114
Views
17
CrossRef citations to date
0
Altmetric
Reviews

Computational design principles for the discovery of bioactive dendrimers: [s]-triazines and other examples

, &
Pages 1057-1069 | Published online: 05 Jul 2013

Bibliography

  • Campagna S, Ceroni P, Puntoriero F. Designing dendrimers. Wiley, Weinheim; 2011
  • Frechet JMJ, Tomalia DA. Dendrimers and other dendritic polymers. Wiley, Weinheim; 2002
  • Vogtle F, Richardt G, Werner N, Rackstraw AJ. Dendrimer chemistry. Wiley, Weinheim, 2009
  • Majoros I, Baker JR Jr. Dendrimer-based nanomedicines. Pan Stanford Publishing Pte. Ltd, Singapore; 2008
  • Tomalia DA, Christensen JB, Boas U. Dendrimers, dendrons, and dendritic polymers: discovery, applications, and the future. CUP, Cambridge; 2012
  • Caminade AM, Turrin CO, Laurent R, et al. Dendrimers: towards catalytic, material and biomedical uses. Wiley, Weinheim; 2011
  • Cheng Y. Dendrimer-based drug delivery systems: from theory to practice (Wiley Series in Drug Discovery and Development). Wiley, Weinheim; 2012
  • De Gennes PG, Hervet HJ. Statics of « starbust » polymers. J Phys Lett 1983;44:L351-9
  • Tomalia DA, Naylor AM, Goddard WA. Starburst dendrimers: molecular-level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter. Angew Chem Int Ed 1990;29:138-75
  • Maiti PK, Cagin T, Wang GF, Goddard WA. Structure of PAMAM dendrimers: generations 1 through 11. Macromolecules 2004;37:6236-54
  • Naylor AM, Goddard WA, Kiefer GE, et al. Starburst dendrimers 5: molecular shape control. J Am Chem Soc 1989;111:2339-41
  • Maiti PK, Cagin T, Lin ST, Goddard WA. Effect of Solvent and pH on the Structure of PAMAM Dendrimers. Macromolecules 2005;38:979-91
  • Lin ST, Maiti PK, Goddard WA. Dynamics and thermodynamics of water in PAMAM dendrimers at subnanosecond time scales. J Phys Chem B 2005;109:8663-72
  • Ballauff M, Likos CN. Dendrimers in solution: insight from theory and simulation. Angew Chem Int Ed 2004;43:2998-3020
  • Liu Y, Bryantsev VS, Diallo MS, Goddard WA. PAMAM dendrimers undergo pH responsive conformational changes without swelling. J Am Chem Soc 2009;131:2798-9
  • Pavan GM, Albertazzi L, Danani A. Ability to adapt: different generations of PAMAM dendrimers show different behaviors in binding siRNA. J Phys Chem B 2010;114:2667-75
  • Maiti PK, Li Y, Cagin T, Goddard WA. Structure of polyamidoamide dendrimers up to limiting generations: a mesoscale description. J Chem Phys 2009;130:144902-11
  • Tian W, Ma Y. Coarse-grained molecular simulation of interacting dendrimers. Soft Matter 2011;7:500-5
  • Lee H, Larson RG. Molecular dynamics simulations of PAMAM dendrimer-induced pore formation in DPPC bilayers with a coarse-grained model. J Phys Chem B 2006;110:18204-11
  • Lyulin AV, Davies GR, Adolf DB. Brownian dynamics simulations of dendrimers under shear flow. Macromolecules 2000;33:3294-304
  • Lyulin SV, Evers LJ, van der Schoot P, et al. Effect of solvent quality and electrostatic interactions on size and structure of dendrimers. Brownian dynamics simulation and mean-field theory. Macromolecules 2004;37:3049-63
  • Yan LT, Yu X. Charged dendrimers on lipid bilayer membranes: insight through dissipative particle dynamics simulations. Macromolecules 2009;42:6277-83
  • Maiti PK, Bagchi B. Structure and dynamics of DNA−dendrimer complexation: role of counterions, water, and base pair sequence. Nano Lett 2006;6:2478-85
  • Pavan GM, Danani A. The influence of dendron's architecture on the “rigid” and “flexible” behaviour in binding DNA—a modelling study. Phys Chem Chem Phys 2010;12:13914-17
  • Tian WD, Ma YQ. Theoretical and computational studies of dendrimers as drug delivery vectors. Chem Soc Rev 2013;42:705-27
  • Merkel OM, Zeng M, Mintzer MA, et al. Molecular modeling and in vivo imaging can identify successful flexible triazine dendrimer-based siRNA delivery systems. J Control Release 2011;153:23-33
  • Jones SP, Pavan GM, Danani A, et al. Quantifying the effect of surface ligands on dendron–DNA interactions: insights into multivalency through a combined experimental and theoretical approach. Chem Eur J 2010;16:4519-32
  • Pavan GM, Danani A, Pricl S, et al. Modeling the multivalent recognition between dendritic molecules and DNA: understanding how ligand “Sacrifice” and screening can enhance binding. J Am Chem Soc 2009;131:9686-94
  • Nandy B, Maiti PK. DNA compaction by a dendrimer. J Phys Chem B 2011;115:217-30
  • Sun C, Tang T, Uludag H. Probing the effects of lipid substitution on polycation mediated DNA aggregation: a molecular dynamics simulations Study. Biomacromolecules 2012;13:2982-298
  • Sun C, Tang T, Uludag H. A molecular dynamics simulation study on the effect of lipid substitution on polyethylenimine mediated siRNA complexation. Biomaterials 2013;34:2822-33
  • Tian W-D, Ma Y-Q. Complexation of a linear polyelectrolyte with a charged dendrimer. Macromolecules 2010;43:1575-82
  • Tian W-D, Ma Y-Q. pH-responsive dendrimers interacting with lipid membranes. Soft Matter 2012;8:2627-32
  • Tian W-D, Ma Y-Q. Insights into the endosomal escape mechanism via investigation of dendrimer-membrane interaction. Soft Matter 2012;8:6378-84
  • Zhang W, Simanek EE. Dendrimers based on melamine. Divergent and orthogonal, convergent syntheses of a G3 dendrimer. Org Lett 2000;2:843-5
  • Zhang W, Simanek EE. Synthesis and characterization of higher generation dendrons based on p-aminobenzylamine. Evidence for molecular recognition of Cu(II). Tetrahedron Lett 2001;42:5355-7
  • Zhang W, Nowlan DT III, Thomson LM, et al. Orthogonal, convergent syntheses of dendrimers based on melamine with one or two surface sites for manipulation. J Am Chem Soc 2001;123:8914-22
  • Zhang W, Gonzalez SO, Simanek EE. Structure-activity relationships in dendrimers based on triazines: gelation depends on Choice of Linking and Surface Groups. Macromolecules 2002;35:9015-21
  • Zhang W, Jiang J, Qin C, et al. Triazine dendrimers for drug delivery: evaluation of solubilization properties, activity in cell culture, and in vivo toxicity of a candidate vehicle. Supramol Chem 2003;15:607-15
  • Umali AP, Simanek EE. Preparation of multivalent dendrimers through thiol-disulfide exchange. Org Lett 2003;5:1245-7
  • Zhang W, Tichy SE, Pérez LM, et al. Evaluation of multivalent dendrimers based on melamine: kinetics of thiol-disulfide exchange depends on the structure of the dendrimer. J Am Chem Soc 2003;125:5086-94
  • Steffensen MB, Simanek EE. Chemoselective building blocks for dendrimers from relative reactivity data. Org Lett 2003;5:2359-61
  • Chen HT, Neerman MF, Parrish AR, et al. Cytotoxicty, hemolysis and acute in vivo toxicity of dendrimers based on melamine, candidate vehicles for drug delivery. J Am Chem Soc 2004;126:10044-8
  • Steffensen MB, Simanek EE. Synthesis and manipulation of orthogonally protected dendrimers: building blocks for library synthesis. Angew Chem Int Ed 2004;43:5178-80
  • Lim J, Simanek EE. Toward the next-generation drug delivery vehicle: synthesis of a dendrimer with Four Orthogonally Reactive Groups. Mol Pharm 2005;2:273-7
  • Lim J, Simanek EE. Synthesis of water soluble dendrimers based on Melamine Bearing Sixteen Paclitaxel Groups. Org Lett 2008;10:201-4
  • Umali A, Crampton H, Simanek EE. Triazine dendrimers with orthogonally protected amines on the periphery. Masking amines with Dde and BOC groups provides an alternative to carrying protected alcohols and disulfides through an iterative synthesis. J Org Chem 2007;72:9866-74
  • Lalwani S, Zhang W, Chouai A, et al. Synthesis and characterization of anionic triazine dendrimers with a labile disulfide core. Isr J Chem 2009;49:23-30
  • Crampton H, Hollink E, Perez LM, et al. A divergent route towards single-chemical entity triazine dendrimers with opportunities for structural diversity. New J Chem 2007;31:1283-90
  • Shaunak S, Thomas S, Gianasi E, et al. Polyvalent dendrimer glucosamine conjugates prevent scar tissue formation. Nat Biotechnol 2004;22:977-84
  • Barata T, Teo I, Lalwani S, et al. Computational design principles for bioactive dendrimer based constructs as antagonists of the TLR4-MD-2-LPS complex. Biomaterials 2011;32:8702-11
  • Lalwani S, Venditto VJ, Chouai A, et al. Electrophoretic behavior of anionic triazine and PAMAM dendrimers: methods for improving resolution and assessing purity using capillary electrophoresis. Macromolecules 2009;42:3152-61
  • Lalwani S, Chouai A, Perez LM, et al. Mimicking PAMAM dendrimers with ampholytic, hybrid triazine dendrimers: a comparison of dispersity and stability. Macromolecules 2009;42:6723-32
  • Lim J, Turkbey B, Bernardo M, et al. Gadolinium MRI contrast agents based on triazine dendrimers: relaxivity and in vivo pharmacokinetics. Bioconjug Chem 2012;23:2291-9
  • Pavan GM, Mintzer MA, Simanek EE, et al. Computational insights into the interactions between DNA and siRNA with “Rigid” and “Flexible” triazine dendrimers. Biomacromology 2010;51:1631-4
  • Jensen LB, Pavan GM, Kasimova MR, et al. Elucidating the molecular mechanism of PAMAM-siRNA dendriplex self-assembly: effect of dendrimer charge density. Int J Pharm 2011;416:410-18
  • Mammen M, Simanek EE, Whitesides GM. Predicting the relative stabilities of multi-particle hydrogen-bonded aggregates using the number of hydrogen bonds and the number of particles, and measuring these stabilities with titrations using dimethylsulfoxide. J Am Chem Soc 1996;118:12614-23
  • Ghiviriga I, Orniciu DC. Steric hinderance to the solvation of melamines and consequences for noncovalent synthesis. Chem Comm 2002;22:2718-19
  • Pavan GM, Danani A. Dendrimers and dendrons for siRNA binding: computational insights. J Drug Deliv Sci Technol 2012;22:83-9
  • Pavan GM, Danani A. Supporting the design of efficient dendritic DNA and siRNA nanocarriers with molecular modeling. Curr Drug Discov Tech 2011;8:314-28
  • Zheng M, Pavan GM, Neeb N, et al. Targeting the blind spot of polycationic nanocarrier-based siRNA delivery. ACS Nano 2012;6:9447-54
  • Lim J, Pavan GM, Annunziata O, et al. Experimental and computational evidence for an inversion of guest capacity in high-generation triazine dendrimer hosts. J Am Chem Soc 2012;134:1942-5
  • Jansen JFGA, de Brabander-van den Berg EMM, Meijer EW. Encapsulation of guest molecules into a dendritic box. Science 1994;266:1226-9
  • Duncan R. The dawning Era of polymer therapeutics. Nat Rev Drug Discov 2003;2:347-60
  • Lim J, Guo Y, Rostollan CL, et al. The role of size and number of polyethyleneglycol chains on the biodistribution and tumor localization of triazine dendrimers. Mol Pharm 2008;5:540-7
  • Lim J, Chouai A, Lo ST, et al. Design, synthesis, and characterization of triazine dendrimers bearing paclitaxel linked by ester and ester/disulfide linkages. Bioconjug Chem 2009;20:2154-61
  • Lo ST, Stern S, Clogston JD, et al. Biological assessment of triazine dendrimers as candidate platforms for nanomedicine: toxicological profiles, solution behavior, biodistribution, and drug release and efficacy in a PEGylated, paclitaxel construct. Mol Pharm 2010;7:993-1006
  • Lim J, Lo ST, Hill S, et al. Antitumor activity and molecular dynamics simulations of paclitaxel-laden triazine dendrimers. Mol Pharm 2012;9:404-12
  • Pavan GM, Barducci A, Albertazzi L, et al. Combining metadynamics simulation and experiments to characterize dendrimers in solution. Soft Matter 2013;9:2593-7
  • Garzoni M, Cheval N, Fahmi AW, et al. Ion-selective controlled assembly of dendrimer-based functional nanofibers and their ionic-competitive disassemby. J Am Chem Soc 2012;134:3349-57
  • Doni G, Kostiainen MA, Danani A, et al. Generation-dependent molecular recognition controls self-assembly in supramolecular dendron-virus complexes. Nano Lett 2011;11:723-8
  • Nandy B, Maiti PK, Bunker A. Force biased molecular dynamics simulation study of effect of dendrimer generation on interaction with DNA. J Chem Theory Comput 2013;9:722-9
  • Tomalia DA. In quest of a systematic framework for unifying and defining nanoscience. J Nanopart Res 2009;11:1251-310
  • Tomalia DA. Dendrons/dendrimers: quantized, nano-element like building blocks for soft-soft and soft-hard nano-compound synthesis. Soft Matter 2010;6:456-74
  • Tomalia DA. Dendritic effects: dependency of dendritic nano-periodic property patterns on critical nanoscale design parameters (CNDPs). New J Chem 2012;36:264-81

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.