmidt-Ioanas M, De Roux A, Lode H. New antibiotics for the treatment of severe staphylococcal infection in the critically ill patient. Curr Opin Crit Care 2005;11:481–6
  • Rayner C, Munchhof WJ. Antibiotics currently used in the treatment of infections caused Staphylococcus aureus. Inter Med J 2005;35:S3–16
  • Safety information of tigecycline. Available from: http://www.fda.gov/Safety/MedWatch/SafetyInformation/SafetyAlertsforHumanMedicalProducts/ucm224626.htm
  • Jacqueline C, Navans D, Batard E, et al. In vitro and in vivo synergistic activities of linezolid combined with subinhibitory concentrations of imipenem against methicillin-resistant Staphylococcus aureus. Antimicro Agents Chemother 2005;49:45–51
  • Kollef MH. New antimicrobial agents for methicillin-resistant Staphylococcus aureus. Crit Care Resusc 2009;11:282–6
  • Kanafani ZA, Corey GR. Ceftaroline: a cephalosporin with expanded Gram-positive activity. Future Microbiol 2009;4:25–33
  • Steed ME, Rybak MJ. Ceftaroline: a new cephalosporin with activity against resistant Gram-positive pathogens. Pharmacotherapy 2010;30:375–89
  • García MS, Torre MA, Morales G, et al. Clinical outbreak of linezolid-resistant Staphylococcus aureus in an intensive care unit. JAMA 2010;303:2260–4
  • Saravolatz LD, Stein GE, Johnson LB. Telavancin: a novel lipoglycopeptide. Clin Infect Dis 2009;49:1908–14
  • Donadio S, Maffioli S, Monciardini P, et al. Antibiotic discovery in the twenty-first century: current trends and future perspectives. J Antibiot 2010;63:423–30
  • Belley A, McKay GA, Arhin FF, et al. Oritavancin disrupts membrane integrity of Staphylococcus aureus and vancomycin-resistant enterococci to effect rapid bacterial killing. Antimicrob Agents Chemother 2010;54:5369–71
  • Zhanel GG, Schweizer F, Karlowsky JA. Oritavancin: mechanism of action. Clini Infect Dis 2012;54:S214–19
  • Chen AY, Zervos MJ, Vazquez JA. Dalbavancin: a novel antimicrobial. Int J Clin Pract 2007;61:853–63
  • Blais J, Lewis SR, Krause KM, et al. Antistaphylococcal activity of TD-1792, a multivalent glycopeptide-cephalosporin antibiotic. Antimicrob Agents Chemother 2012;56:1584–7
  • Leuthner KD, Vidaillac C, Cheung CM, et al. In vitro activity of the new multivalent glycopeptide-cephalosporin antibiotic TD-1792 against vancomycin-nonsusceptible Staphylococcus isolates. Antimicrob Agents Chemother 2010;54:3799–803
  • Hegde SS, Okusanya OO, Skinner R, et al. Pharmacodynamics of TD-1792, a novel glycopeptide-cephalosporin heterodimer antibiotic used against Gram-positive bacteria, in a neutropenic murine thigh model. Antimicrob Agents Chemother 2012;56:1578–83
  • Announcement of clinical efficacy of TD-1792. Available from: http://www.evaluatepharma.com/Universal/View.aspx?type=Story&id=132180
  • Hughes J, Mellows G. Inhibition of isoleucyl-transfer ribonucleic acid synthetase in Escherichia coli by pseudomonic acid. Biochem J 1978;176:305–18
  • Grare M, Dibama HM, Lafosse S, et al. Cationic compounds with activity against multidrug-resistant bacteria: interest of a new compound compared with two older antiseptics, hexamidine and chlorhexidine. Clin Microbiol Infect 2010;16:432–8
  • Coates T, Bax R, Coates A. Nasal decolonization of Staphylococcus aureus with mupirocin: strengths, weaknesses and future prospects. J Antimicrob Chemother 2009;64:9–15
  • Watanakunakorn C, Axelson C, Bota B, et al. Mupirocin ointment with and without chlorhexidine baths in the eradication of Staphylococcus aureus nasal carriage in nursing home residents. Am J Infect Control 1995;23:306–9
  • Schneider P, Hawser S, Islam K. Iclaprim, a novel diaminopyrimidine with potent activity on trimethoprim sensitive and resistant bacteria. Bioorg Med Chem Lett 2003;13:4217–21
  • Morgan A, Cofer C, Stevens D. Iclaprim: a novel dihydrofolate reductase inhibitor for skin and soft tissue infections. Future Microbiol 2009;4:131–44
  • Peppard W, Schuenke C. Iclaprim, a diaminopyrimidine dihydrofolate reductase inhibitor for the potential treatment of antibiotic-resistant Staphylococcal infections. Curr Opin Investig Drugs 2008;9:210–25
  • Kohlhoff S, Sharma R. Iclaprim. Expert Opin Investig Drugs 2007;16:1441–8
  • Available from: http://clinicaltrials.gov/show/NCT00543608
  • Ooi N, Miller K, Hobbs J, et al. XF-73, a novel antistaphylococcal membrane-active agent with rapid bactericidal activity. J Antimicrob Chemother 2009;64:735–40
  • Farrell DJ, Robbins M, Rhys-Williams W, et al. Investigation of the potential for mutational resistance to XF-73, retapamulin, mupirocin, fusidic acid, daptomycin, and vancomycin in methicillin-resistant Staphylococcus aureus isolates during a 55-passage study. Antmicro Agents Chemother 2011;55:1177–81
  • Kumar K, Chopra S. New drugs for methicillin-resistant Staphylococcus aureus: an update. J Antimicrob Chemother 2013;68:1–6
  • Grossman T, Starosta A, Fyfe C, et al. Target- and resistance-based mechanistic studies with TP-434, a novel fluorocycline antibiotic. Antimicrob Agents Chemother 2012;56:2559–64
  • Christ D, Sutcliffe J. TP-434 is Metabolically stable and has low potential for drug-drug interactions. Poster 181 F1-2162, 50th Annual ICAAC 2010. Available from: http://www.tphase.com/files/F1-2162.pdf
  • Horn PT, Sutcliffe JA, Walpole S, et al. Pharmacokinetics, safety and tolerability of a novel fluorocycline, TP-434, following multiple dose oral administration with and without food. IDSA Annual Meeting Boston, Poster Abstract Session; 2011
  • Sader H, Paukner S, Schoenfeld Z, et al. Antimicrobial activity of the novel pleuromutilin antibiotic BC-3781 against organisms responsible for community-acquired respiratory tract infections (CARTIs). J Antimicrob Chemother 2012;67:1170–5
  • Ross J, Sader H, Schoenfeld Z, et al. Disk diffusion and MIC quality control ranges for BC-3205 and BC-3781, two novel pleuromutilin antibiotics. J Clin Microbiol 2012;50:3361–4
  • Declaration of clinical research on BC-3781. Available from: http://www.biotech-intelligence.com/html/html/pool_7/88ba7b2fec852709f7c5df2e8fb3511e.html
  • Skripkin E, McConnell T, DeVito J, et al. RX-01, a New family of oxazolidinones that overcome ribosome-based linezolid resistance. Antimicrob Agents Chemother 2008;52:3550–7
  • Lawrence L, Danese P, DeVito J, et al. In vitro activities of the RX-01 oxazolidinones against hospital and community pathogens. Antimicrob Agents Chemother 2008;52:1653–62
  • Zhou J, Bhattacharjee A, Chen S, et al. Design at the atomic level: design of biaryloxazolidinones as potent orally active antibiotics. Bioorg Med Chem Lett 2008;18:6175–8
  • Available from: http://www.clinicaltrials.gov/ct2/results?term=RX-1741+&Search=Search
  • Louie A, Liu W, Kulawy R, et al. In vivo pharmacodynamics of torezolid phosphate (TR-701), a new oxazolidinone antibiotic, against methicillin-susceptible and methicillin-resistant Staphylococcus aureus strains in a mouse thigh infection model. Antimicrob Agents Chemother 2011;55:3453–60
  • Brown SD, Traczewski MM. Comparative in vitro antimicrobial activities of torezolid (TR-700), the active moiety of a new oxazolidinone, torezolid phosphate (TR-701), determination of tentative disk diffusion interpretive criteria, and quality control ranges. Antimicrob Agents Chemother 2010;54:2063–9
  • Prokocimer P, Bien P, Surber J, et al. Phase 2, randomized, double-blind, dose-ranging study evaluating the safety, tolerability, population pharmacokinetics, and efficacy of oral torezolid phosphate in patients with complicated skin and skin structure infections. Antimicrob Agents Chemother 2011;55:583–92
  • Koga T, Masuda N, Kakuta M, et al. Potent in vitro activity of tomopenem (CS-023) against methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa. Antimicrob Agents Chemother 2008;52:2849–54
  • Tanka K, Mikamo H, Nakao K, et al. In vitro activity of tomopenem (CS-023/RO4908463) against anaerobic bacteria. Antimicrob Agents Chemother 2009;53:319–22
  • Tomozawa T, Sugihara C, Kakuta M, et al. In vitro postantibiotic effects of tomopenem (CS-023) against Staphylococcus aureus and Pseudomonas aeruginosa. J Med Microbiol 2010;59:438–41
  • Sugihara K, Sugihara C, Matsushita Y, et al. In vivo pharmacodynamic activity of tomopenem (formerly CS-023) against Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus in a murine thigh infection model. Antimicrob Agents Chemother 2010;54:5298–302
  • Rios AM, Mejias R, Chavez-Bueno S, et al. Impact of cethromycin (ABT-773) therapy on microbiological, histologic, immunologic, and respiratory indices in a murine model of Mycoplasma pneumoniae lower respiratory infection. Antimicrob Agents Chemother 2004;48:2897–904
  • Garcia I, Pascual A, Ballesta S, et al. Accumulation and activity of cethromycin (ABT-773) within human polymorphonuclear leucocytes. J Antimicrob Chemother 2003;52:24–8
  • Kim MK, Zhou W, Tessier PR, et al. Bactericidal effect and pharmacodynamics of cethromycin (ABT-773) in a murine Pneumococcal pneumonia model. Antimicrob Agents Chemother 2002;46:3185–92
  • Bermudez LE, Motamedi N, Chee C, et al. EDP-420, a bicyclolide (bridged bicyclic macrolide), is active against Mycobacterium avium. Antimicrob Agents Chemother 2007;51:1666–70
  • Luo X, Wu R, Wang M, et al. Comparative efficacy of EDP-420, azithromycin, telithromycin, clindamycin, trimethoprim/sulfamethoxazole, linezolid and levofloxacin against murine skin abscess induced by methicillin-resistant Staphylococcus aureus USA300 PVL+ mecA strain. 18th European Congress of Clinical Microbiology and Infectious Diseases; 2008
  • Paknikar SS, Narayana S. Newer antibacterials in therapy and clinical trial. North Am J Med Sci 2012;4:537–47
  • Xu G, Tang D, Gai Y, et al. An efficient large-scale synthesis of EDP-420, a First-in-class bridged bicyclic macrolide (BBM) antibiotic drug candidate. Org Proc Res Dev 2010;4:504–10
  • Pankuch GA, Kelly LM, Lin G, et al. Activities of a new oral streptogramin, XRP 2868, compared to those of other agents against Streptococcus pneumoniae and Haemophilus species. Antimicrob Agents Chemother 2003;47:3270–4
  • Andes D, Craig WA. Pharmacodynamics of a new streptogramin, XRP 2868, in murine thigh and lung infection models. Antimicrob Agents Chemother 2006;50:243–9
  • Mabe S, Champney WS. A comparison of a new oral streptogramin XRP 2868 with quinupristin-dalfopristin against antibiotic-resistant strains of Haemophilus influenzae, Staphylococcus aureus, and Streptococcus pneumoniae. Curr Microbiol 2005;51:363–6
  • Goldstein E, Citron D, Merriam V, et al. Comparative in vitro Activities of XRP 2868, pristinamycin, quinupristin-dalfopristin, vancomycin, daptomycin, linezolid, clarithromycin, telithromycin, clindamycin, and ampicillin against anaerobic Gram-positive species, actinomycetes, and lactobacilli. Antimicrob Agents Chemother 2005;49:408–13
  • Lemaire S, Tulkens P, Van Bambeke F. Contrasting effects of acidic pH on the extracellular and intracellular activities of the anti-Gram-positive fluoroquinolones moxifloxacin and delafloxacin against Staphylococcus aureus. Antimicrob Agents Chemother 2011;55:649–58
  • Announcement of phase study results for delafloxacin. Available from: http://www.rib-x.com/pipeline/delafloxacin.php
  • Jones RN, Sader HS, Fritsche TR. Antimicrobial activity of LBM415 (NVP PDF-713) tested against pathogenic Neisseria spp. (Neisseria gonorrhoeae and Neisseria meningitidis). Diagn Micr Infec Dis 2005;51:139–41
  • Rolan P, Sun H, MacLeod C, et al. Pharmacokinetics and unexpected safety issues of LBM415, a novel oral peptide deformylase inhibitor. Clin Pharmacol Ther 2011;90:256–62
  • Bell JM, Turnidge JD, Inoue M, et al. Activity of a peptide deformylase inhibitor LBM415 (NVP PDF-713) tested against recent clinical isolates from Japan. J Antimicrob Chemother 2005;55:276–8
  • Osborne CS, Neckermann G, Fischer E, et al. In vivo characterization of the peptide deformylase inhibitor LBM415 in murine infection models. Antimicrob Agents Chemother 2009;53:3777–81
  • Ednie LM, Pankuch G, Appelbaum PC. antipneumococcal activity of LBM415, a new peptide diformylase inhibitor, compared with those of other agents. Antimicrob Agents Chemother 2004;48:4027–32
  • Ross J, Scangarella-Oman N, Miller N, et al. Determination of disk diffusion and MIC quality control ranges for GSK1322322, a novel peptide deformylase inhibitor. J Clin Microbiol 2011;49:3928–30
  • Verma SK, Jat RK, Nagar N, et al. A novel antibacterial target: peptide deformylase. Pharmacophore J 2011;2:114–23
  • Bogdanovich T, Smith KA, Clark C, et al. Activity of LBM415 compared to those of 11 other agents against Haemophilus species. Antimicrob Agents Chemother 2006;50:2323–9
  • Gordon JY, Romanowski EG. A review of antimicrobial peptides and their therapeutic potential as anti-infective drugs. Curr Eye Res 2005;30:505–15
  • Andres E, Dimarcq JL. Cationic antimicrobial peptides: update of clinical development. J Intern Med 2004;255:519–20
  • Hallock KJ, Lee D-K, Ramamoorthy A. MSI-78, an Analogue of the magainin antimicrobial peptides, disrupts lipid bilayer structure via positive curvature strain. Biophys J 2003;84:3052–60
  • Available from: www.dipexiumpharmaceuticals.com/aboutLocilex.html
  • Rehm BHA. Microbial production of alginate: Biosynthesis and Applications in Microbial Production of Biopolymers and Polymer Precursors. 2009; Caister Academic Press. ISBN 978-1-904455-36-3
  • Available from: http://algipharma.no/images/Marketing/News/Sept/ICAAC_2012_poster_F-2062-AlgiPharmas_Oligo-G_bacterial_motility_study_at_CardiffU.pdf
  • Ebrt T, Smith S, Pancari G, et al. A fully human monoclonal antibody to Staphylococcus aureus iron regulated surface determinant B (IsdB) with functional activity in vitro and in vivo. Hum Antibodies 2010;19:113–28
  • Henck JO, Byrrn SR. Designing a molecular delivery system within a preclinical timeframe. Drug Discov Today 2007;12:189–99
  • Kelly-Quintos C, Cavacini LA, Posner MR, et al. Characterization of the opsonic and protective activity against Staphylococcus aureus of fully human monoclonal antibodies specific for the bacterial surface polysaccharide poly-N-acetylglucosamine. Infect Immun 2006;74:2742–50
  • Kelly-Quintos C, Kropec A, Briggs S. The role of epitope specificity in the human opsonic antibody response to the Staphylococcal surface polysaccharide poly N-acetyl glucosamine. J Infect Dis 2005;192:2012–19
  • Kutter E, De Vos D, Gvasalia G, et al. Phage therapy in clinical practice: treatment of human infections. Curr Pharm Biotechnol 2010;11:69–86
  • Matsuzaki S, Rashel M, Uchiyama J, et al. Bacteriophage therapy: a revitalized therapy against bacterial infectious diseases. J Infect Chemother 2005;11:211–19
  • Międzybrodzki R, Fortuna W, Weber-Dąbrowska B, et al. Phage therapy of staphylococcal infections (including MRSA) may be less expensive than antibiotic treatment. Postepy Hig Med Dosw 2007;61:461–5
  • Winter JM, Behnken S, Hertweck C. Genomics-inspired discovery of natural products. Curr Opin Chem Biol 2011;15:22–31
  • Goldstein BP, Berti M, Ripamonti F, et al. In vitro antimicrobial activity of a new antibiotic, MDL 62,879 (GE2270 A). Antimicrob Agents Chemother 1993;37:741–5
  • Raja A, LaBonte J, Lebbos J, et al. Daptomycin. Nat Rev Drug Dis 2003;2:943–4
  • Crowley PJ, Martini LG. Formulation design: new drugs from old. Drug Dis Today 2004;1:537–42
  • LaMarche MJ, Leeds JA, Dzink-Fox J, et al. 4-aminothiazolyl analogues of GE2270 A: antibacterial lead finding. J Med Chem 2011;54:2517–21
  • Ohlsen K. Novel antibiotics for the treatment of Staphylococcus aureus. Expert Rev Clin Pharmacol 2009;2:661–72
  • Roccaforte JS, Bittner MJ, Stumpf CA, et al. Attempts to eradicate methicillin-resistant Staphylococcus aureus colonization with the use of trimethoprim-sulfamethoxazole, rifampin, and bacitracin. Am J Infect Control 1988;16:141–6
  • Available from: http://www.triusrx.com/pdfs/Advanced-Microbiology-and-In-Vivo-Efficacy-of-Rx101005-a-Novel-2-4-Diaminoquinazoline-DHFR-Inhibitor.pdf
  • Mushtaq S, Warner M, Williams G, et al. Activity of chequerboard combinations of ceftaroline and NXL104 versus β-lactamase-producing Enterobacteriaceae. J Antimicrob Chemother 2010;65:1428–32
  • Xu H, Hazra S, Blanchard JS. NXL104 Irreversibly Inhibits the β-Lactamase from Mycobacterium tuberculosis. Biochemistry 2012;51:4551–7
  • Louie A, Castanheira M, Liu W, et al. Pharmacodynamics of β-lactamase inhibition by NXL104 in combination with ceftaroline: examining organisms with multiple types of β-lactamases. Antimicrob Agents Chemother 2012;56:258–70
  • Wiskirchen DE, Crandon JL, Furtado GH, et al. In vivo efficacy of a human-simulated regimen of ceftaroline combined with NXL104 against extended-spectrum β-lactamase (ESBL)-producing and non-ESBL-producing Enterobacteriaceae. Antimicrob Agents Chemother 2011;55: 3 220–5
  • Nafsika GH. β-Lactamase inhibitors: evolving compounds for evolving resistance targets. Exp Opini Investig Drugs 2004;13:1307–18
  • Snydman DR, Jacobus NV, McDermott LA. Activity of a novel cyclic lipopeptide, CB-183,315, against resistant Clostridium difficile and other Gram-positive aerobic and anaerobic intestinal pathogens. Antimicrob Agents Chemother 2012;56:3448–52
  • Carmela MTM, Lawrence MI, Kare HT, et al. In vitro and in vivo characterization of CB-183,315, a novel lipopeptide antibiotic for treatment of Clostridium difficile. Antimicrob Agents Chemother 2012;56:5023–30
  • Mangili A, Bica I, Snydman DR, et al. Daptomycin-resistant, methicillin-resistant Staphylococcus aureus bacteremia. Clin Infect Dis 2005;40:1058–60
  • Peleg AY, Miyakis S, Ward DV, et al. Whole genome characterization of the mechanisms of daptomycin resistance in clinical and laboratory derived isolates of Staphylococcus aureus. PLoS One 2012;7:e28316
  • Falagas ME, Grammatikos AP, Michalopoulos A. Potential of old-generation antibiotics to address current need for new antibiotics. Expert Rev Anti Infect Ther 2008;6:593–600
  • McLaws FB, Larsen AR, Skov RL, et al. Distribution of fusidic acid resistance determinants in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2011;55:1173–6
  • Brötz-Oesterhelt H, Beyer D, Kroll HP, et al. Dysregulation of bacterial proteolytic machinery by a new class of antibiotics. Nat Med 2005;11:1082–7
  • Li DHS, Chung YS, Gloyd M, et al. Acyldepsipeptide antibiotics induce the formation of a structured axial channel in ClpP: a model for the ClpX/ClpA-bound state of ClpP. Chem Biol 2010;17:959–69
  • Lee BG, Park EY, Lee KE, et al. Structures of ClpP in complex with acyldepsipeptide antibiotics reveal its activation mechanism. Nat Struct Mol Biol 2010;17:471–9
  • Hinzen B, Raddatz S, Paulsen H, et al. Medicinal chemistry optimization of acyldepsipeptides of the enopeptin class antibiotics. Chem Med Chem 2006;1:689–93
  • Haste NM, Hughes CC, Tran DN, et al. Pharmacological properties of the marine natural product marinopyrrole A against methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2011;55:3305–12
  • Doi K, Li R, Sung SS, et al. Discovery of marinopyrrole A (maritoclax) as a selective Mcl-1 antagonist that overcomes ABT-737 resistance by binding to and targeting Mcl-1 for proteasomal degradation. J Biol Chem 2012;287:10224–35
  • Nicolaou KC, Simmons NL, Chen JS, et al. Total synthesis and biological evaluation of marinopyrrole A and analogs. Tetrahedron Lett 2011;52:2041–3
  • Kwon YJ, Fang Y, Xu GH, et al. Aquastatin A, a new Inhibitor of enoyl-acyl carrier protein reductase from Sporothrix sp. FN611. Biol Pharm Bull 2009;32:2061–4
  • Yong K, Jayasuriya H, Ondeyka J, et al. Discovery of FabH/FabF inhibitors from natural products. Antimicrob Agents Chemother 2006;50:519–26
  • Kithsiri HB, Hiranthi J, Ziqiang G, et al. Anthrabenzoxocinones from Streptomyces sp. as liver X receptor ligands and antibacterial agents. J Nat Prod 2005;68:1437–40
  • Srinivas K, Andrew G, Katherine Y. Determination of selectivity and efficacy of fatty acid synthesis inhibitors. J Biol Chem 2005;280:1669–77
  • Zheng CJ, Sohn MJ, Kim WG. Vinaxanthone, a new FabI inhibitor from Penicillium sp. J Antimicrob Chemother 2009;63:949–53
  • Wang J, Kodali S, Lee SH, et al. Discovery of platencin, a dual FabF and FabH inhibitor with in vivo antibiotic properties. Proc Natl Acad Sci USA 2007;104:7612–16
  • Evan M, Arnold DL. Platensimycin and platencin: promising antibiotics for future application in human medicine. J Antibiot 2011;64:705–10
  • Kato A, Nakaya S, Kokubo N, et al. A new anti-MRSA antibiotic complex, WAP-8294A I. Taxonomy, isolation and biological activities. J Antibiot 1998;51:929–35
  • Hyeon-Hee Y, Kang-Ju K, Jeong-Dan C, et al. Antimicrobial activity of berberine alone and in combination with ampicillin or oxacillin against methicillin-resistant Staphylococcus aureus. J Med Food 2005;8:454–61
  • Bonner DP, O'Sullivan J, Tanaka KS, et al. Lysobactin, a novel antibacterial agent produced by Lysobacter sp. II. Biological properties. J Antibiot 1988;41:1745–51
  • Franz N, Sonja A, Jordi B-B, et al. Structure and total synthesis of lysobactin (katanosin B). Angew Chem Int Ed 2007;46:2039–42
  • Hall EA, Kuru E, VanNieuwenhze MS. Solid-phase synthesis of lysobactin (katanosin B): insights into structure and function. Org Lett 2012;14:2730–3
  • Zheng CJ, Yu HE, Kim EH, et al. Viridicatumtoxin B, a new anti-MRSA agent from Penicillium sp. FR11. J Antibiot 2008;61:633–7
  • Ma X-C, Sun C, Huang S-S, et al. Preparative isolation and purification of four prenylflavanones from microbial biotransformation of kurarinone by high-speed counter-current chromatography. Separ Puri Technol 2010;76:140–5
  • McDonald LA, Barbieri LR, Carter GT, et al. Structures of muraymycins, novel peptidoglycan biosynthesis inhibitors. J Am Chem Soc 2002;124:10260–1
  • Lin YI, Li Z, Francisco GD, et al. Muraymycins, novel peptidoglycan biosynthesis inhibitors: semisynthesis and SAR of their derivatives. Bioorg Med Chem Lett 2002;12:1341–4
  • Bouhss A, Crouvoisier M, Blanot D, et al. Purification and characterization of the bacterial MraY translocase catalyzing the first membrane step of peptidoglycan biosynthesis. J Biol Chem 2004;279:29974–80
  • Silver LL. Does the cell wall of bacteria remain a viable source of targets for novel antibiotics? Biochem Pharmacol 2006;71:996–1005
  • Dini C. MraY inhibitors as novel antibacterial agents. Curr Topics Med Chem 2005;5:1221–36
  • Aleiwi BA, Schneider CM, Kurosu M. Synthesis of ureidomuraymycidine derivatives for structure-activity relationship studies of muraymycins. J Org Chem 2012;77:3859–67
  • Winn M, Goss JM, Kimura K, et al. Antimicrobial nucleoside antibiotics targeting cell wall assembly: recent advances in structure–function studies and nucleoside biosynthesis. Nat prod Rep 2010;27:279–304
  • Konishi M, Sugawara K, Hanada M, et al. Empedopeptin (BMY-28117), a new depsipeptide antibiotic. I. Production, isolation and properties. J Antibiot 1984;37:949–57
  • Müller A, Münch D, Schmidt Y, et al. Lipodepsipeptide empedopeptin inhibits cell wall biosynthesis through Ca2+-dependent complex formation with peptidoglycan precursors. J Biol Chem 2012;287:20270–80
  • Vértesy L, Aretz W, Knauf M, et al. Feglymycin, a novel inhibitor of the replication of the human immunodeficiency virus. Fermentation, isolation and structure elucidation. J Antibiot 1999;52:374–82
  • Dettner F, Hänchen A, Schols D, et al. Total synthesis of the antiviral peptide antibiotic feglymycin. Angew Chem Int Ed 2009;48:1856–61
  • Rausch S, Hänchen A, Denisiuk A, et al. Feglymycin is an inhibitor of the enzymes MurA and MurC of the peptidoglycan biosynthesis pathway. Chem Bio Chem 2011;12:1171–3
  • Uchida R, Iwatsuki M, Kim YP, et al. Nosokomycins, new antibiotics discovered in an in vivo-mimic infection model using silkworm larvae. I: fermentation, isolation and biological properties. J Antibiot 2010;63:151–5
  • Wyatt EE, Galloway WRJD, Thomas GL, et al. Identification of an anti-MRSA dihydrofolate reductase inhibitor from a diversity-oriented synthesis. Chem Commun 2008;44:4962–4
  • DaCunha EFF, Ramalho TC, Maia ER, et al. The search for new DHFR inhibitors: a review of patents January 2001-February 2005. Exp Opin Ther Patents 2005;15:967–86
  • Hawser S, Lociuro S, Islam K. Dihydrofolate reductase inhibitors as antibacterial agents. Biochem Pharmacol 2006;71:941–8
  • Karatas H, Alp M, Yildiz S, et al. Synthesis and potent in vitro activity of novel 1H-benzimidazoles as anti-MRSA agents. Chem Biol Drug Des 2012;80:237–44
  • Kurosu M, Begari E. Bacterial protein kinase inhibitors. Drug Dev Res 2010;71:168–87
  • Kurosu M, Begari E. Vitamin K2 in electron transport system: are enzymes involved in vitamin K2 biosynthesis promising drug targets? Molecules 2010;15:1531–53
  • Kurosu M, Narayanasamy P, Biswas K, et al. Discovery of 1,4-dihydroxy-2-naphthoate prenyltransferase inhibitors: new drug leads for multidrug-resistant Gram-positive pathogens. J Med Chem 2007;50:3973–4
  • Debnath J, Siricilla S, Wan B, et al. Discovery of selective menaquinone biosynthesis inhibitors against Mycobacterium tuberculosis. J Med Chem 2012;55:3739–55
  • Dhiman RK, Mahapatra S, Slayden RA, et al. Menaquinone synthesis is critical for maintaining Mycobacterial viability during exponential growth and recovery from non-replicating persistence. Mol Microbiol 2009;72:85–97
  • Kashyap A, Sehgal VN, Sahu A, et al. Anti-leprosy drugs inhibit the complement-mediated solubilization of pre-formed immune complexes in vitro. Int J Immunopharmacol 1992;14:269–73
  • Yano T, Kassovska-Bratinova S, The JS, et al. Reduction of clofazimine by mycobacterial type 2 NADH:quinone oxidoreductase A. Pathway for the generation of bacterial levels of reactive oxygen species. J Biol Chem 2011;286:10276–87
  • Kuhl A, Svenstrup N, Ladel C. Biological characterization of novel inhibitors of the Gram-positive DNA polymerase IIIC enzyme. Antimicro Agents Chemother 2005;49:987–95
  • Lee TX, Packer MD, Huang J, et al. Growth inhibitory and anti-tumour activities of OSU-03012, a novel PDK-1 inhibitor, on vestibular schwannoma and malignant schwannoma cells. Eur J Cancer 2009;45:1709–20
  • Chiua H-C, Leeb S-L, Kapuriya N. Development of novel antibacterial agents against methicillin-resistant Staphylococcus aureus. Bioorg Med Chem 2012;15:4653–60
  • Burton DC, Edwards JR, Horan TC, et al. Methicillin-resistant Staphylococcus aureus central line-associated bloodstream infections in us intensive care units, 1997-2007. J Am Med Associ 2009;301:727–36
  • Bush LM. Best alternative to vancomycin for serious methicillin-resistant Staphylococcus aureus infections: let's just say it. Clin Infect Dis 2011;53:965–6
  • Pexer JC, Tancrede C, Tancrede D. In vitro study of the bactericidal activity of a sulfamethoxazole-trimethoprim combination of 59 hospital strains. Therapie 1970;25:13–28
  • Schiraldi O, Sforza E, Piaia F. Effect of a new sulfa-trimethoprim combination (trimethoprim -sulfamethopyrazine) in typhoid fever. A double-blind study on 72 adult patients. Chemotherapy 1985;31:68–75
  • Bohni E. Comparative bacteriological investigations with the combination trimethoprim/sulfamethoxazole in vitro and in vivo. Chemotherapy 1969;14:1–21
  • Miyamoto E. Oral trimethoprim-sufamethoxazole for methicillin-resistant Staphylococcus aureus infections: the evidence behind the use. Drug Ther Topics 2004;33:69–74
  • Graham S, Coote PJ. Potent, synergistic inhibition of Staphylococcus aureus upon exposure to a combination of the endopeptidase lysostaphin and the cationic peptide ranalexin. J Antimicrob Chemother 2007;59:759–62
  • Soeda H. Pharmacokinetics and therapeutic drug monitoring of anti-MRSA drugs. Kagaku Ryoho no Ryoiki 2011;28:1702–8
  • Chaudhary M, Shrivastava SM, Saurabh S, et al. In vitro antimicrobial activity of cefepime, amikacin and their fixed dose combination against some pathogenic bacteria. J Ecophysiol Occup Health 2008;8:161–5
  • Neu HC. Antibiotics in the second half of the 1980s. Areas of future development and the effect of new agents on aminoglycoside use. Am J Med 1986;80:195–203
  • Bagnoli F, Bertholet S, Grandi G. Inferring reasons for the failure of Staphylococcus aureus vaccines in clinical trials. Front Cell Infect Microbiol 2012;2:16

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.