667
Views
24
CrossRef citations to date
0
Altmetric
Reviews

What the shark immune system can and cannot provide for the expanding design landscape of immunotherapy

(Assistant Professor)

Bibliography

  • Chapman DD, Shivji MS, Louis E, et al. Virgin birth in a hammerhead shark. Biol Lett 2007;3(4):425-7
  • Papermaster BW, Good RA, Finstad J, Condie RM. Evolution of immune response. I. Phylogenetic development of adaptive immunologic responsiveness in vertebrates. J Exp Med 1964;119(1):105-30
  • Finstad J, Good RA. The evolution of the immune response. 3. Immunologic responses in the lamprey. J Exp Med 1964;120:1151-68
  • Clem IW, De BF, Sigel MM. Phylogeny of immunoglobulin structure and function. II. Immunoglobulins of the nurse shark. J Immunol 1967;99(6):1226-35
  • Clem LW, Small PA Jr. Phylogeny of immunoglobulin structure and function. I. Immunoglobulins of the lemon shark. J Exp Med 1967;125(5):893-920
  • Small PA Jr, Klapper DG, Clem LW. Half-lives, body distribution and lack of interconversion of serum 19s and 7s IgM of sharks. J Immunol 1970;105(1):29-37
  • Hildemann WH. Transplantation immunity in fishes: agnatha, chondrichthyes and osteichthyes. Transplant Proc 1970;2(2):253-9
  • Flajnik MF, Rumfelt LL. The immune system of cartilaginous fish. Curr Top Microbiol Immunol 2000;248:249-70
  • Hinds Vaughan N, Smith SL. Isolation and characterization of a c-type lysozyme from the nurse shark. Fish Shellfish Immunol 2013;35(6):1824-8
  • Dooley H, Buckingham EB, Criscitiello MF, Flajnik MF. Emergence of the acute-phase protein hemopexin in jawed vertebrates. Mol Immunol 2010;48(1-3):147-52
  • Aybar L, Shin DH, Smith SL. Molecular characterization of the alpha subunit of complement component c8 (gcc8alpha) in the nurse shark (Ginglymostoma cirratum). Fish Shellfish Immunol 2009;27(3):397-406
  • Shin DH, Webb BM, Nakao M, Smith SL. Characterization of shark complement factor I gene(s): genomic analysis of a novel shark-specific sequence. Mol Immunol 2009;46(11-12):2299-308
  • Graham M, Shin DH, Smith SL. Molecular and expression analysis of complement component c5 in the nurse shark (Ginglymostoma cirratum) and its predicted functional role. Fish Shellfish Immunol 2009;27(1):40-9
  • Shin DH, Webb B, Nakao M, Smith SL. Molecular cloning, structural analysis and expression of complement component bf/c2 genes in the nurse shark, Ginglymostoma cirratum. Dev Comp Immunol 2007;31(11):1168-82
  • Terado T, Okamura K, Ohta Y, et al. Molecular cloning of c4 gene and identification of the class iii complement region in the shark MHC. J Immunol 2003;171(5):2461-6
  • Walsh CJ, Toranto JD, Gilliland CT, et al. Nitric oxide production by nurse shark (Ginglymostoma cirratum) and clearnose skate (raja eglanteria) peripheral blood leucocytes. Fish Shellfish Immunol 2006;20(1):40-6
  • Rumfelt LL, Lohr RL, Dooley H, Flajnik MF. Diversity and repertoire of IgW and IgM VH families in the newborn nurse shark. BMC Immunol 2004;5(1):8
  • Litman GW, Berger L, Murphy K, et al. Immunoglobulin VH gene structure and diversity in heterodontus, a phylogenetically primitive shark. Proc Natl Acad Sci USA 1985;82(7):2082-6
  • Hohman VS, Stewart SE, Rumfelt LL, et al. J chain in the nurse shark: implications for function in a lower vertebrate. J Immunol 2003;170(12):6016-23
  • Criscitiello MF, Flajnik MF. Four primordial immunoglobulin light chain isotypes, including lambda and kappa, identified in the most primitive living jawed vertebrates. Eur J Immunol 2007;37(10):2683-94
  • Greenberg AS, Steiner L, Kasahara M, Flajnik MF. Isolation of a shark immunoglobulin light chain cdna clone encoding a protein resembling mammalian kappa light chains: implications for the evolution of light chains. Proc Natl Acad Sci USA 1993;90(22):10603-7
  • Rast JP, Anderson MK, Ota T, et al. Immunoglobulin light chain class multiplicity and alternative organizational forms in early vertebrate phylogeny. Immunogenetics 1994;40(2):83-99
  • Castro CD, Ohta Y, Dooley H, Flajnik MF. Noncoordinate expression of J-chain and Blimp-1 define nurse shark plasma cell populations during ontogeny. Eur J Immunol 2013;43(11):3061-75
  • Dooley H, Stanfield RL, Brady RA, Flajnik MF. First molecular and biochemical analysis of in vivo affinity maturation in an ectothermic vertebrate. Proc Natl Acad Sci USA 2006;103(6):1846-51
  • McKinney EC, Flajnik MF. IgM-mediated opsonization and cytotoxicity in the shark. J Leukoc Biol 1997;61(2):141-6
  • Criscitiello MF, Ohta Y, Saltis M, et al. Evolutionarily conserved TCR binding sites, identification of T cells in primary lymphoid tissues, and surprising trans-rearrangements in nurse shark. J Immunol 2010;184(12):6950-60
  • Rast JP, Litman GW. T-cell receptor gene homologs are present in the most primitive jawed vertebrates. Proc Natl Acad Sci USA 1994;91(20):9248-52
  • Li R, Wang T, Bird S, et al. B cell receptor accessory molecule cd79alpha: characterisation and expression analysis in a cartilaginous fish, the spiny dogfish (Squalus acanthias). Fish Shellfish Immunol 2013;34(6):1404-15
  • Bartl S, Baish MA, Flajnik MF, Ohta Y. Identification of class I genes in cartilaginous fish, the most ancient group of vertebrates displaying an adaptive immune response. J Immunol 1997;159(12):6097-104
  • Kasahara M, McKinney EC, Flajnik MF, Ishibashi T. The evolutionary origin of the major histocompatibility complex: polymorphism of class II alpha chain genes in the cartilaginous fish. Eur J Immunol 1993;23(9):2160-5
  • Ohta Y, Shiina T, Lohr RL, et al. Primordial linkage of beta2-microglobulin to the MHC. J Immunol 2011;186(6):3563-71
  • Ohta Y, McKinney EC, Criscitiello MF, Flajnik MF. Proteasome, transporter associated with antigen processing, and class I genes in the nurse shark Ginglymostoma cirratum: evidence for a stable class I region and MHC haplotype lineages. J Immunol 2002;168(2):771-81
  • Criscitiello MF, Ohta Y, Graham MD, et al. Shark class II invariant chain reveals ancient conserved relationships with cathepsins and MHC class II. Dev Comp Immunol 2012;36(3):521-33
  • Criscitiello MF, Dickman MB, Samuel JE, de Figueiredo P. Tripping on acid: trans-kingdom perspectives on biological acids in immunity and pathogenesis. PLoS Pathog 2013;9(7):e1003402
  • Flajnik MF, Tlapakova T, Criscitiello MF, et al. Evolution of the B7 family: co-evolution of B7H6 and NKp30, identification of a new B7 family member, B7H7, and of B7’s historical relationship with the MHC. Immunogenetics 2012;64(8):571-90
  • Rumfelt LL, McKinney EC, Taylor E, Flajnik MF. The development of primary and secondary lymphoid tissues in the nurse shark Ginglymostoma cirratum: B-cell zones precede dendritic cell immigration and T-cell zone formation during ontogeny of the spleen. Scand J Immunol 2002;56(2):130-48
  • Dooley H, Flajnik MF. Shark immunity bites back: affinity maturation and memory response in the nurse shark, Ginglymostoma cirratum. Eur J Immunol 2005;35(3):936-45
  • Litman GW, Rast JP, Fugmann SD. The origins of vertebrate adaptive immunity. Nat Rev Immunol 2010;10(8):543-53
  • Schluter SF, Bernstein RM, Bernstein H, Marchalonis JJ. ‘Big bang’ emergence of the combinatorial immune system. Dev Comp Immunol 1999;23(2):107-11
  • Thompson CB. New insights into V(D)J recombination and its role in the evolution of the immune system. Immunity 1995;3(5):531-9
  • Du Pasquier L. Meeting the demand for innate and adaptive immunities during evolution. Scand J Immunol 2005;62(Suppl 1):39-48
  • Matsunaga T. Did the first adaptive immunity evolve in the gut of ancient jawed fish? Cytogenet Cell Genet 1998;80(1-4):138-41
  • McFall-Ngai M. Adaptive immunity: care for the community. Nature 2007;445(7124):153
  • Matsunaga T, Rahman A. In search of the origin of the thymus: the thymus and galt may be evolutionarily related. Scand J Immunol 2001;53(1):1-6
  • Mattisson A, Fange R. The cellular structure of the leydig organ in the shark, Etmopterus spinax (L). Biol Bull 1982;162(2):182-94
  • Alitheen NB, McClure S, McCullagh P. B-cell development: one problem, multiple solutions. Immunol Cell Biol 2010;88(4):445-50
  • Matsunaga T, Rahman A. What brought the adaptive immune system to vertebrates? The jaw hypothesis and the seahorse. Immunol Rev 1998;166:177-86
  • Pancer Z, Amemiya CT, Ehrhardt GR, et al. Somatic diversification of variable lymphocyte receptors in the agnathan sea lamprey. Nature 2004;430(6996):174-80
  • Guo P, Hirano M, Herrin BR, et al. Dual nature of the adaptive immune system in lampreys. Nature 2009;459(7248):796-801
  • Rogozin IB, Iyer LM, Liang L, et al. Evolution and diversification of lamprey antigen receptors: evidence for involvement of an aid-apobec family cytosine deaminase. Nat Immunol 2007;8(6):647-56
  • Criscitiello MF, de Figueiredo P. Fifty shades of immune defense. PLoS Pathog 2013;9(2):e1003110
  • Coates MI, Sequeira SEK, Sansom IJ, Smith MM. Spines and tissues of ancient sharks. Nature 1998;396(6713):729-30
  • Peignoux-Deville J, Lallier F, Vidal B. Evidence for the presence of osseous tissue in dogfish vertebrae. Cell Tissue Res 1982;222(3):605-14
  • Porter ME, Diaz C Jr, Sturm JJ, et al. Built for speed: strain in the cartilaginous vertebral columns of sharks. Zoology 2014;117(1):19-27
  • Venkatesh B, Lee AP, Ravi V, et al. Elephant shark genome provides unique insights into gnathostome evolution. Nature 2014;505(7482):174-9
  • Folkman J. Anti-angiogenesis: new concept for therapy of solid tumors. Ann Surg 1972;175(3):409-16
  • Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1995;1(1):27-31
  • Folkman J. Tumor angiogenesis. Adv Cancer Res 1985;43:175-203
  • Brem H, Folkman J. Inhibition of tumor angiogenesis mediated by cartilage. J Exp Med 1975;141(2):427-39
  • Langer R, Brem H, Falterman K, et al. Isolations of a cartilage factor that inhibits tumor neovascularization. Science 1976;193(4247):70-2
  • Lee A, Langer R. Shark cartilage contains inhibitors of tumor angiogenesis. Science 1983;221(4616):1185-7
  • Luer CA, Luer WH. Acute and chronic exposure of nurse sharks to aflatoxin-B1. Fed Proc 1982;41(4):925-5
  • Bodine AB, Luer CA, Gangjee S. A comparative study of monooxygenase activity in elasmobranchs and mammals: activation of the model pro-carcinogen aflatoxin B1 by liver preparations of calf, nurse shark and clearnose skate. Comp Biochem Physiol 1985;82(2):255-7
  • Bodine AB, Luer CA, Gangjee SA, Walsh CJ. In vitro metabolism of the pro-carcinogen aflatoxin B1 by liver preparations of the calf, nurse shark and clearnose skate. Comp Biochem Physiol 1989;94(2):447-53
  • Lane IW, Comas L. Sharks don’t get cancer. Avery Publishing Group; Garden City, NY; 1992
  • Lane IW. Sharks still don’t get cancer. Avery, New York; 1996
  • Ostrander GK, Cheng KC, Wolf JC, Wolfe MJ. Shark cartilage, cancer and the growing threat of pseudoscience. Cancer Res 2004;64(23):8485-91
  • Pettit GR, Ode RH. Antineoplastic agents L: isolation and characterization of sphyrnastatins 1 and 2 from the hammerhead shark Sphyrna lewini. J Pharm Sci 1977;66(5):757-8
  • Oikawa T, Ashino-Fuse H, Shimamura M, et al. A novel angiogenic inhibitor derived from Japanese shark cartilage (I). Extraction and estimation of inhibitory activities toward tumor and embryonic angiogenesis. Cancer Lett 1990;51(3):181-6
  • McGuire TR, Kazakoff PW, Hoie EB, Fienhold MA. Antiproliferative activity of shark cartilage with and without tumor necrosis factor-alpha in human umbilical vein endothelium. Pharmacotherapy 1996;16(2):237-44
  • Sheu JR, Fu CC, Tsai ML, Chung WJ. Effect of U-995, a potent shark cartilage-derived angiogenesis inhibitor, on anti-angiogenesis and anti-tumor activities. Anticancer Res 1998;18(6A):4435-41
  • Dupont E, Savard PE, Jourdain C, et al. Antiangiogenic properties of a novel shark cartilage extract: potential role in the treatment of psoriasis. J Cutan Med Surg 1998;2(3):146-52
  • Gingras D, Renaud A, Mousseau N, Beliveau R. Shark cartilage extracts as antiangiogenic agents: smart drinks or bitter pills? Cancer Metastasis Rev 2000;19(1-2):83-6
  • Gonzalez RP, Soares FS, Farias RF, et al. Demonstration of inhibitory effect of oral shark cartilage on basic fibroblast growth factor-induced angiogenesis in the rabbit cornea. Biol Pharm Bull 2001;24(2):151-4
  • Gonzalez RP, Leyva A, Moraes MO. Shark cartilage as source of antiangiogenic compounds: from basic to clinical research. Biol Pharm Bull 2001;24(10):1097-101
  • Gardner ML. Gastrointestinal absorption of intact proteins. Annu Rev Nutr 1988;8:329-50
  • Feyzi R, Hassan ZM, Mostafaie A. Modulation of CD(4)(+) and CD(8)(+) tumor infiltrating lymphocytes by a fraction isolated from shark cartilage: shark cartilage modulates anti-tumor immunity. Int Immunopharmacol 2003;3(7):921-6
  • Hassan ZM, Feyzi R, Sheikhian A, et al. Low molecular weight fraction of shark cartilage can modulate immune responses and abolish angiogenesis. Int Immunopharmacol 2005;5(6):961-70
  • Kralovec JA, Guan Y, Metera K, Carr RI. Immunomodulating principles from shark cartilage. Part 1. Isolation and biological assessment in vitro. Int Immunopharmacol 2003;3(5):657-69
  • Horsman MR, Alsner J, Overgaard J. The effect of shark cartilage extracts on the growth and metastatic spread of the SCCVII carcinoma. Acta Oncol 1998;37(5):441-5
  • Miller DR, Anderson GT, Stark JJ, et al. Phase I/II trial of the safety and efficacy of shark cartilage in the treatment of advanced cancer. J Clin Oncol 1998;16(11):3649-55
  • Loprinzi CL, Levitt R, Barton DL, et al. Evaluation of shark cartilage in patients with advanced cancer: a north central cancer treatment group trial. Cancer 2005;104(1):176-82
  • Ernst E, Cassileth BR. How useful are unconventional cancer treatments? Eur J Cancer 1999;35(11):1608-13
  • Lu C, Lee JJ, Komaki R, et al. Chemoradiotherapy with or without AE-941 in stage III non-small cell lung cancer: a randomized phase III trial. J Natl Cancer Inst 2010;102(12):859-65
  • Vickers KS, Hathaway JC, Patten CA, et al. Cancer patients’ and patient advocates’ perspectives on a novel information source: a qualitative study of the art of oncology, when the tumor is not the target. J Clin Oncol 2005;23(18):4013-20
  • Merly L, Simjee S, Smith SL. Induction of inflammatory cytokines by cartilage extracts. Int Immunopharmacol 2007;7(3):383-91
  • Merly L, Smith SL. Collagen type II, alpha 1 protein: a bioactive component of shark cartilage. Int Immunopharmacol 2013;15(2):309-15
  • Walsh CJ, Luer CA, Bodine AB, et al. Elasmobranch immune cells as a source of novel tumor cell inhibitors: implications for public health. Integr Comp Biol 2006;46(6):1072-81
  • Walsh CJ, Luer CA, Yordy JE, et al. Epigonal conditioned media from bonnethead shark, Sphyrna tiburo, induces apoptosis in a T-cell leukemia cell line, Jurkat E6-1. Mar Drugs 2013;11(9):3224-57
  • Litman GW, Hinds K, Berger L, et al. Structure and organization of immunoglobulin VH genes in heterodontus, a phylogenetically primitive shark. Dev Comp Immunol 1985;9(4):749-58
  • Hinds KR, Litman GW. Major reorganization of immunoglobulin VH segmental elements during vertebrate evolution. Nature 1986;320(6062):546-9
  • Kokubu F, Hinds K, Litman R, et al. Extensive families of constant region genes in a phylogenetically primitive vertebrate indicate an additional level of immunoglobulin complexity. Proc Natl Acad Sci USA 1987;84(16):5868-72
  • Kokubu F, Litman R, Shamblott MJ, et al. Diverse organization of immunoglobulin VH gene loci in a primitive vertebrate. EMBO J 1988;7(11):3413-22
  • Kokubu F, Hinds K, Litman R, et al. Complete structure and organization of immunoglobulin heavy chain constant region genes in a phylogenetically primitive vertebrate. EMBO J 1988;7(7):1979-88
  • Rast JP, Amemiya CT, Litman RT, et al. Distinct patterns of igh structure and organization in a divergent lineage of chrondrichthyan fishes. Immuno Genetics 1998;47(3):234-45
  • Rumfelt LL, Avila D, Diaz M, et al. A shark antibody heavy chain encoded by a nonsomatically rearranged VDJ is preferentially expressed in early development and is convergent with mammalian IgG. Proc Natl Acad Sci USA 2001;98(4):1775-80
  • Lee SS, Fitch D, Flajnik MF, Hsu E. Rearrangement of immunoglobulin genes in shark germ cells. J Exp Med 2000;191(10):1637-48
  • Malecek K, Lee V, Feng W, et al. Immunoglobulin heavy chain exclusion in the shark. PLoS Biol 2008;6(6):e157
  • Hsu E, Criscitiello MF. Diverse immunoglobulin light chain organizations in fish retain potential to revise b cell receptor specificities. J Immunol 2006;177(4):2452-62
  • Zhu C, Lee V, Finn A, et al. Origin of immunoglobulin isotype switching. Curr Biol 2012;22(10):872-80
  • Zhang C, Du Pasquier L, Hsu E. Shark IgW C region diversification through RNA processing and isotype switching. J Immunol 2013;191(6):3410-18
  • Mashoof S, Goodroe A, Du CC, et al. Ancient T-independence of mucosal IgX/A: gut microbiota unaffected by larval thymectomy in Xenopus laevis. Mucosal Immunol 2013;6(2):358-68
  • Mussmann R, Courtet M, Schwager J, Du Pasquier L. Microsites for immunoglobulin switch recombination breakpoints from Xenopus to mammals. Eur J Immunol 1997;27(10):2610-19
  • Ohta Y, Flajnik M. IgD, like IgM, is a primordial immunoglobulin class perpetuated in most jawed vertebrates. Proc Natl Acad Sci USA 2006;103(28):10723-8
  • Greenberg AS, Avila D, Hughes M, et al. A new antigen receptor gene family that undergoes rearrangement and extensive somatic diversification in sharks. Nature 1995;374(6518):168-73
  • Greenberg AS, Hughes AL, Guo J, et al. A novel “chimeric” antibody class in cartilaginous fish: IgM may not be the primordial immunoglobulin. Eur J Immunol 1996;26(5):1123-9
  • Crouch K, Smith LE, Williams R, et al. Humoral immune response of the small-spotted catshark, Scyliorhinus canicula. Fish Shellfish Immunol 2013;34(5):1158-69
  • Smith LE, Crouch K, Cao W, et al. Characterization of the immunoglobulin repertoire of the spiny dogfish (Squalus acanthias). Dev Comp Immunol 2012;36(4):665-79
  • Stanfield RL, Dooley H, Verdino P, et al. Maturation of shark single-domain (IgNAR) antibodies: evidence for induced-fit binding. J Mol Biol 2007;367(2):358-72
  • Stanfield RL, Dooley H, Flajnik MF, Wilson IA. Crystal structure of a shark single-domain antibody V region in complex with lysozyme. Science 2004;305(5691):1770-3
  • Diaz M, Stanfield RL, Greenberg AS, Flajnik MF. Structural analysis, selection, and ontogeny of the shark new antigen receptor (IgNAR): identification of a new locus preferentially expressed in early development. Immunogenetics 2002;54(7):501-12
  • Kovalenko OV, Olland A, Piche-Nicholas N, et al. Atypical antigen recognition mode of a shark immunoglobulin new antigen receptor (IgNAR) variable domain characterized by humanization and structural analysis. J Biol Chem 2013;288(24):17408-19
  • Dooley H, Flajnik MF, Porter AJ. Selection and characterization of naturally occurring single-domain (IgNAR) antibody fragments from immunized sharks by phage display. Mol Immunol 2003;40(1):25-33
  • Flajnik MF, Dooley H. The generation and selection of single-domain, V region libraries from nurse sharks. Methods Mol Biol 2009;562:71-82
  • Goodchild SA, Dooley H, Schoepp RJ, et al. Isolation and characterisation of ebolavirus-specific recombinant antibody fragments from murine and shark immune libraries. Mol Immunol 2011;48(15-16):2027-37
  • Muller MR, O’Dwyer R, Kovaleva M, et al. Generation and isolation of target-specific single-domain antibodies from shark immune repertoires. Methods Mol Biol 2012;907:177-94
  • Hamers-Casterman C, Atarhouch T, Muyldermans S, et al. Naturally occurring antibodies devoid of light chains. Nature 1993;363(6428):446-8
  • Flajnik MF, Deschacht N, Muyldermans S. A case of convergence: why did a simple alternative to canonical antibodies arise in sharks and camels? PLoS Biol 2011;9(8):e1001120
  • Criscitiello MF, Saltis M, Flajnik MF. An evolutionarily mobile antigen receptor variable region gene: doubly rearranging NAR-TcR genes in sharks. Proc Natl Acad Sci USA 2006;103(13):5036-41
  • Venkatesh B, Kirkness EF, Loh YH, et al. Survey sequencing and comparative analysis of the elephant shark (Callorhinchus milii) genome. PLoS Biol 2007;5(4):e101
  • Parra ZE, Baker ML, Schwarz RS, et al. A unique T cell receptor discovered in marsupials. Proc Natl Acad Sci USA 2007;104(23):9776-81
  • Parra ZE, Baker ML, Hathaway J, et al. Comparative genomic analysis and evolution of the T cell receptor loci in the opossum Monodelphis domestica. BMC Genomics 2008;9:111
  • Malecek K, Brandman J, Brodsky JE, et al. Somatic hypermutation and junctional diversification at Ig heavy chain loci in the nurse shark. J Immunol 2005;175(12):8105-15
  • Parra ZE, Ohta Y, Criscitiello MF, et al. The dynamic TCRdelta: TCRdelta chains in the amphibian Xenopus tropicalis utilize antibody-like V genes. Eur J Immunol 2010;40(8):2319-29
  • Parra ZE, Lillie M, Miller RD. A model for the evolution of the mammalian T-cell receptor alpha/delta and mu loci based on evidence from the duckbill platypus. Mol Biol Evol 2012;29(10):3205-14
  • Parra ZE, Mitchell K, Dalloul RA, Miller RD. A second TCRdelta locus in Galliformes uses antibody-like V domains: insight into the evolution of TCRdelta and TCRmu genes in tetrapods. J Immunol 2012;188(8):3912-19
  • Barreto VM, Magor BG. Activation-induced cytidine deaminase structure and functions: a species comparative view. Dev Comp Immunol 2011;35(9):991-1007
  • Zhu C, Feng W, Weedon J, et al. The multiple shark Ig H chain genes rearrange and hypermutate autonomously. J Immunol 2011;187(5):2492-501
  • Lee SS, Tranchina D, Ohta Y, et al. Hypermutation in shark immunoglobulin light chain genes results in contiguous substitutions. Immunity 2002;16(4):571-82
  • Zhu C, Hsu E. Error-prone DNA repair activity during somatic hypermutation in shark B lymphocytes. J Immunol 2010;185(9):5336-47
  • Chen H, Kshirsagar S, Jensen I, et al. Characterization of arrangement and expression of the T cell receptor gamma locus in the sandbar shark. Proc Natl Acad Sci USA 2009;106(21):8591-6
  • Chen H, Bernstein H, Ranganathan P, Schluter SF. Somatic hypermutation of TCR gamma V genes in the sandbar shark. Dev Comp Immunol 2012;37(1):176-83
  • Saltis M, Criscitiello MF, Ohta Y, et al. Evolutionarily conserved and divergent regions of the autoimmune regulator (aire) gene: a comparative analysis. Immunogenetics 2008;60(2):105-14
  • Vaccarelli G, Antonacci R, Tasco G, et al. Generation of diversity by somatic mutation in the camelus dromedarius T-cell receptor gamma variable domains. Eur J Immunol 2012;42(12):3416-28
  • Liu JL, Anderson GP, Delehanty JB, et al. Selection of cholera toxin specific IgNAR single-domain antibodies from a naive shark library. Mol Immunol 2007;44(7):1775-83
  • Walsh R, Nuttall S, Revill P, et al. Targeting the hepatitis B virus precore antigen with a novel IgNAR single variable domain intrabody. Virology 2011;411(1):132-41
  • Jena B, Moyes JS, Huls H, Cooper LJ. Driving CAR-based T-cell therapy to success. Curr Hematol Malig Rep 2014;9(1):50-6
  • Safdari Y, Farajnia S, Asgharzadeh M, Khalili M. Antibody humanization methods - a review and update. Biotechnol Genet Eng Rev 2013;29(2):175-86
  • Luo M, Kim H, Kudrna D, et al. Construction of a nurse shark (Ginglymostoma cirratum) bacterial artificial chromosome (BAC) library and a preliminary genome survey. BMC Genomics 2006;7:106
  • Wang F, Ekiert DC, Ahmad I, et al. Reshaping antibody diversity. Cell 2013;153(6):1379-93
  • Herrin BR, Cooper MD. Alternative adaptive immunity in jawless vertebrates. J Immunol 2010;185(3):1367-74
  • Nakahara H, Herrin BR, Alder MN, et al. Chronic lymphocytic leukemia monitoring with a lamprey idiotope-specific antibody. Cancer Immunol Res 2013;1(4):223-8
  • Hedges SB, Dudley J, Kumar S. Timetree: a public knowledge-base of divergence times among organisms. Bioinformatics 2006;22(23):2971-2

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.