136
Views
14
CrossRef citations to date
0
Altmetric
Reviews

Aminoacyl-tRNA synthetase-interacting multi-functional protein 1/p43: an emerging therapeutic protein working at systems level

, &
Pages 945-957 | Published online: 16 Jul 2008

Bibliography

  • Finishing the euchromatic sequence of the human genome. Nature 2004;431(7011):931-45
  • Ejiri S. Moonlighting functions of polypeptide elongation factor 1: from actin bundling to zinc finger protein R1-associated nuclear localization. Biosci Biotechnol Biochem 2002;66:1-21
  • Jeffery CJ. Moonlighting proteins. Trends Biochem Sci 1999;24:8-11
  • Jeffery CJ. Moonlighting proteins: old proteins learning new tricks. Trends Genet 2003;19:415-7
  • Lee SW, Cho BH, Park SG, Kim S. Aminoacyl-tRNA synthetase complexes: beyond translation. J Cell Sci 2004;117:3725-34
  • Jeffery CJ. Multifunctional proteins: examples of gene sharing. Ann Med 2003;35:2835
  • Moore B. Bifunctional and moonlighting enzymes: lighting the way to regulatory control. Trends Plant Sci 2004;9:221-8
  • Sriram G, Martinez JA, McCabe ER, et al. Single-gene disorders: what role could moonlighting enzymes play? Am J Hum Genet 2005;76:911-24
  • Tompa P, Szasz C, Buday L. Structural disorder throws new light on moonlighting. Trends Biochem Sci 2005;30:484-9
  • Han JM, Kim JY, Kim S. Molecular network and functional implications of macromolecular tRNA synthetase complex. Biochem Biophys Res Commun 2003;303:985-93
  • Park SG, Ewalt KL, Kim S. Functional expansion of aminoacyl-tRNA synthetases and their interacting factors: new perspectives on housekeepers. Trends Biochem Sci 2005;30:569-74
  • Han JM, Park SG, et al. AIMP2/p38, the scaffold for multi-tRNA synthetase complex, responds to genotoxic stresses via p53. Proc Natl Acad Sci USA 2008; in press
  • Ko YG, Kim EY, Kim T, et al. Glutamine-dependent antiapoptotic interaction of human glutaminyl-tRNA synthetase with apoptosis signal-regulating kinase 1. J Biol Chem 2001;276:6030-6
  • Kim MJ, Park BJ, Kang YS, et al. Downregulation of fuse-binding protein and c-myc by tRNA synthetase cofactor, p38, is required for lung differentiation. Nat Genet 2003;34:330-6
  • Park SG, Kang YS, Ahn YH, et al. Dose-dependent biphasic activity of tRNA synthetase-associating factor, p43, in angiogenesis. J Biol Chem 2002;277:45243-8
  • Wakasugi K, Slike BM, Hood J, et al. Induction of angiogenesis by a fragment of human tyrosyl-tRNA synthetase. J Biol Chem 2002;277(23):20124-6
  • Wakasugi K, Slike BM, Hood J, et al. A human aminoacyl-tRNA synthetase as a regulator of angiogenesis. Proc Natl Acad Sci USA 2002;99(1):173-7
  • Ko YG, Park H, Kim T, et al. A cofactor of tRNA synthetase, p43, is secreted to up regulate proinflammatory genes. J Biol Chem 2001;276:23028-33
  • Park SG, Kim HJ, Min YH, et al. Human lysyl-tRNA synthetase is secreted to trigger proinflammatory response. Proc Natl Acad Sci USA 2005;102(18):6356-61
  • Park BJ, Kang JW, Lee SW, et al. The haploinsufficient tumor suppressor p18 upregulates p53 via interactions with ATM/ATR. Cell 2005;120(2):209-21
  • Caprara MG, Lehnert V, Lambowitz AM, Westhof E. A tyrosyl-tRNA synthetase recognizes a conserved tRNA-like structural motif in the group I intron catalytic core. Cell 1996;87(6):1135-45
  • Sampath P, Mazumder B, Seshadri V, et al. Noncanonical function of glutamyl-prolyl-tRNA synthetase: gene-specific silencing of translation. Cell 2004;119(2):195-208
  • Han JM, Park SG, Liu B, et al. Aminoacyl-tRNA synthetase-interacting multifunctional protein 1/p43 controls endoplasmic reticulum retention of heat shock protein gp96: Its pathological implications in lupus-like autoimmune diseases. Am J Pathol 2007;170:2042-54
  • Cen S, Javanbakht H, Kim S, et al. Retrovirus-specific packaging of aminoacyl-tRNA synthetases with cognate primer tRNAs. J Virol 2002;76(24):13111-5
  • Park SG, Schimmel P, Kim S. Aminoacyl tRNA Synthetases and their connections to disease. Proc Natl Acad Sci USA 2008; in press
  • Ray PS, Arif A, Fox PL. Macromolecular complexes as depots for releasable regulatory proteins. Trends Biochem Sci 2007;32:158-64
  • Zambrowicz BP, Friedrich GA, Buxton EC, et al. Disruption and sequence identification of 2,000 genes in mouse embryonic stem cells. Nature 1998;392:608-11
  • Park SG, Kang YS, Kim JY, et al. Hormonal activity of AIMP1/p43 for glucose homeostasis. Proc Natl Acad Sci USA 2006;103:14913-8
  • Mirande M, Kellermann O, Waller JP. Macromolecular complexes from sheep and rabbit containing seven aminoacyl-tRNA synthetases. II. Structural characterization of the polypeptide components and immunological identification of the methionyl-tRNA synthetase subunit. J Biol Chem 1982;257:11049-55
  • Yang DC, Garcia JV, Johnson YD, Wahab S. Multienzyme complexes of mammalian aminoacyl-tRNA synthetases. Curr Top Cell Regul 1985;26:325-35
  • Quevillon S, Agou F, Robinson JC, Mirande M. The p43 component of the mammalina multi-synthetase complex is likely to be the precursor of the endothelial monocyte-activating polypeptide II cytokine. J Biol Chem 1997;272:32573-9
  • Kyriacou SV, Deutscher MP. An important role for the multienzyme aminoacyl tRNA synthetase complex in mammalian translation and cell growth. Mol Cell 2008;29:419-27
  • Dang CV, Yang DCH. Disassembly and gross structure of particulate aminoacyl- synthetases from rat liver. J Biol Chem 1979;254:5350-6
  • Johnson DL, Dang CV, Yang DCH. Purification and characterization of lysyl-tRNA synthetase after dissociation of the particulate aminoacyl-tRNA synthetases from rat liver. J Biol Chem 1980;255:4362-6
  • Norcum MT. Isolation and electron microscopic characterization of the high mass aminoacyl-tRNA synthetase complex from murine erythroleukemia cells. J Biol Chem 1989;264:15043-51
  • Norcum MT, Boisset N. Three-dimensional architecture of the eukaryotic multisynthetase complex determined from negatively stained and cryoelectron micrographs. FEBS Lett 2002;512:298-302
  • Wolfe CL, Warrington JA, Davis S, et al. Isolation and characterization of human nuclear and cytosolic multisynthetase complexes and the intracellular distribution of p43/EMAPII. Protein Sci 2003;12:2282-90
  • Norcum MT, Warrington JA. Structural analysis fo the multienzyme aminoacyl- synthetase complex: a three-domain model based on reversible chemical crosslinking. Protein Sci 1998;7:79-87
  • Rho SB, Kim MJ, Lee JS, et al. Genetic dissection of protein-protein interactions in multi-tRNA synthetase complex. Proc Natl Acad Sci USA 1999;96:4488-93
  • Rho SB, Lee KH, Kim JW, et al. Interaction between human synthetases involves repeated sequence elements. Proc Natl Acad Sci USA 1996;93:10128-33
  • Quevillon S, Robinson JC, Berthonneau E, et al. Macromolecular assemblage of aminoacyl-tRNA synthetases: identification of protein-protein interactions and characterization of a core protein. J Mol Biol 1999;285:183-95
  • Han JM, Lee MJ, Park SG, et al. Hierarchical network between the components of the multi-tRNA synthetase complex: implications for complex formtion. J Biol Chem 2006;281:38663-7
  • Norcum MT, Warrington JA. The cytokine portion of p43 occupies a central position within the eukaryotic multisynthetase complex. J Biol Chem 2000;275:17921-4
  • Park SG, Jung KH, Lee JS, et al. Precursor of pro-apoptotic cytokine modulates aminoacylation activity of tRNA synthetase. J Biol Chem 1999;274:16673-6
  • Kim T, Park SG, Kim JE, et al. Catalytic peptide of human glutaminyl-tRNA synthetase is essential for its assembly to the aminoacyl-tRNA synthetase complex. J Biol Chem 2000;275:21768-72
  • Ahn HC, Kim S, Lee BJ. Solution structure and p43 binding of the p38 leucine zipper motif: coiled-coil interactions mediate the association between p38 and p43. FEBS Lett 2003;542:119-24
  • Park SG, Shin H, Shin YK, et al. The novel cytokine p43 stimulates dermal fibroblast proliferation and wound repair. Am J Pathol 2005;166:387-98
  • Kao J, Ryan J, Brett J, et al. Endothelial monocyte-activating polypeptide II: a novel tumor-derived polypeptide that activates host-response mechanisms. J Biol Chem 1992;267:20239-47
  • Shalak V, Kaminska M, Mitnacht-Kraus R, et al. The EMAPII cytokine is released from the mammalian multisynthetase complex after cleavage of its p43/proEMAPII component. J Biol Chem 2001;276:23769-76
  • Behrensdorf HA, van de Craen M, Knies UE, et al. The endothelial monocyte activating polypeptide II (EMAP II) is a substrate for caspase-7. FEBS Lett 2000;466:143-7
  • Barnett G, Jakobsen AM, Tas M, et al. Prostate adenocarcinoma cells release the novel proinflammatory polypeptide EMAP-II in response to stress. Cancer Res 2000;60:2850-7
  • Matschurat S, Knies UE, Person V, et al. Regulation of EMAP II by hypoxia. Am J Pathol 2003;162:93-103
  • Knies UE, Behrensdorf HA, Mitchell CA, et al. Regulation of endothelial monocyte-activating polypeptide II release by apoptosis. Proc Natl Acad Sci USA 1998;95:12322-7
  • Liu SH, Gottsch JD. Apoptosis induced by a corneal-endothelium-derived cytokine. Invest Ophthalmol Vis Sci 1999;40:3152-9
  • Park H, Park SG, Lee JW, et al. Monocyte cell adhesion induced by a human aminoacyl-tRNA synthetase associated factor, p43: identification of the related adhesion molecules and signal pathways. J Leukoc Biol 2002;71:223-30
  • Park H, Park SG, Kim J, et al. Signaling pathways for TNF production induced by human aminoacyl-tRNA synthetase-associating factor, p43. Cytokine 2002;20:148-53
  • Kim E, Kim SH, Kim S, Kim TS. The novel cytokine p43 induces IL-12 production in macrophages via NF-kappaB activation, leading to enhanced IFN-gamma production in CD4+ T cells. J Immunol 2006;176:256-64
  • Kim E, Kim SH, Kim S, et al. AIMP1/p43 Protein induces the maturation of bone marrow-derived dendritic cells with T helper type 1-polarizing ability. J Immunol 2008;180:2894-902
  • Kang BY, Kim E, Kim TS. Regulatory mechanisms and their therapeutic implications of interleukin-12 production in immune cells. Cell Signal 2005;17:665-73
  • Dustin ML, Rothlein R, Bhan AK, et al. Induction by IL 1 and interferon-gamma: tissue distribution, biochemistry, and function of a natural adherence molecule (ICAM1). J Immunol 1986;137:245-54
  • Elsner J, Sach M, Knopf HP, et al. Synthesis and surface expression of ICAM-1 in polymorphonuclear neutrophilic leukocytes in normal subjects and during inflammatory disease. Immunobiology 1995;193:456-64
  • Liu ZX, Hiwatashi N, Noguchi M, Toyota T. Increased expression of costimulatory molecules on peripheral blood monocytes in patients with Crohn's disease. Scand J Gastroenterol 1997;32:1241-6
  • Smith CW, Marlin SD, Rothlein R, et al. Cooperative interactions of LFA-1 and Mac-1 with intercellular adhesion molecule-1 in facilitating adherence and transendothelial migration of human neutrophils in vitro. J Clin Invest 1989;83:2008-17
  • Gimbrone MA Jr, Nagel T, Topper JN. Biomechanical activation: an emerging paradigm in endothelial adhesion biology. J Clin Invest 1997;100(11 Suppl):S61-5
  • Li Z, Dai J, Zheng H, et al. An integrated view of the roles and mechanisms of heat shock protein gp96-peptide complex in eliciting immune response. Front Biosci 2002;7:d731-51
  • Banerjee PP, Vinay DS, Mathew A, et al. Evidence that glycoprotein 96 (B2), a stress protein, functions as a Th2-specific costimulatory molecule. J Immunol 2002;169:3507-18
  • Basu S, Binder RJ, Suto R, et al. Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappa B pathway. Int Immunol 2000;12:1539-46
  • Hilf N, Singh-Jasuja H, Schwarzmaier P, et al. Human platelets express heat shock protein receptors and regulate dendritic cell maturation. Blood 2002;99:3676-82
  • Basu S, Binder RJ, Ramalingam T, Srivastava PK. CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity 2001;14:303-13
  • Binder RJ, Han DK, Srivastava PK. CD91: a receptor for heat shock protein gp96. Nat Immunol 2000;1:151-5
  • Vabulas RM, Braedel S, Hilf N, et al. The endoplasmic reticulum-resident heat shock protein Gp96 activates dendritic cells via the Toll-like receptor 2/4 pathway. J Biol Chem 2002;277:20847-53
  • Singh-Jasuja H, Scherer HU, Hilf N, et al. The heat shock protein gp96 induces maturation of dendritic cells and down-regulation of its receptor. Eur J Immunol 2000;30:2211-5
  • Liu B, Dai J, Zheng H, et al. Cell surface expression of an endoplasmic reticulum resident heat shock protein gp96 triggers MyD88-dependent systemic autoimmune diseases. Proc Natl Acad Sci USA 2003;100:15824-9
  • Turley SJ. Dendritic cells: inciting and inhibiting autoimmunity. Curr Opin Immunol 2002;14:765-70
  • Green EA, Eynon EE, Flavell RA. Local expression of TNFalpha in neonatal NOD mice promotes diabetes by enhancing presentation of islet antigens. Immunity 1998;9:733-43
  • Banerjee SK, Campbell DR, Weston AP, Banerjee DK. Biphasic estrogen response on bovine adrenal medulla capillary endothelial cell adhesion, proliferation and tube formation. Mol Cell Biochem 1997;177:97-105
  • Weis M, Heeschen C, Glassford AJ, Cooke JP. Statins have biphasic effects on angiogenesis. Circulation 2002;105:739-45
  • Pepper MS, Vassalli JD, Orci L, Montesano R. Biphasic effect of transforming growth factor-beta 1 on in vitro angiogenesis. Exp Cell Res 1993;204:356-63
  • Pazouki S, Pendleton N, Heerkens E, et al. Biphasic effect of thrombospondin-1 (TSP-1) in the regulation of angiogenesis in human breast carcinoma. Biochem Soc Trans 1996;24:368S
  • Schwarz MA, Kandel J, Brett J, et al. Endothelial-monocyte activating polypeptide II, a novel antitumor cytokine that suppresses primary and metastatic tumor growth and induces apoptosis in growing endothelial cells. J Exp Med 1999;190:341-54
  • Chang SY, Park SG, Kim S, Kang CY. Interaction of the C-terminal domain of p43 and the alpha subunit of ATP synthase: Its functional implication in endothelial cell proliferation. J Biol Chem 2002;277:8388-94
  • Moser TL, Stack MS, Asplin I, et al. Angiostatin binds ATP synthase on the surface of human endothelial cells. Proc Natl Acad Sci USA 1999;96:2811-6
  • Moser TL, Kenan DJ, Ashley TA, et al. Endothelial cell surface F1-F0 ATP synthase is active in ATP synthesis and is inhibited by angiostatin. Proc Natl Acad Sci USA 2001;98:6656-61
  • Lee YS, Han JM, Kang T, et al. Antitumor activity of novel human cytokine AIMP1 in in vivo tumor model. Mol Cell 2006;21;213-7
  • Bottoni A, Piccin D, Tagliati F, et al. miR-15a and miR-16-1 down-regulation in pituitary adenomas. J Cell Physiol 2005;204:280-5
  • Calin GA, Dumitru CD, Shimizu M, et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 2002;99(24):15524-9
  • Singer AJ, Clark RAF. Cutaneous wound healing. New Engl J Med 1999;341:73846
  • Martin P. Wound healing-Aiming for perfect skin regeneration. Science 1997;276:75-81
  • Gelling RW, Du XQ, Dichmann DS, et al. Lower blood glucose, hyperglucagonemia, and pancreatic alpha cell hyperplasia in glucagon receptor knockout mice. Proc Natl Acad Sci USA 2003;100:1438-43
  • van Horssen R, Eggermont AM, ten Hagen TL. Endothelial monocyte-activating polypeptide-II and its functions in (patho)physiological processes. Cytokine Growth Factor Rev 2006;17:339-48
  • Han JM, Park SG, Lee Y, Kim S. Structural separation of different extracellular activities in aminoacyl-tRNA synthetase-interacting multi-functional protein, p43/AIMP1. Biochem Biophys Res Commun 2006;342:113-8
  • Kim Y, Shin J, Li R, et al. A novel anti-tumor cytokine contains an RNA binding motif present in aminoacyl-tRNA synthetases. J Biol Chem 2000;275:27062-8
  • Renault L, Kerjan P, Pasqualato S, et al. Structure of the EMAPII domain of human aminoacyl-tRNA synthetase complex reveals evolutionary dimer mimicry. EMBO J 2001;20:570-8
  • Wilken J, Hoover D, Thompson DA, et al. Total chemical synthesis and high resolution crystal structure of the potent anti-HIV protein AOP-RANTES. Chem Biol 1999;6:43-51
  • Lubkowski J, Bujacz G, Boque L, et al. The structure of MCP-1 in two crystal forms provides a rare example of variable quaternary interactions. Nat Struct Biol 1997;4:64-9
  • Malkowski MG, Wu JY, Lazar JB, et al. The crystal structure of recombinant human neutrophil-activating peptide-2 (M6L) at 1.9-A resolution. J Biol Chem 1995;270:7077-87
  • Kao J, Fan YG, Haehnel I, et al. A peptide derived from the amino terminus of endothelial-monocyte-activating polypeptide II modulates mononuclear and polymorphonuclear leukocyte functions, defines an apparently novel cellular interaction site, and induces an acute inflammatory response. J Biol Chem 1994;269:9774-82
  • Wakasugi K, Schimmel P. Two distinct cytokines released from a human aminoacyl tRNA synthetase. Science 1999;284:147-51
  • Rhodes DR, Tomlins SA, Varambally S, et al. Probabilistic model of the human protein-protein interaction network. Nat Biotechnol 2005;23:951-9
  • Rual JF, Venkatesan K, Hao T, et al. Towards a proteome-scale map of the human protein-protein interaction network. Nature 2005;437:1173-8
  • Lim J, Hao T, Shaw C, et al. A protein-protein interaction network for human inherited ataxias and disorders of Purkinje cell degeneration. Cell 2006;125(4):801-14
  • Lee YS, Han JM, Son SH, et al. AIMP1/p43 downregulates TGF-beta signaling via stabilization of smurf2. Biochem Biophys Res Commun 2008;371(3):395-400
  • HPRD. Available from: http://www.hprd.org
  • HomoMINT. Available from: http://mint.bio.uniroma2.it

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.