442
Views
25
CrossRef citations to date
0
Altmetric
Reviews

Recent advances in the design of Hedgehog pathway inhibitors for the treatment of malignancies

&

Bibliography

  • Ingham PW, McMahon AP. Hedgehog signaling in animal development: paradigms and principles. Genes Dev 2001;15(23):3059-87
  • Briscoe J, Therond PP. The mechanisms of hedgehog signalling and its roles in development and disease. Nat Rev Mol Cell Biol 2013;14(7):418-31
  • Jiang J, Hui C. Hedgehog signaling in development and cancer. Dev Cell 2008;15(6):801-12
  • Yang L, Xie G, Fan Q, Xie J. Activation of the hedgehog-signaling pathway in human cancer and the clinical implications. Oncogene 2010;29(4):469-81
  • Marini KD, Payne BJ, Watkins DN, Martelotto LG. Mechanisms of hedgehog signalling in cancer. Growth Factors 2011;29(6):221-34
  • Sekulic A, Migden MR, Oro AE, et al. Efficacy and safety of vismodegib in advanced basal-cell carcinoma. N Engl J Med 2012;366(23):2171-9
  • Solar ultraviolet radiation: Global burden of disease from solar ultraviolet radiation. [Internet]. WHO, Geneva; 2006. Available from: http://www.who.int/uv/health/solaruvradfull_180706.pdf
  • Ling G, Ahmadian A, Persson A, et al. Patched and p53 gene alterations in sporadic and hereditary basal cell cancer. Oncogene 2001;20(53):7770-8
  • Reifenberger J, Wolter M, Knobbe CB, et al. Somatic mutations in the PTCH, SMOH, SUFUH and TP53 genes in sporadic basal cell carcinomas. Br J Dermatol 2005;152(1):43-51
  • Raffel C, Jenkins RB, Frederick L, et al. Sporadic medulloblastomas contain PTCH mutations. Cancer Res 1997;57(5):842-5
  • Taylor MD, Liu L, Raffel C, et al. Mutations in SUFU predispose to medulloblastoma. Nat Genet 2002;31(3):306-10
  • Tostar U, Malm CJ, Meis-Kindblom JM, et al. Deregulation of the hedgehog signalling pathway: a possible role for the PTCH and SUFU genes in human rhabdomyoma and rhabdomyosarcoma development. J Pathol 2006;208(1):17-25
  • Zibat A, Missiaglia E, Rosenberger A, et al. Activation of the hedgehog pathway confers a poor prognosis in embryonal and fusion gene-negative alveolar rhabdomyosarcoma. Oncogene 2010;29(48):6323-30
  • Thayer SP, Pasca di Magliano M, Heiser PW, et al. Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature 2003;425(6960):851-6
  • Yauch RL, Gould SE, Scales SJ, et al. A paracrine requirement for hedgehog signalling in cancer. Nature 2008;455(7211):406-10
  • Tian H, Callahan CA, DuPree KJ, et al. Hedgehog signaling is restricted to the stromal compartment during pancreatic carcinogenesis. Proc Natl Acad Sci USA 2009;106(11):4254-9
  • Berman DM, Karhadkar SS, Maitra A, et al. Widespread requirement for hedgehog ligand stimulation in growth of digestive tract tumours. Nature 2003;425(6960):846-51
  • Karhadkar SS, Bova GS, Abdallah N, et al. Hedgehog signalling in prostate regeneration, neoplasia and metastasis. Nature 2004;431(7009):707-12
  • Sanchez P, Hernandez AM, Stecca B, et al. Inhibition of prostate cancer proliferation by interference with SONIC HEDGEHOG-GLI1 signaling. Proc Natl Acad Sci USA 2004;101(34):12561-6
  • Fan L, Pepicelli CV, Dibble CC, et al. Hedgehog signaling promotes prostate xenograft tumor growth. Endocrinology 2004;145(8):3961-70
  • Kubo M, Nakamura M, Tasaki A, et al. Hedgehog signaling pathway is a new therapeutic target for patients with breast cancer. Cancer Res 2004;64(17):6071-4
  • Mukherjee S, Frolova N, Sadlonova A, et al. Hedgehog signaling and response to cyclopamine differ in epithelial and stromal cells in benign breast and breast cancer. Cancer Biol Ther 2006;5(6):674-83
  • Oniscu A, James RM, Morris RG, et al. Expression of sonic hedgehog pathway genes is altered in colonic neoplasia. J Pathol 2004;203(4):909-17
  • Monzo M, Moreno I, Artells R, et al. Sonic hedgehog mRNA expression by real-time quantitative PCR in normal and tumor tissues from colorectal cancer patients. Cancer Lett (Amsterdam, Neth) 2006;233(1):117-23
  • Chatel G, Ganeff C, Boussif N, et al. Hedgehog signaling pathway is inactive in colorectal cancer cell lines. Int J Cancer 2007;121(12):2622-7
  • Dierks C, Grbic J, Zirlik K, et al. Essential role of stromally induced hedgehog signaling in B-cell malignancies. Nat Med 2007;13(8):944-51
  • Hegde GV, Peterson KJ, Emanuel K, et al. Hedgehog-induced survival of B-cell chronic lymphocytic leukemia cells in a stromal cell microenvironment: a potential new therapeutic target. Mol Cancer Res 2008;6(12):1928-36
  • Amakye D, Jagani Z, Dorsch M. Unraveling the therapeutic potential of the hedgehog pathway in cancer. Nat Med 2013;19(11):1410-22
  • Ng JMY, Curran T. The hedgehog’s tale: developing strategies for targeting cancer. Nat Rev Cancer 2011;11(7):493-501
  • Merchant AA, Matsui W. Targeting hedgehog - a cancer stem cell pathway. Clin Cancer Res 2010;16(12):3130-40
  • Magee JA, Piskounova E, Morrison SJ. Cancer stem cells: impact, heterogeneity, and uncertainty. Cancer Cell 2012;21(3):283-96
  • Clevers H. The cancer stem cell: premises, promises and challenges. Nat Med 2011;17(3):313-19
  • Coni S, Infante P, Gulino A. Control of stem cells and cancer stem cells by hedgehog signaling: pharmacologic clues from pathway dissection. Biochem Pharmacol 2013;85(5):623-8
  • [Internet]. Available from: http://www.cancer.gov/cancertopics/druginfo/fda-vismodegib
  • Rudin CM, Hann CL, Laterra J, et al. Treatment of medulloblastoma with hedgehog pathway inhibitor GDC-0449. N Engl J Med 2009;361(12):1173-8
  • Dijkgraaf GJP, Alicke B, Weinmann L, et al. Small molecule inhibition of GDC-0449 refractory smoothened mutants and downstream mechanisms of drug resistance. Cancer Res 2011;71(2):435-44
  • Yauch RL, Dijkgraaf GJP, Alicke B, et al. Smoothened mutation confers resistance to a hedgehog pathway inhibitor in medulloblastoma. Science 2009;326(5952):572-4
  • Buonamici S, Williams J, Morriessey M, et al. Interfering with resistance to smoothened antagonists by inhibition of the PI3K pathway in medulloblastoma. Sci Transl Med 2010;2(51):51ra70
  • Chang Anne LS, Oro AE. Initial assessment of tumor regrowth after vismodegib in advanced basal cell carcinoma. Arch Dermatol 2012;148(11):1324-5
  • Lee MJ, Hatton BA, Villavicencio EH, et al. Hedgehog pathway inhibitor saridegib (IPI-926) increases lifespan in a mouse medulloblastoma model. Proc Natl Acad Sci USA 2012;109(20):7859-64
  • Riobo NA, Lu K, Ai X, et al. Phosphoinositide 3-kinase and akt are essential for sonic hedgehog signaling. Proc Natl Acad Sci USA 2006;103(12):4505-10
  • Wang Y, Ding Q, Yen C, et al. The crosstalk of mTOR/S6K1 and hedgehog pathways. Cancer Cell 2012;21(3):374-87
  • Das S, Samant RS, Shevde LA. Nonclassical activation of hedgehog signaling enhances multidrug resistance and makes cancer cells refractory to smoothened-targeting hedgehog inhibition. J Biol Chem 2013;288(17):11824-33
  • Robarge KD, Brunton SA, Castanedo GM, et al. GDC-0449-A potent inhibitor of the hedgehog pathway. Bioorg Med Chem Lett 2009;19(19):5576-81
  • Rudin CM. Vismodegib. Clin Cancer Res 2012;18(12):3218-22
  • Pan S, Wu X, Jiang J, et al. Discovery of NVP-LDE225, a potent and selective smoothened antagonist. ACS Med Chem Lett 2010;1(3):130-4
  • Taipale J, Chen JK, Cooper MK, et al. Effects of oncogenic mutations in smoothened and patched can be reversed by cyclopamine. Nature (London) 2000;406(6799):1005-9
  • Rominger CM, Bee WT, Copeland RA, et al. Evidence for allosteric interactions of antagonist binding to the smoothened receptor. J Pharmacol Exp Ther 2009;329(3):995-1005
  • Chen JK, Taipale J, Cooper MK, Beachy PA. Inhibition of hedgehog signaling by direct binding of cyclopamine to smoothened. Genes Dev 2002;16(21):2743-8
  • Zhang J, Garrossian M, Gardner D, et al. Synthesis and anticancer activity studies of cyclopamine derivatives. Bioorg Med Chem Lett 2008;18(4):1359-63
  • Winkler JD, Isaacs A, Holderbaum L, et al. Design and synthesis of inhibitors of hedgehog signaling based on the alkaloid cyclopamine. Org Lett 2009;11(13):2824-7
  • Feldmann G, Fendrich V, McGovern K, et al. An orally bioavailable small-molecule inhibitor of hedgehog signaling inhibits tumor initiation and metastasis in pancreatic cancer. Mol Cancer Ther 2008;7(9):2725-35
  • Tremblay MR, Lescarbeau A, Grogan MJ, et al. Discovery of a potent and orally active hedgehog pathway antagonist (IPI-926). J Med Chem 2009;52(14):4400-18
  • Wagner AHP, Okuno S, Eriksson M, et al. Results from a phase 2 randomized, placebo-controlled, double blind study of the hedgehog (HH) pathway antagonist IPI-926 in patients (PTS) with advanced chondrosarcoma (CS). Connective tissue oncology society 18th annual meeting; New York, NY; 2013
  • Winkler JD, Isaacs AK, Xiang C, et al. Design, synthesis, and biological evaluation of estrone-derived hedgehog signaling inhibitors. Tetrahedron 2011;67(52):10261-6
  • Heretsch P, Buettner A, Tzagkaroulaki L, et al. Exo-cyclopamine - a stable and potent inhibitor of hedgehog-signaling. Chem Commun 2011;47(26):7362-4
  • Moschner J, Chentsova A, Eilert N, et al. Cyclopamine analogs bearing exocyclic methylenes are highly potent and acid-stable inhibitors of hedgehog signaling. Beilstein J Org Chem 2013;9:2328-35
  • Heretsch P, Tzagkaroulaki L, Giannis A. Cyclopamine and hedgehog signaling: chemistry, biology, medical perspectives. Angew Chem Int Ed Engl 2010;49(20):3418-27
  • Munchhof MJ, Li Q, Shavnya A, et al. Discovery of PF-04449913, a potent and orally bioavailable inhibitor of smoothened. ACS Med Chem Lett 2012;3(2):106-11
  • Rohner A, Spilker ME, Lam JL, et al. Effective targeting of hedgehog signaling in a medulloblastoma model with PF-5274857, a potent and selective smoothened antagonist that penetrates the blood-brain barrier. Mol Cancer Ther 2012;11(1):57-65
  • Miller-Moslin K, Peukert S, Jain RK, et al. 1-amino-4-benzylphthalazines as orally bioavailable smoothened antagonists with antitumor activity. J Med Chem 2009;52(13):3954-68
  • Peukert S, He F, Dai M, et al. Discovery of NVP-LEQ506, a second-generation inhibitor of smoothened. ChemMedChem 2013;8(8):1261-5
  • Ohashi T, Oguro Y, Tanaka T, et al. Discovery of pyrrolo[3,2-c]quinoline-4-one derivatives as novel hedgehog signaling inhibitors. Bioorg Med Chem 2012;20(18):5496-506
  • Ohashi T, Oguro Y, Tanaka T, et al. Discovery of the investigational drug TAK-441, a pyrrolo[3,2-c]pyridine derivative, as a highly potent and orally active hedgehog signaling inhibitor: modification of the core skeleton for improved solubility. Bioorg Med Chem 2012;20(18):5507-17
  • Ishii T, Shimizu Y, Nakashima K, et al. Inhibition mechanism exploration of investigational drug TAK-441 as inhibitor against vismodegib-resistant smoothened mutant. Eur J Pharmacol 2014;723:305-13
  • [Internet]: takeda Pharmaceuticals. 2013. Available from: http://www.takeda.com/research/files/pipeline_20130204_en.pdf
  • Ibuki N, Ghaffari M, Pandey M, et al. TAK-441, a novel investigational smoothened antagonist, delays castration-resistant progression in prostate cancer by disrupting paracrine hedgehog signaling. Int J Cancer 2013;133(8):1955-66
  • Hipskind PA, Takakuwa T. inventors; Eli Lilly and Co., USA, assignee. Disubstituted phthalazine hedgehog pathway antagonists. US patent. WO2009134574; 2009
  • Bender MH, Hipskind PA, Capen AR, et al. Identification and characterization of a novel smoothened antagonist for the treatment of cancer with deregulated hedgehog signaling. Cancer Res 2011;71(8 Suppl 1):abstract 2819
  • Gendreau SB, Hawkins D, Ho C, et al. Preclinical characterization of BMS-833923 (XL139), a hedgehog (HH) pathway inhibitor in early clinical development. Mol Cancer Ther 2009;8(12):Meeting Abstract Supplement
  • Malancona S, Altamura S, Filocamo G, et al. Identification of MK-5710 ((8aS)-8a-methyl-1,3-dioxo-2-[(1S,2R)-2-phenylcyclopropyl]-N-(1-phenyl-1H-pyrazol-5-yl)hexahydroimid azo[1,5-a]pyrazine-7(1H)-carboxamide), a potent smoothened antagonist for use in hedgehog pathway dependent malignancies, part 1. Bioorg Med Chem Lett 2011;21(15):4422-8
  • Kinzel O, Alfieri A, Altamura S, et al. Identification of MK-5710 ((8aS)-8a-methyl-1,3-dioxo-2-[(1S,2R)-2-phenylcyclo- propyl]-N-(1-phenyl-1H-pyrazol-5-yl)hexahydro-imidazo[1,5-a]pyrazine-7(1H)-carboxamide), a potent smoothened antagonist for use in hedgehog pathway dependent malignancies, part 2. Bioorg Med Chem Lett 2011;21(15):4429-35
  • Ontoria JM, Bufi LL, Torrisi C, et al. Identification of a series of 4-[3-(quinolin-2-yl)-1,2,4-oxadiazol-5-yl]piperazinyl ureas as potent smoothened antagonist hedgehog pathway inhibitors. Bioorg Med Chem Lett 2011;21(18):5274-82
  • Muraglia E, Ontoria JM, Branca D, et al. N-(2-alkylaminoethyl)-4-(1,2,4-oxadiazol-5-yl)piperazine-1-carboxamides as highly potent smoothened antagonists. Bioorg Med Chem Lett 2011;21(18):5283-8
  • Tao H, Jin Q, Koo D, et al. Small molecule antagonists in distinct binding modes inhibit drug-resistant mutant of smoothened. Chem Biol 2011;18(4):432-7
  • Strand MF, Wilson SR, Dembinski JL, et al. A novel synthetic smoothened antagonist transiently inhibits pancreatic adenocarcinoma xenografts in a mouse model. PLoS One 2011;6(6):e19904
  • Wang Y, Arvanites AC, Davidow L, et al. Selective identification of hedgehog pathway antagonists by direct analysis of smoothened ciliary translocation. ACS Chem Biol 2012;7(6):1040-8
  • Wu VM, Chen SC, Arkin MR, Reiter JF. Small molecule inhibitors of smoothened ciliary localization and ciliogenesis. Proc Natl Acad Sci USA 2012;109(34):13644-9
  • Manetti F, Faure H, Roudaut H, et al. Virtual screening-based discovery and mechanistic characterization of the acylthiourea MRT-10 family as smoothened antagonists. Mol Pharmacol 2010;78(4):658-65
  • Solinas A, Faure H, Roudaut H, et al. Acylthiourea, acylurea, and acylguanidine derivatives with potent hedgehog inhibiting activity. J Med Chem 2012;55(4):1559-71
  • Xin M, Wen J, Tang F, et al. The discovery of novel N-(2-pyrimidinylamino) benzamide derivatives as potent hedgehog signaling pathway inhibitors. Bioorg Med Chem Lett 2013;23(24):6777-83
  • Xin M, Wen J, Tang F, et al. Synthesis and evaluation of 4-(2-pyrimidinylamino) benzamides inhibitors of hedgehog signaling pathway. Bioorg Med Chem Lett 2014;24(3):983-8
  • Xin M, Zhang L, Tang F, et al. Design, synthesis, and evaluation of pyrrolo[2,1-f][1,2,4]triazine derivatives as novel hedgehog signaling pathway inhibitors. Bioorg Med Chem 2014;22(4):1429-40
  • Nedelcu D, Liu J, Xu Y, et al. Oxysterol binding to the extracellular domain of smoothened in hedgehog signaling. Nat Chem Biol 2013;9(9):557-64
  • Wang Y, Davidow L, Arvanites AC, et al. Glucocorticoid compounds modify smoothened localization and hedgehog pathway activity. Chem Biol 2012;19(8):972-82
  • Nachtergaele S, Whalen DM, Mydock LK, et al. Structure and function of the smoothened extracellular domain in vertebrate hedgehog signaling. Elife 2013;2:e01340
  • Myers BR, Sever N, Chong YC, et al. Hedgehog pathway modulation by multiple lipid binding sites on the smoothened effector of signal response. Dev Cell 2013;26(4):346-57
  • Rana R, Carroll CE, Lee H, et al. Structural insights into the role of the smoothened cysteine-rich domain in hedgehog signalling. Nat Commun 2013;4:3965/1-9
  • Wang C, Wu H, Katritch V, et al. Structure of the human smoothened receptor bound to an antitumour agent. Nature 2013;497(7449):338-43
  • Weierstall U, James D, Wang C, et al. Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography. Nat Commun 2014;5:4309/1-7/6
  • Chamoun Z, Mann RK, Nellen D, et al. Skinny hedgehog, an acyltransferase required for palmitoylation and activity of the hedgehog signal. Science 2001;293(5537):2080-4
  • Petrova E, Rios-Esteves J, Ouerfelli O, et al. Inhibitors of hedgehog acyltransferase block sonic hedgehog signaling. Nat Chem Biol 2013;9(4):247-9
  • Stanton BZ, Peng LF, Maloof N, et al. A small molecule that binds hedgehog and blocks its signaling in human cells. Nat Chem Biol 2009;5(3):154-6
  • Dockendorff C, Nagiec MM, Weiwer M, et al. Macrocyclic hedgehog pathway inhibitors: optimization of cellular activity and mode of action studies. ACS Med Chem Lett 2012;3(10):808-13
  • Hwang S, Thangapandian S, Lee Y, et al. Discovery and evaluation of potential sonic hedgehog signaling pathway inhibitors using pharmacophore modeling and molecular dyanamics simulations. J Bioinform Comput Biol 2011;9(Suppl 1):15-35
  • Hwang S, Thangapandian S, Lee KW. Molecular dynamics simulations of sonic hedgehog-receptor and inhibitor complexes and their applications for potential anticancer agent discovery. PLoS One 2013;8(7):e68271
  • Lauth M, Bergstroem A, Shimokawa T, Toftgard R. Inhibition of GLI-mediated transcription and tumor cell growth by small-molecule antagonists. Proc Natl Acad Sci USA 2007;104(20):8455-60
  • Bosco-Clement G, Zhang F, Chen Z, et al. Targeting gli transcription activation by small molecule suppresses tumor growth. Oncogene 2014;33(16):2087-97
  • Mahindroo N, Connelly MC, Punchihewa C, et al. Structure-activity relationships and cancer-cell selective toxicity of novel inhibitors of glioma-associated oncogene homologue 1 (Gli1) mediated transcription. J Med Chem 2009;52(14):4277-87
  • Zhang P. The use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia. J Biol Regul Homeost Agents 1999;13(4):195-200
  • Kim J, Lee JJ, Kim J, et al. Arsenic antagonizes the hedgehog pathway by preventing ciliary accumulation and reducing stability of the Gli2 transcriptional effector. Proc Natl Acad Sci USA 2010;107(30):13432-7
  • Kim J, Aftab BT, Tang JY, et al. Itraconazole and arsenic trioxide inhibit hedgehog pathway activation and tumor growth associated with acquired resistance to smoothened antagonists. Cancer Cell 2013;23(1):23-34
  • Beauchamp EM, Ringer L, Bulut G, et al. Arsenic trioxide inhibits human cancer cell growth and tumor development in mice by blocking Hedgehog/GLI pathway. J Clin Invest 2011;121(1):148-60
  • Hyman JM, Firestone AJ, Heine VM, et al. Small-molecule inhibitors reveal multiple strategies for hedgehog pathway blockade. Proc Natl Acad Sci USA 2009;106(33):14132-7
  • Chenna V, Hu C, Pramanik D, et al. A polymeric nanoparticle encapsulated small-molecule inhibitor of hedgehog signaling (NanoHHI) bypasses secondary mutational resistance to smoothened antagonists. Mol Cancer Ther 2012;11(1):165-73
  • Xu Y, Chenna V, Hu C, et al. Polymeric nanoparticle-encapsulated hedgehog pathway inhibitor HPI-1 (NanoHHI) inhibits systemic metastases in an orthotopic model of human hepatocellular carcinoma. Clin Cancer Res 2012;18(5):1291-302
  • Bijlsma MF, Spek CA, Zivkovic D, et al. Repression of smoothened by patched-dependent (pro-)vitamin D3 secretion. PLoS Biol 2006;4(8):1397-410
  • Banerjee U, Ghosh M, Kyle Hadden M. Evaluation of vitamin D3 A-ring analogues as hedgehog pathway inhibitors. Bioorg Med Chem Lett 2012;22(3):1330-4
  • Lois WB, Karla CSQ, Khatera Z, et al. Assessing the efficacy of the hedgehog pathway inhibitor vitamin D3 in a murine xenograft model for pancreatic cancer. Cancer Biol Ther 2010;10(1):79-88
  • Tang JY, Xiao TZ, Oda Y, et al. Vitamin D3 inhibits hedgehog signaling and proliferation in murine basal cell carcinomas. Cancer Prev Res 2011;4(5):744-51
  • DeBerardinis AM, Banerjee U, Miller M, et al. Probing the structural requirements for vitamin D3 inhibition of the hedgehog signaling pathway. Bioorg Med Chem Lett 2012;22(14):4859-63
  • Albert B, Hahn H. Interaction of hedgehog and vitamin D signaling pathways in basal cell carcinomas. In:Reichrath J, editor. Sunlight, vitamin D and skin cancer. Landes Biosciences & Springer Science, Austin, TX, USA; 2014. p. 329
  • DeBerardinis AM, Banerjee U, Hadden MK. Identification of vitamin D3-based hedgehog pathway inhibitors that incorporate an aromatic A-ring isostere. ACS Med Chem Lett 2013;4(7):590-5
  • DeBerardinis AM, Madden D, Banerjee U, et al. Structure-activity relationships for vitamin D3-based aromatic A-ring analogues as hedgehog pathway inhibitors. J Med Chem 2014. [ Epub ahead of print]
  • Kim J, Tang JY, Gong R, et al. Itraconazole, a commonly used antifungal that inhibits hedgehog pathway activity and cancer growth. Cancer Cell 2010;17(4):388-99
  • Kim DJ, Kim J, Spaunhurst K, et al. Open-label, exploratory phase II trial of oral itraconazole for the treatment of basal cell carcinoma. J Clin Oncol 2014;32(8):745-51
  • Chong CR, Xu J, Lu J, et al. Inhibition of angiogenesis by the antifungal drug itraconazole. ACS Chem Biol 2007;2(4):263-70
  • Aftab BT, Dobromilskaya I, Liu JO, Rudin CM. Itraconazole inhibits angiogenesis and tumor growth in non-small cell lung cancer. Cancer Res 2011;71(21):6764-72
  • Shi W, Nacev BA, Aftab BT, et al. Itraconazole side chain analogues: structure-activity relationship studies for inhibition of endothelial cell proliferation, vascular endothelial growth factor receptor 2 (VEGFR2) glycosylation, and hedgehog signaling. J Med Chem 2011;54(20):7363-74
  • Schaefer GI, Perez JR, Duvall JR, et al. Discovery of small-molecule modulators of the sonic hedgehog pathway. J Am Chem Soc 2013;135(26):9675-80
  • Bassilana F, Carlson A, Da Silva JA, et al. Target identification for a hedgehog pathway inhibitor reveals the receptor GPR39. Nat Chem Biol 2014;10:343-9
  • Ericson J, Morton S, Kawakami A, et al. Two critical periods of sonic hedgehog signaling required for the specification of motor neuron identity. Cell 1996;87(4):661-73
  • Maun HR, Wen X, Lingel A, et al. Hedgehog pathway antagonist 5E1 binds hedgehog at the pseudo-active site. J Biol Chem 2010;285(34):26570-80
  • Michaud NR, Wang Y, McEachern KA, et al. Novel neutralizing hedgehog antibody MEDI-5304 exhibits antitumor activity by inhibiting paracrine hedgehog signaling. Mol Cancer Ther 2014;13(2):386-98
  • Bailey JM, Mohr AM, Hollingsworth MA. Sonic hedgehog paracrine signaling regulates metastasis and lymphangiogenesis in pancreatic cancer. Oncogene 2009;28(40):3513-25
  • Chang Q, Foltz WD, Chaudary N, et al. Tumor-stroma interaction in orthotopic primary pancreatic cancer xenografts during hedgehog pathway inhibition. Int J Cancer 2013;133(1):225-34
  • Coon V, Laukert T, Pedone CA, et al. Molecular therapy targeting sonic hedgehog and hepatocyte growth factor signaling in a mouse model of medulloblastoma. Mol Cancer Ther 2010;9(9):2627-36
  • Jenkins D, Kang JS, Laing N, Michaud N. inventors; Antibodies against sonic hedgehog homolog and uses thereof. WO2010032061; 2010
  • Markant SL, Esparza LA, Sun J, et al. Targeting sonic hedgehog-associated medulloblastoma through inhibition of aurora and polo-like kinases. Cancer Res 2013;73(20):6310-22
  • Wang CYY, Wei Q, Han I, et al. Hedgehog and notch signaling regulate self-renewal of undifferentiated pleomorphic sarcomas. Cancer Res 2012;72(4):1013-22
  • Jesus-Acosta AD, O’Dwyer PJ, Ramanathan RK, et al. A phase II study of vismodegib, a hedgehog (hh) pathway inhibitor, combined with gemcitabine and nab-paclitaxel (nab-P) in patients (pts) with untreated metastatic pancreatic ductal adenocarcinoma (PDA). J Clin Oncol 2014;32(Suppl 3): abstract 257
  • Metcalfe C, de Sauvage FJ. Hedgehog fights back: mechanisms of acquired resistance against smoothened antagonists. Cancer Res 2011;71(15):5057-61
  • Hadden MK. Hedgehog pathway agonism: therapeutic potential and small-molecule development. ChemMedChem 2014;9(1):27-37

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.