127
Views
36
CrossRef citations to date
0
Altmetric
Reviews

Tackling the challenges posed by target flexibility in drug design

&
Pages 347-359 | Published online: 29 Mar 2010

Bibliography

  • Baker D, Sali A. Protein structure prediction and structural genomics. Science 2001;294:93-6
  • Sali A. Modeling mutations and homologous proteins. Curr Opin Biotechnol 1995;6:437-51
  • Blum LC, Reymond JL. 970 million druglike small molecules for virtual screening in the chemical universe database GDB-13. J Am Chem Soc 2009;131:8732-3
  • Erickson JA, Jalaie M, Robertson DH, Lessons in molecular recognition: The effects of ligand and protein flexibility on molecular docking accuracy. J Med Chem 2004;47:45-55
  • Murray CW, Baxter CA, Frenkel AD. The sensitivity of the results of molecular docking to induced fit effects: Application to thrombin, thermolysin and neuraminidase. J Comput Aided Mol Des 1999;13:547-62
  • B-Rao C, Subramanian J, Sharma SD. Managing protein flexibility in docking and its applications. Drug Discov Today 2009;14:394-400
  • Carlson HA. Protein flexibility and drug design: How to hit a moving target. Curr Opin Chem Biol 2002;6:447-52
  • Andersson I, Backlund A. Structure and function of rubisco. Plant Physiol Biochem 2008;46:275-91
  • Koshland DE. Application of a theory of enzyme specificity to protein synthesis. Proc Natl Acad Sci USA 1958;44:98-104
  • Carlson HA, McCammon JA. Accommodating protein flexibility in computational drug design. Mol Pharmacol 2000;57:213-18
  • Kensch O, Restle T, Wohrl BM, Temperature-dependent equilibrium between the open and closed conformation of the p66 subunit of HIV-1 reverse transcriptase revealed by site-directed spin labelling. J Mol Biol 2000;301:1029-39
  • Esnouf R, Ren J, Ross R, Mechanism of inhibition of HIV-1 reverse transcriptase by non nucleoside inhibitors. Nat Struct Biol 1995;2:303-08
  • Lipfert J, Doniach S. Small-angle X-ray scattering from RNA, proteins, and protein complexes. Annu Rev Biophys Biomol Struct 2007;36:307-27
  • Beier C, Steinhoff H-J. A structure-based simulation approach for electron paramagnetic resonance spectra using molecular and stochastic dynamics simulations. Biophys J 2006;91:2647-64
  • Hubbell WL, Cafiso DS, Altenbach C. Identifying conformational changes with site-directed spin labeling. Nat Struct Biol 2000;7:735-9
  • Somogyi B, Lakos Z, Szarka A, Nyitrai M. Protein flexibility as revealed by fluorescence resonance energy transfer: An extension of the method for systems with multiple labels. J Photochem Photobiol B 2000;59:26-32
  • Cioffi M, Hunter CA, Packer MJ, Spitaleri A. Determination of protein-ligand binding modes using complexation-induced changes in (1)H NMR chemical shift. J Med Chem 2008;51:2512-17
  • Zavodszky MI, Kuhn LA. Side-chain flexibility in protein-ligand binding: The minimal rotation hypothesis. Protein Sci 2005;14:1104-14
  • Steinhoff H-J. Inter- and intra-molecular distances determined by EPR spectroscopy and site-directed spin labeling reveal protein-protein and protein-oligonucleotide interaction. Biol Chem 2004;385:913-20
  • Wallrabe H, Elangovan M, Burchard A, Confocal FRET microscopy to measure clustering of ligand-receptor complexes in endocytic membranes. Biophys J 2003;85:559-71
  • An J, Totrov M, Abagyan R. Pocketome via comprehensive identification and classification of ligand binding envelopes. Mol Cell Proteomics 2005;4:752-61
  • Tong W, Wei Y, Murga LF, Partial order optimum likelihood (POOL): Maximum likelihood prediction of protein active site residues using 3D structure and sequence properties. PLoS Comput Biol 2009;5: 10.1377/pcbi.1000266
  • Laurie AT, Jackson RM. Methods for the prediction of protein-ligand binding sites for structure-based drug design and virtual ligand screening. Curr Protein Pept Sci 2006;7:395-406
  • Nayal M, Honig B. On the nature of cavities on protein surfaces: Application to the identification of drug-binding sites. Proteins 2006;63:892-906
  • Seco J, Luque FJ, Barril X. Binding site detection and druggability index from first principles. J Med Chem 2009;52:2363-71
  • Glaser F, Steinberg DM, Vakser IA, Ben-Tal N. Residue frequencies and pairing preferences at protein-protein interfaces. Proteins 2001;43:89-102
  • Luty BA, Wasserman ZR, Stouten PFW, A molecular mechanics/grid method for evaluation of ligand-receptor interactions. J Comput Chem 1995;16:454-64
  • Morris GM, Goodsell DS, Halliday RS, Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 1998;19:1639-62
  • Fabiola F, Bertram R, Korostelev A, Chapman MS. An improved hydrogen bond potential: Impact on medium resolution protein structures. Protein Sci 2002;11:1415-23
  • Irwin JJ, Shoichet BK, Mysinger MM, Automated docking screens: A feasibility study. J Med Chem 2009;52:5712-20
  • Brooijmans N, Kuntz ID. Molecular recognition and docking algorithms. Annu Rev Biophys Biomol Struct 2003;32:335-73
  • Knegtel RM, Kuntz ID, Oshiro CM. Molecular docking to ensembles of protein structures. J Mol Biol 1997;266:424-40
  • Pang YP, Perola E, Xu K, Prendergast FG. EUDOC: A computer program for identification of drug interaction sites in macromolecules and drug leads from chemical databases. J Comput Chem 2001;22:1750-71
  • Gasteiger J, Rudolph C, Sadowski J. Automatic generation of 3D-atomic coordinates for organic molecules. Tetrahedron Comput Method 1992;3:537-47
  • Klebe G, Mietzner T. A fast and efficient method to generate biologically relevant conformations. J Comput Aided Mol Des 1994;8:583-606
  • Balducci R, Pearlman RS, editors. Confort: A rational conformation analysis tool. 217th National Meeting of the American Chemical Society; 1999; Washington DC: American Chemical Society
  • Abagyan R, Totrov M. Biased probability Monte Carlo conformational searches and electrostatic calculations for peptides and proteins. J Mol Biol 1994;235:983-1002
  • Goodsell DS, Olson AJ. Automated docking of substrates to proteins by simulated annealing. Proteins 1990;8:195-202
  • Arun Prasad P, Gautham N. A new peptide docking strategy using a mean field technique with mutually orthogonal latin square sampling. J Comput Aided Mol Des 2008;22:815-29
  • Chen HM, Liu BF, Huang HL, SODOCK: Swarm optimization for highly flexible protein-ligand docking. J Comput Chem 2007;28:612-23
  • DesJarlais RL, Sheridan RP, Dixon JS, Docking flexible ligands to macromolecular receptors by molecular shape. J Med Chem 1986;29:2149-53
  • Leach AR, Kuntz ID. Conformational analysis of flexible ligands in macromolecular receptor sights. J Comput Chem 1992;13:730-48
  • Congreve M, Chessari G, Tisi D, Woodhead AJ. Recent developments in fragment-based drug discovery. J Med Chem 2008;51:3661-80
  • Warr WA. Fragment-based drug design. J Comput Aided Mol Des 2009;23:453-8
  • Welch W, Ruppert J, Jain AN. Hammerhead: Fast, fully automated docking of flexible ligands to protein binding sites. Chem Biol 1996;3:449-62
  • Kitchen DB, Decornez H, Furr JR, Bajorath J. Docking and scoring in virtual screening for drug discovery: Methods and applications. Nat Rev Drug Discov 2004;3:935-49
  • Sousa SF, Fernandes PA, Ramos MJ. Protein-ligand docking: Current status and future challenges. Proteins 2006;65:15-26
  • Wang J, Wolf RM, Caldwell JW, Development and testing of a general AMBER force field. J Comput Chem 2004;25:1157-74
  • Wang J, Wang W, Kollman PA, Case DA. Automatic atom type and bond type perception in molecular mechanical calculations. J Mol Graph Model 2006;25:247-60
  • Vanommeslaeghe K, Hatcher E, Acharya C, CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem 2009: 10.1002/jcc.21367
  • Huang Z, Wong CF. Docking flexible peptide to flexible protein by molecular dynamics using two implicit-solvent models: An evaluation in protein kinase and phosphatase systems. J Phys Chem B 2009;113:14343-54
  • Kongsted J, Ryde U. An improved method to predict the entropy term with the MM/PBSA approach. J Comput Aided Mol Des 2009;23:63-71
  • Roux B, Simonson T. Implicit solvent models. Biophys Chem 1999;78:1-20
  • Shivakumar D, Deng Y, Roux B. Computations of absolute solvation free energies of small molecules using explicit and implicit solvent models. J Chem Theory Comput 2009;5:919-30
  • Wang T, Wade RC. Implicit solvent models for flexible protein-protein docking by molecular dynamics simulation. Proteins 2003;50:158-69
  • Hamaneh MB, Buck M. Refinement of the primary hydration shell model for molecular dynamics simulations of large proteins. J Comput Chem 2009;30:2635-44
  • Alcaro S, Artese A, Ceccherini-Silberstein F, Molecular dynamics and free energy studies on the wild-type and mutated HIV-1 protease complexed with four approved drugs: Mechanism of binding and drug resistance. J Chem Inf Model 2009;49:1751-61
  • Lei H, Duan Y. Improved sampling methods for molecular simulation. Curr Opin Struct Biol 2007;17:187-91
  • Marsili S, Signorini GF, Chelli R, ORAC: A molecular dynamics simulation program to explore free energy surfaces in biomolecular systems at the atomistic level. J Comput Chem 2009
  • Huang Z, Wong CF, Wheeler RA. Flexible protein-flexible ligand docking with disrupted velocity simulated annealing. Proteins 2008;71:440-54
  • Carlsson J, Boukharta L, Aqvist J. Combining docking, molecular dynamics and the linear interaction energy method to predict binding modes and affinities for non-nucleoside inhibitors to HIV-1 reverse transcriptase. J Med Chem 2008;51:2648-56
  • Okimoto N, Futatsugi N, Fuji H, High-performance drug discovery: Computational screening by combining docking and molecular dynamics simulations. PLoS Comput Biol 2009;5: 10.1371/pcbi.1000528
  • Yang CY, Wang R, Wang S. M-SCORE: A knowledge-based potential scoring function accounting for protein atom mobility. J Med Chem 2006;49:5903-11
  • Halgren TA, Murphy RB, Friesner RA, Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem 2004;47:1750-9
  • Zacharias M. Protein-protein docking with a reduced protein model accounting for side-chain flexibility. Protein Sci 2003;12:1271-82
  • Rueda M, Bottegoni G, Abagyan R. Consistent improvement of cross-docking results using binding site ensembles generated with elastic network normal modes. J Chem Inf Model 2009;49:716-25
  • Zhou P, Chen X, Shang Z. Side-chain conformational space analysis (SCSA): A multi conformation-based QSAR approach for modeling and prediction of protein-peptide binding affinities. J Comput Aided Mol Des 2009;23:129-41
  • Pang YP, Kozikowski AP. Prediction of the binding sites of huperzine a in acetylcholinesterase by docking studies. J Comput Aided Mol Des 1994;8:669-81
  • Lin JH, Perryman AL, Schames JR, McCammon JA. Computational drug design accommodating receptor flexibility: The relaxed complex scheme. J Am Chem Soc 2002;124:5632-3
  • Amadei A, Linssen AB, Berendsen HJ. Essential dynamics of proteins. Proteins 1993;17:412-25
  • Seeliger D, Haas J, de Groot BL. Geometry-based sampling of conformational transitions in proteins. Structure 2007;15:1482-92
  • Eyrisch S, Helms V. What induces pocket openings on protein surface patches involved in protein-protein interactions? J Comput Aided Mol Des 2009;23:73-86
  • Bahar I, Atilgan AR, Erman B. Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonic potential. Fold Des 1997;2:173-81
  • Hinsen K. Analysis of domain motions by approximate normal mode calculations. Proteins 1998;33:417-29
  • Keseru GM, Kolossvary I. Fully flexible low-mode docking: Application to induced fit in HIV integrase. J Am Chem Soc 2001;123:12708-9
  • May A, Zacharias M. Energy minimization in low-frequency normal modes to efficiently allow for global flexibility during systematic protein-protein docking. Proteins 2008;70:794-809
  • Ertekin A, Nussinov R, Haliloglu T. Association of putative concave protein-binding sites with the fluctuation behavior of residues. Protein Sci 2006;15:2265-77
  • Sandak B, Nussinov R, Wolfson HJ. A method for biomolecular structural recognition and docking allowing conformational flexibility. J Comput Biol 1998;5:631-54
  • Shatsky M, Nussinov R, Wolfson HJ. FLEXPROT: Alignment of flexible protein structures without a predefinition of hinge regions. J Comput Biol 2004;11:83-106
  • Zavodszky MI, Lei M, Thorpe MF, Modeling correlated main-chain motions in proteins for flexible molecular recognition. Proteins 2004;57:243-61
  • Ahmed A, Gohlke H. Multiscale modeling of macromolecular conformational changes combining concepts from rigidity and elastic network theory. Proteins 2006;63:1038-51
  • Fuxreiter M, Magyar C, Juhasz T, Flexibility of prolyl oligopeptidase: Molecular dynamics and molecular framework analysis of the potential substrate pathways. Proteins 2005;60:504-12
  • Jacobs DJ, Rader AJ, Kuhn LA, Thorpe MF. Protein flexibility predictions using graph theory. Proteins 2001;44:150-65
  • Osterberg F, Morris GM, Sanner MF, Automated docking to multiple target structures: Incorporation of protein mobility and structural water heterogeneity in AutoDock. Proteins 2002;46:34-40
  • Smith GR, Sternberg MJ, Bates PA. The relationship between the flexibility of proteins and their conformational states on forming protein-protein complexes with an application to protein-protein docking. J Mol Biol 2005;347:1077-101
  • Totrov M, Abagyan R. Flexible ligand docking to multiple receptor conformations: A practical alternative. Curr Opin Struct Biol 2008;18:178-84
  • Bottegoni G, Kufareva I, Totrov M, Abagyan R. Four-dimensional docking: A fast and accurate account of discrete receptor flexibility in ligand docking. J Med Chem 2009;52:397-406
  • Krivov GG, Shapovalov MV, Dunbrack RL, Jr. Improved prediction of protein side-chain conformations with SCWRl4. Proteins 2009;77:778-95
  • Leach AR. Ligand docking to proteins with discrete side-chain flexibility. J Mol Biol 1994;235:345-56
  • Lovell SC, Word JM, Richardson JS, Richardson DC. The penultimate rotamer library. Proteins 2000;40:389-408
  • Gray JJ, Moughon S, Wang C, Protein-protein docking with simultaneous optimization of rigid-body displacement and side-chain conformations. J Mol Biol 2003;331:281-99
  • Wang C, Schueler-Furman O, Baker D. Improved side-chain modeling for protein-protein docking. Protein Sci 2005;14:1328-39
  • Zacharias M, Sklenar H. Harmonic modes as variables to approximately account for receptor flexibility in ligand-receptor docking simulations: Applications to DNA minor groove ligand complex. J Comput Chem 1999;20:287-300
  • May A, Zacharias M. Protein-ligand docking accounting for receptor side chain and global flexibility in normal modes: Evaluation on kinase inhibitor cross docking. J Med Chem 2008;51:3499-506
  • Kazemi S, Kruger DM, Sirockin F, Gohlke H. Elastic potential grids: Accurate and efficient representation of intermolecular interactions for fully flexible docking. ChemMedChem 2009;4:1264-8
  • Morris GM, Huey R, Lindstrom W, AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem 2009;30:2785-91
  • Trott O, Olson AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 2009: 10.1002/jcc.21334
  • Lang PT, Brozell SR, Mukherjee S, DOCK 6: Combining techniques to model RNA-small molecule complexes. RNA 2009;15:1219-30
  • Rarey M, Kramer B, Lengauer T, Klebe G. A fast flexible docking method using an incremental construction algorithm. J Mol Biol 1996;261:470-89
  • Claussen H, Buning C, Rarey M, Lengauer T. Flexe: Efficient molecular docking considering protein structure variations. J Mol Biol 2001;308:377-95
  • McGann MR, Almond HR, Nicholls A, Gaussian docking functions. Biopolymers 2003;68:76-90
  • Friesner RA, Murphy RB, Repasky MP, Extra precision Glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem 2006;49:6177-96
  • Sherman W, Day T, Jacobson MP, Novel procedure for modeling ligand/receptor induced fit effects. J Med Chem 2006;49:534-53
  • Jones G, Willett P, Glen RC, Development and validation of a genetic algorithm for flexible docking. J Mol Biol 1997;267:727-48
  • Totrov M, Abagyan R. Flexible protein-ligand docking by global energy optimization in internal coordinates. Proteins 1997;Suppl 1:215-20
  • McMartin C, Bohacek RS. QXP: Powerful, rapid computer algorithms for structure-based drug design. J Comput Aided Mol Des 1997;11:333-44
  • Jain AN. Surflex: Fully automatic flexible molecular docking using a molecular similarity-based search engine. J Med Chem 2003;46:499-511
  • Ding J, Das K, Hsiou Y, Structure and functional implications of the polymerase active site region in a complex of HIV-1 RT with a double-stranded DNA template-primer and an antibody FAB fragment at 2.8 A resolution. J Mol Biol 1998;284:1095-111
  • Huang H, Chopra R, Verdine GL, Harrison SC. Structure of a covalently trapped catalytic complex of HIV-1 reverse transcriptase: Implications for drug resistance. Science 1998;282:1669-77
  • Ding J, Das K, Tantillo C, Structure of HIV-1 reverse transcriptase in a complex with the non-nucleoside inhibitor alpha-APA R 95845 at 2.8 A resolution. Structure 1995;3:365-79
  • Hsiou Y, Ding J, Das K, Structure of unliganded HIV-1 reverse transcriptase at 2.7 A resolution: Implications of conformational changes for polymerization and inhibition mechanisms. Structure 1996;4:853-60

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.