705
Views
52
CrossRef citations to date
0
Altmetric
Reviews

Advances in multiparameter optimization methods for de novo drug design

, BA MSc PhD (CEO)

Bibliography

  • Kola I, Landis J. Can the pharmaceutical industry reduce attrition rates. Nat Rev Drug Discov 2004;3:711-16
  • Paul SM, Mytelka DS, Dunwiddie DT, et al. How to improve R&D productivity: the pharmaceutical industry's grand challenge. Nat Rev Drug Discov 2010;9:203-14
  • CMR International, a Thomson Reuters business. CMR International Global R&D Performance Metrics programme
  • Kennedy T. Managing the drug discovery/development interface. Drug Discov Today 1997;2:436-44
  • Tarbit MH, Berman J. High-throughput approaches for evaluating absorption, distribution, metabolism and excretion properties of lead compounds. Curr Opin Chem Biol 1998;2:411-16
  • Ekins S, Boulanger B, Swaan P, Hupcey M. Towards a new age of virtual ADME/TOX and multidimensional drug discovery. J Comp Aided Mol Des 2001;16:381-401
  • Van de Waterbeemd H, Gifford E. ADMET in silico modelling: towards prediction paradise? Nat Rev Drug Discov 2003;2:192-204
  • Segall M, Beresford A, Gola J, et al. Focus on success: using in silico optimisation to achieve an optimal balance of properties. Expert Opin Drug Metab Toxicol 2006;2:325-37
  • Segall MD. Multi-parameter optimization: identifying high quality compounds with a balance of properties. Curr Pharm Des 2012;18:1292-310
  • Harrington EC. The desirability function. Ind Qual Control 1965;21:494-8
  • Nissink JWM, Degorce S. Analyzing compound and project progress through multi-objective-based compound quality assessment. Future Med Chem 2013;5:753-67
  • Kuntz ID, Chen K, Sharp KA, Kollman PA. The maximal affinity of ligands. Proc Natl Acad Sci USA 1999;96:9997-10002
  • Hopkins AL, Groom CR, Alexander A. Ligand efficiency: a useful metric for lead selection. Drug Discov Today 2004;9:430-1
  • Abad-Zapatero C. Ligand efficiency indices for effective drug discovery. Expert Opin Drug Discov 2007;2:469-88
  • Ferenczy GG, Keseru GM. Thermodynamics guided lead discovery and optimization. Drug Discov Today 2010;15:919-32
  • Hopkins AL, Keseru GM, Leeson PD, et al. The role of ligand efficiency metrics in drug discovery. Nat Rev Drug Discov 2014;13:105-21
  • Shultz MD. Setting expectations in molecular optimizations: strengths and limitations of commonly used composite parameters. Bioorg Med Chem Lett 2013;23:5980-91
  • Shultz MD. Improving the plausibility of success with inefficient metrics. ACS Med Chem Lett 2013;5:2-5
  • Shultz MD. The thermodynamic basis for the use of lipophilic efficiency (LipE) in enthalpic optimizations. Boorgan Med Chem Lett 2013;23:5992-6000
  • Reynolds CH, Rounge BA, Bembenek SD. Ligand bindinf efficiency: trends, physical bias and implications. J Med Chem 2008;51:2432-8
  • Nissink JWM. Simple size-independent measure of ligand efficiency. J Chem Inf Model 2009;49:1617-22
  • Abad-Zapatero C. Ligand efficiency indices for drug discovery: towards an atlas-guided paradigm. Elsevier; Oxford: 2013
  • Abad-Zapatero c, Metz JM. Ligand Efficiency Indices as Guideposts for Drug Discovery. Drug Discov Today 2005;10:464-9
  • Abad-Zapatero C, Champness EJ, Segall MD. Alternative variables in drug discovery: promises and challenges. Future Med Chem 2014; In press
  • Jaffe W. Pareto translated: a review article. J Econo Lit 1972;10:1190-201
  • Kruisselbrink J, Michael E, Back T, et al. Combining aggregation with Pareto optimization: a case study in evolutionary molecular design. Proceedings of EMO '09: Lect. Notes Comput. Sci. Berlin/Heidelberg; 2009. p. 453-67
  • Debe DA, Mamidipaka RB, Gregg RJ, et al. ALOHA: a novel probability fusion approach for scoring multi-parameter drug-likeness during the lead optimization stage of drug discovery. J Comput Aided Mol Des 2013;27:771-82
  • Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 1997;23:3-25
  • Gleeson MP. Generation of a set of simple, interpretable ADMET rules of thumb. J Med Chem 2008;51:817-34
  • Hughes JD, Blagg J, Price DA, et al. Physicochemical drug properties associated with in vivo toxicological outcomes. Bioorg Med Chem Lett 2008;18:4872-5
  • Veber DF, Johnson SR, Cheng HY, et al. Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 2002;45:2615-23
  • Lovering F, Bikker J, Humblet C. Escape from flatland: increasing saturation as an approach to improving clinical success. J Med Chem 2009;52:6752-6
  • Ritchie TJ, Macdonald SJF. The impact of aromatic ring count on compound developability – are too many aromatic rings a liability in drug design? Drug Discov Today 2009;14:1011-20
  • Johnson TW, Dress KR, Edwards M. Using the Golden Triangle to optimize clearance and oral absorption. Bioorg Med Chem Lett 2009;19:5560-4
  • Garcia-Sosa AT, Maran U, Hetenyi C. Molecular property filters describing pharmacokinetics and drug binding. Curr Med Chem 2012;19:1646-62
  • Kenny PW, Montanari CA. Inflation of correlation in the pursuit of drug-likeness. J Comput Aided Mol Des 2013;27:1-13
  • Yusof I, Segall MD. Considering the impact drug-like properties have on the chance of success. Drug Discov Today 2013;18:659-66
  • Chadwick AT, Segall MD. Overcoming psychological barriers to good discovery decisions. Drug Discov Today 2010;15:561-9
  • Wager TT, Hour X, Villalobos A. Moving beyond rules: the development of a central nervous system multiparameter optimization (CNS MPO) approach to enable alignment of druglike properties. ACS Chem Neurosci 2010;1:435-49
  • Bickerton GR, Paolini GV, Besnard J, et al. Quantifying the chemical beauty of drugs. Nat Chem 2012;4:90-8
  • Gaulton A, Bellis LJ, Bento AP, et al. ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res 2012;40:D1100-7
  • Yusof I, Shah F, Hashimoto T, et al. Finding rules for successful drug optimization. Drug Discov Today 2014, DOI:10.1016/j.drudis.2014.01.005
  • Schneider G, Fechner U. Computer-based de novo design of drug-like molecules. Nat Rev Drug Discov 2005;4:649-63
  • Hartenfeller M, Schneider G. Enabling future drug discovery by de novo design. Wiley Interdiscip Rev: Comput Mol Sci 2011;1:742-59
  • Stewart K, Shiroda M, James C. Drug Guru: a computer software program for drug design using medicinal chemistry rules. Bioorg Med Chem 2006;14:7011-22
  • Ekins S, Honeycutt J, Metz J. Evolving molecules using multi-objective optimization: applying to ADME/Tox. Drug Discov Today 2010;15:451-60
  • Evans BK, Rittle KE, Bock MG, et al. Methods for drug discovery: development of potent, selective, orally effective cholecystokinin antagonists. J Med Chem 1988;31:2235-46
  • Optibrium. [Internet]. Available from: http://www.optibrium.com/stardrop [Cited 28 May 2013]
  • Segall MD, Champness EJ, Leeding C, et al. Applying medicinal chemistry transformations to guide the search for high quality leads and candidates. J Chem Inf Model 2011;51:2967-76
  • Raymond J, Watson I, Mahoui A. Rationalizing lead optimization by associating quantitative relevance with molecular structure modification. J Chem Inf Model 2009;49:1952-62
  • Ujváry I, Hayward J. BIOSTER: a database of bioisosteres and bioanalogues. In: Brown N, editor. Bioisosteres in medicinal chemistry. (Volume 54). Wiley-VCH, Weinheim; 2012. p. 55-74
  • Clark DE. editor. Evolutionary algorithms in computer-aided molecular design. Wiley-VCH, Weinheim; 2000
  • Schneider G, Lee ML, Stahl M, Schneider P. De novo design of molecular architectures by evolutionary assembly of drug-derived building blocks. J Comput Aided Mol Des 2000;14:487-94
  • Damewood JR, Lerman CL, Masek BB. NovoFLAP: a Ligand-Based De Novo Design Approach for the Generation of Medicinally Relevant Ideas. J Chem Inf Model 2010;50:1296-303
  • Nugiel DA, Krumrine JR, Hill DC, et al. De novo design of a picomolar nonbasic 5-HT(1B) receptor antagonist. J Med Chem 2010;53:1876-80
  • Nicolaou CA, Apostolakis J, Pattichis CS. De novo drug design using multiobjective evolutionary graphs. J Chem Inf Model 2009;49:295-307
  • Nicolaou CA, Brown NA, Pattichis CS. Molecular optimization using computational multi-objective methods. Curr Opin Drug Discov Devel 2007;10:316-24
  • van der Horst E, Marqués-Gallego P, Mulder-Krieger T, et al. Multi-objective evolutionary design of adenosine receptor ligands. J Chem Inf Model 2012;52:1713-21
  • Besnard J, Ruda GF, Setola V, et al. Automated design of ligands to polypharmacological profiles. Nature 2012;492:215-20
  • Boda K, Seidel T, Gasteiger J. Structure and reaction based evaluation of synthetic accessibility. J Comput Aided Mol Des 2007;21:311-25
  • Baber JC, Feher M. Predicting synthetic accessibility: application in drug discovery and development. Mini Rev Med Chem 2004;4:681-92
  • Allu TK, Oprea TI. Rapid evaluation of synthetic and molecular complexity for in silico chemistry. J Chem Inf Model 2005;45:1237-43
  • Ertl P, Schuffenhauer A. Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions. J Cheminfom 2009;1:8
  • Ihlenfeldt WD, Gasteiger J. Computer-assisted planning of organic syntheses: the second generation of programs. Angew Chem Int Ed Engl 1995;34:2613-33
  • Gillet VJ, Myatt G, Zsoldos Z, Johnson P. SPROUT, HIPPO and CAESA: tools for de novo structure generation and estimation of synthetic accessibility. Perspect. Drug Discov Des 1995;3:34-50
  • Leach AG, Jones HD, Cosgrove DA, et al. Matched molecular pairs as a guide in the optimization of pharmaceutical properties; a study of aqueous solubility, plasma protein binding and oral exposure. J Med Chem 2006;49:6672-82
  • Dossetter AG, Griffen EJ, Leach AG. Matched molecular pair analysis in drug discovery. Drug Discov Today 2013;18:724-31
  • Gola J, Champness E, Segall M. ADMET property prediction: the state of the art and current challenges. QSAR Comb Sci 2006;25:1127-9
  • Daylight Chemical Information Systems, Inc. Daylight theory manual. [Internet]. Available from: www.daylight.com/dayhtml/doc/theory/theory.smirks.html [Cited 28May 2013]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.