51
Views
7
CrossRef citations to date
0
Altmetric
Reviews

Functional neuroimaging in Parkinson's disease

, , &
Pages 109-120 | Published online: 01 Feb 2011

Bibliography

  • de Lau LM, Breteler MM. Epidemiology of Parkinson's disease. Lancet Neurol 2006;5:525-35
  • Fearnley JM, Lees AJ. Ageing and Parkinson's disease: substantia nigra regional selectivity. Brain 1991;114:2283-301
  • Hornykiewicz O. Biochemical aspects of Parkinson's disease. Neurology 1998;51(2 Suppl 2):S2-9
  • Dauer W, Przedborski S. Parkinson's disease: mechanisms and models. Neuron 2003;39:889-909
  • Kempster PA, O'sullivan SS, Holton JL, Relationships between age and late progression of Parkinson's disease: a clinico-pathological study. Brain 2010;133:1755-62
  • Doudet DJ. PET studies in the MPTP model of Parkinson's disease. Adv Neurol 2001;86:187-95
  • Strome EM, Cepeda IL, Sossi V, Doudet DJ. Evaluation of the integrity of the dopamine system in a rodent model of Parkinson's disease: small animal positron emission tomography compared to behavioral assessment and autoradiography. Mol Imaging Biol 2006;8:292-9
  • Frey KA, Koeppe RA, Kilbourn MR, Presynaptic monoaminergic vesicles in Parkinson's disease and normal aging. Ann Neurol 1996;40:873-84
  • Volkow ND, Ding YS, Fowler JS, A new PET ligand for the dopamine transporter: studies in the human brain. J Nucl Med 1995;36:2162-8
  • Winogrodzka A, Booij J, Wolters ECh. Disease-related and drug-induced changes in dopamine transporter expression might undermine the reliability of imaging studies of disease progression in Parkinson's disease. Parkinsonism Relat Disord 2005;11:475-84
  • Gjedde A, Reith J, Dyve S, Dopa decarboxylase activity of the living human brain. Proc Natl Acad Sci USA 1991;88:2721-5
  • de la Fuente-Fernandez R, Furtado S, Guttman M, VMAT2 binding is elevated in dopa-responsive dystonia: visualizing empty vesicles by PET. Synapse 2003;49:20-8
  • de la Fuente-Fernandez R, Sossi V, McCormick S, Visualizing vesicular dopamine dynamics in Parkinson's disease. Synapse 2009;63:713-16
  • Lee CS, Samii A, Sossi V, In vivo positron emission tomographic evidence for compensatory changes in presynaptic dopaminergic nerve terminals in Parkinson's disease. Ann Neurol 2000;47:493-503
  • Snow BJ, Tooyama I, McGeer EG, Human positron emission tomographic [18F]fluorodopa studies correlate with dopamine cell counts and levels. Ann Neurol 1993;34:324-30
  • Doudet DJ, Chan GL, Holden JE, 6-[18F]Fluoro-L-DOPA PET studies of the turnover of dopamine in MPTP-induced parkinsonism in monkeys. Synapse 1998;29:225-32
  • Sossi V, Doudet DJ, Holden JE. A reversible tracer analysis approach to the study of effective dopamine turnover. J Cereb Blood Flow Metab 2001;21:469-76
  • Appel-Cresswell S, de la Fuente-Fernandez R, Galley S, McKeown MJ. Imaging of compensatory mechanisms in Parkinson's disease. Curr Opin Neurol 2010;23:407-12
  • Volkow ND, Wang GJ, Fowler JS, Imaging endogenous dopamine competition with [11C]raclopride in the human brain. Synapse 1994;16:255-62
  • Tedroff J, Pedersen M, Aquilonius SM, Levodopa-induced changes in synaptic dopamine in patients with Parkinson's disease as measured by [11C]raclopride displacement and PET. Neurology 1996;46:1430-6
  • de la Fuente-Fernandez R, Lu JQ, Sossi V, Biochemical variations in the synaptic level of dopamine precede motor fluctuations in Parkinson's disease: PET evidence of increased dopamine turnover. Ann Neurol 2001;49:298-303
  • Eidelberg D, Moeller JR, Dhawan V, The metabolic anatomy of Parkinson's disease: complementary [18F]fluorodeoxyglucose and [18F]fluorodopa positron emission tomographic studies. Mov Disord 1990;5:203-13
  • Eidelberg D, Moeller JR, Dhawan V, The metabolic topography of Parkinsonism. J Cereb Blood Flow Metab 1994;14:783-801
  • Eckert T, Van Laere K, Tang C, Quantification of Parkinson's disease-related network expression with ECD SPECT. Eur J Nucl Med Mol Imaging 2007;34:496-501
  • Ma Y, Huang C, Dyke JP, Parkinson's disease spatial covariance pattern: noninvasive quantification with perfusion MRI. J Cereb Blood Flow Metab 2010;30:505-9
  • Brooks DJ, Ibanez V, Sawle GV, Differing patterns of striatal 18F-dopa uptake in Parkinson's disease, multiple system atrophy, and progressive supranuclear palsy. Ann Neurol 1990;28:547-55
  • Brooks DJ, Ibanez V, Sawle GV, Striatal D2 receptor status in patients with Parkinson's disease, striatonigral degeneration, and progressive supranuclear palsy, measured with 11C-raclopride and positron emission tomography. Ann Neurol 1992;31:184-92
  • Guttman M, Seeman P. L-dopa reverses the elevated density of D2 dopamine receptors in Parkinson's diseased striatum. J Neural Transm 1985;64:93-103
  • Guttman M, Seeman P, Reynolds GP, Dopamine D2 receptor density remains constant in treated Parkinson's disease. Ann Neurol 1986;19:487-92
  • Sawle GV, Playford ED, Brooks DJ, Asymmetrical pre-synaptic and post-synpatic changes in the striatal dopamine projection in dopa naïve parkinsonism. Diagnostic implications of the D2 receptor status. Brain 1993;116:853-67
  • Antonini A, Schwarz J, Oertel W, [11C]raclopride and positron emission tomography in previously untreated patients with Parkinson's disease: influence of L-dopa and lisuride therapy on striatal dopamine D2-receptors. Neurology 1994;44:1325-9
  • Kaasinen V, Ruottinen H, Nagren K, Upregulation of putaminal dopamine D2 receptors in early Parkinson's disease: a comparative PET study with [11C] raclopride and [11C] N-methylspiperone. J Nuc Med 2000;41:65-70
  • Lorberboym M, Treves TA, Melamed E, [123I]-FP/CIT SPECT imaging for distinguishing drug-induced parkinsonism from Parkinson's disease. Mov Disord 2006;21:510-14
  • Benaderette S, Zanotti Fregonara P, Apartis E, Psychogenic parkinsonism: a combination of clinical, electrophysiological, and [123I]-FP-CIT SPECT scan explorations improves diagnostic accuracy. Mov Disord 2006;21:310-17
  • Tinazzi M, Antonini A, Bovi T, Clinical and [123I]FP-CIT SPET imaging follow-up in patients with drug-induced parkinsonism. J Neurol 2009;256:910-15
  • Benamer TS, Patterson J, Grosset DG, Accurate differentiation of parkinsonism and essential tremor using visual assessment of [123I]-FP-CIT SPECT imaging: the [123I]-FP-CIT study group. Mov Disord 2000;15:503-10
  • Eerola J, Tienari PJ, Kaakkola S, How useful is [123I]beta-CIT SPECT in clinical practice? J Neurol Neurosurg Psychiatry 2005;76:1211-16
  • Iranzo A, Lomena F, Stockner H, Decreased striatal dopamine transporter uptake and substantia nigra hyperechogenicity as risk markers of synucleinopathy in patients with idiopathic rapid-eye-movement sleep behaviour disorder: a prospective study. Lancet Neurol 2010;9:1070-7
  • Hughes AJ, Daniel SE, Ben-Shlomo Y, Lees AJ. The accuracy of diagnosis of parkinsonian syndromes in a specialist movement disorder service. Brain 2002;125:861-70
  • Eckert T, Tang C, Eidelberg D. Assessment of the progression of Parkinson's disease: a metabolic network approach. Lancet Neurol 2007;6:926-32
  • Spetsieris PG, Ma Y, Dhawan V, Eidelberg D. Differential diagnosis of parkinsonian syndromes using PCA-based functional imaging features. Neuroimage 2009;45:1241-52
  • Ravina B, Eidelberg D, Ahlskog JE, The role of radiotracer imaging in Parkinson disease. Neurology 2005;64:208-15
  • Dickson DW, Fujishiro H, DelleDonne A, Evidence that incidental Lewy body disease is pre-symptomatic Parkinson's disease. Acta Neuropathol 2008;115:437-44
  • Nandhagopal R, Mak E, Schulzer M, Progression of dopaminergic dysfunction in a LRRK2 kindred: a multitracer PET study. Neurology 2008;71:1790-5
  • Pavese N, Khan NL, Scherfler C, Nigrostriatal dysfunction in homozygous and heterozygous parkin gene carriers: an 18F-dopa PET progression study. Mov Disord 2009;24:2260-6
  • Sossi V, de la Fuente-Fernandez R, Nandhagopal R, Dopamine turnover increases in asymptomatic LRRK2 mutations carriers. Mov Disord 2010. [Epub ahead of print]
  • Sossi V, de la Fuente-Fernandez R, Holden JE, Increase in dopamine turnover occurs early in Parkinson's disease: evidence from a new modeling approach to PET 18 F-fluorodopa data. J Cereb Blood Flow Metab 2002;22:232-9
  • Tang CC, Poston KL, Dhawan V, Eidelberg D. Abnormalities in metabolic network activity precede the onset of motor symptoms in Parkinson's disease. J Neurosci 2010;30:1049-56
  • Biju G, de la Fuente-Fernandez R. Dopaminergic function and progression of Parkinson's disease: PET findings. Parkinsonism Relat Disord 2009;15(Suppl 4):S38-40
  • Huang C, Tang C, Feigin A, Changes in network activity with the progression of Parkinson's disease. Brain 2007;130:1834-46
  • Vingerhoets FJ, Snow BJ, Lee CS, Longitudinal fluorodopa positron emission tomographic studies of the evolution of idiopathic parkinsonism. Ann Neurol 1994;36:759-64
  • Morrish PK, Sawle GV, Brooks DJ. An [18F]dopa-PET and clinical study of the rate of progression in Parkinson's disease. Brain 1996;119:585-91
  • Morrish PK, Rakshi JS, Bailey DL, Measuring the rate of progression and estimating the preclinical period of Parkinson's disease with [18F]dopa PET. J Neurol Neurosurg Psychiatry 1998;64:314-19
  • Nurmi E, Ruottinen HM, Kaasinen V, Progression in Parkinson's disease: a positron emission tomography study with a dopamine transporter ligand [18F]CFT. Ann Neurol 2000;47:804-8
  • Nurmi E, Ruottinen HM, Bergman J, Rate of progression in Parkinson's disease: a 6-[18F]fluoro-L-dopa PET study. Mov Disord 2001;16:608-15
  • Hilker R, Schweitzer K, Coburger S, Nonlinear progression of Parkinson disease as determined by serial positron emission tomographic imaging of striatal fluorodopa F-18 activity. Arch Neurol 2005;62:378-82
  • Lee CS, Schulzer M, de la Fuente-Fernandez R, Lack of regional selectivity during the progression of Parkinson disease: implications for pathogenesis. Arch Neurol 2004;61:1920-5
  • Bruck A, Aalto S, Rauhala E, A follow-up study on 6-[18F]fluoro-L-dopa uptake in early Parkinson's disease shows nonlinear progression in the putamen. Mov Disord 2009;24:1009-15
  • Shih MC, Franco de Andrade LA, Amaro E Jr, Higher nigrostriatal dopamine neuron loss in early than late onset Parkinson's disease?—a [99mTc]-TRODAT-1 SPECT study. Mov Disord 2007;22:863-6
  • de la Fuente-Fernandez R, Schulzer M, Kuramoto L, Age-specific progression of nigrostriatal dysfunction in Parkinson's disease. Ann Neurol 2010. [Epub ahead of print]
  • Chen MK, Kuwabara H, Zhou Y, VMAT2 and dopamine neuron loss in a primate model of Parkinson's disease. J Neurochem 2008;105:78-90
  • Bezard E, Gross CE, Brotchie JM. Presymptomatic compensation in Parkinson's disease is not dopamine-mediated. Trends Neurosci 2003;26:215-21
  • de la Fuente-Fernandez R, Schulzer M, Mak E, Presynaptic mechanisms of motor fluctuations in Parkinson's disease: a probabilistic model. Brain 2004;127:888-99
  • Sossi V, de la Fuente-Fernandez R, Holden JE, Changes of dopamine turnover in the progression of Parkinson's disease as measured by positron emission tomography: their relation to disease-compensatory mechanisms. J Cereb Blood Flow Metab 2004;24:869-76
  • de la Fuente-Fernandez R, Sossi V, Huang Z, Levodopa-induced changes in synaptic dopamine levels increase with progression of Parkinson's disease: implications for dyskinesias. Brain 2004;127:2747-54
  • Turjanski N, Lees A, Brooks D. In vivo studies on striatal dopamine D1 and D2 site binding in L-dopa-treated Parkinson's disease patients with and without dyskinesias. Neurology 1997;49:717-23
  • Sossi V, de la Fuente-Fernandez R, Schulzer M, Age-related differences in levodopa dynamics in Parkinson's: implications for motor complications. Brain 2006;129:1050-8
  • Sossi V, de la Fuente-Fernandez R, Schulzer M, Dopamine transporter relation to dopamine turnover in Parkinson's disease: a positron emission tomography study. Ann Neurol 2007;62:468-74
  • Troiano AR, de la Fuente-Fernandez R, Sossi V, PET demonstrates reduced dopamine transporter expression in PD with dyskinesias. Neurology 2009;72:1211-16
  • Evans AH, Pavese N, Lawrence AD, Compulsive drug use linked to sensitized ventral striatal dopamine transmission. Ann Neurol 2006;59:852-8
  • Parkinson Study Group. Dopamine transporter brain imaging to assess the effects of pramipexole vs levodopa on Parkinson disease progression. JAMA 2002;287:1653-61
  • Whone AL, Watts RL, Stoessl AJ, Slower progression of Parkinson's disease with ropinirole versus levodopa: The REAL-PET study. Ann Neurol 2003;54:93-101
  • Fahn S, Oakes D, Shoulson I, Levodopa and the progression of Parkinson's disease. N Engl J Med 2004;351:2498-508
  • Guttman M, Stewart D, Hussey D, Influence of L-dopa and pramipexole on striatal dopamine transporter in early PD. Neurology 2001;56:1559-64
  • Sossi V, Dinelle K, Schulzer M, Levodopa and pramipexole effects on presynaptic dopamine PET markers and estimated dopamine release. Eur J Nucl Med Mol Imaging 2010;37:2364-70
  • Wu Q, Reith ME, Walker QD, Concurrent autoreceptor-mediated control of dopamine release and uptake during neurotransmission: an in vivo voltammetric study. J Neurosci 2002;22:6272-81
  • de la Fuente-Fernandez R, Lim AS, Sossi V, Apomorphine-induced changes in synaptic dopamine levels: positron emission tomography evidence for presynaptic inhibition. J Cereb Blood Flow Metab 2001;21:1151-9
  • Truong JG, Rau KS, Hanson GR, Fleckenstein AE. Pramipexole increases vesicular dopamine uptake: implications for treatment of Parkinson's neurodegeneration. Eur J Pharmacol 2003;474:223-6
  • de la Fuente-Fernandez R, Schulzer M, Mak E, Sossi V. Trials of neuroprotective therapies for Parkinson's disease: problems and limitations. Parkinsonism Relat Disord 2010;16:365-9
  • de la Fuente-Fernandez R, Ruth TJ, Sossi V, Expectation and dopamine release: mechanism of the placebo effect in Parkinson's disease. Science 2001;293:1164-6
  • de la Fuente-Fernandez R, Phillips AG, Zamburlini M, Dopamine release in human ventral striatum and expectation of reward. Behav Brain Res 2002;136:359-63
  • Owen AM. Cognitive dysfunction in Parkinson's disease: the role of frontostriatal circuitry. Neuroscientist 2004;10:525-37
  • Huang C, Mattis P, Tang C, Metabolic brain networks associated with cognitive function in Parkinson's disease. Neuroimage 2007;34:714-23
  • Nagano-Saito A, Washimi Y, Arahata Y, Visual hallucination in Parkinson's disease with FDG PET. Mov Disord 2004;19:801-6
  • Cheesman AL, Barker RA, Lewis SJ, Lateralisation of striatal function: evidence from 18F-dopa PET in Parkinson's disease. J Neurol Neurosurg Psychiatry 2005;76:1204-10
  • Hilker R, Thomas AV, Klein JC, Dementia in Parkinson disease: functional imaging of cholinergic and dopaminergic pathways. Neurology 2005;65:1716-22
  • Bohnen NI, Kaufer DI, Ivanco LS, Cortical cholinergic function is more severely affected in parkinsonian dementia than in Alzheimer disease: an in vivo positron emission tomographic study. Arch Neurol 2003;60:1745-8
  • Edison P, Rowe CC, Rinne JO, Amyloid load in Parkinson's disease dementia and Lewy body dementia measured with [11C]PIB positron emission tomography. J Neurol Neurosurg Psychiatry 2008;79:1331-8
  • Gomperts SN, Rentz DM, Moran E, Imaging amyloid deposition in Lewy body diseases. Neurology 2008;71:903-10
  • Gibb WR, Mountjoy CQ, Mann DM, Lees AJ. A pathological study of the association between Lewy body disease and Alzheimer's disease. J Neurol Neurosurg Psychiatry 1989;52:701-8
  • Minoshima S, Foster NL, Sima AA, Alzheimer's disease versus dementia with Lewy bodies: cerebral metabolic distinction with autopsy confirmation. Ann Neurol 2001;50:358-65
  • Giovannoni G, O'sullivan JD, Turner K, Hedonistic homeostatic dysregulation in patients with Parkinson's disease on dopamine replacement therapies. J Neurol Neurosurg Psychiatry 2000;68:423-8
  • Voon V, Hassan K, Zurowski M, Prevalence of repetitive and reward-seeking behaviors in Parkinson disease. Neurology 2006;67:1254-7
  • Steeves TD, Miyasaki J, Zurowski M, Increased striatal dopamine release in Parkinsonian patients with pathological gambling: a [11C] raclopride PET study. Brain 2009;132:1376-85
  • Linnet J, Moller A, Peterson E, Dopamine release in ventral striatum during Iowa Gambling Task performance is associated with increased excitement levels in pathological gambling. Addiction 2010. [Epub ahead of print]
  • Cilia R, Siri C, Marotta G, Functional abnormalities underlying pathological gambling in Parkinson disease. Arch Neurol 2008;65:1604-11
  • Scott DJ, Heitzeg MM, Koeppe RA, Variations in the human pain stress experience mediated by ventral and dorsal basal ganglia dopamine activity. J Neurosci 2006;26:10789-95
  • Brefel-Courbon C, Payoux P, Thalamas C, Effect of levodopa on pain threshold in Parkinson's disease: a clinical and positron emission tomography study. Mov Disord 2005;20:1557-63
  • Remy P, Doder M, Lees A, Depression in Parkinson's disease: loss of dopamine and noradrenaline innervation in the limbic system. Brain 2005;128:1314-22
  • Ring HA, Bench CJ, Trimble MR, Depression in Parkinson's disease. A positron emission study. Br J Psychiatry 1994;165:333-9
  • Black KJ, Hershey T, Hartlein JM, Levodopa challenge neuroimaging of levodopa-related mood fluctuations in Parkinson's disease. Neuropsychopharmacology 2005;30:590-601
  • Schifitto G, Friedman JH, Oakes D, Fatigue in levodopa-naive subjects with Parkinson disease. Neurology 2008;71:481-5
  • Kish SJ, Shannak K, Hornykiewicz O. Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson's disease. Pathophysiologic and clinical implications. N Engl J Med 1988;318:876-80
  • Javoy-Agid F, Agid Y. Is the mesocortical dopaminergic system involved in Parkinson disease? Neurology 1980;30:1326-30
  • Scatton B, Javoy-Agid F, Rouquier L, Reduction of cortical dopamine, noradrenaline, serotonin and their metabolites in Parkinson's disease. Brain Res 1983;275:321-8
  • Alexander GE, DeLong MR, Strick PL. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 1986;9:357-81
  • Postuma RB, Dagher A. Basal ganglia functional connectivity based on a meta-analysis of 126 positron emission tomography and functional magnetic resonance imaging publications. Cereb Cortex 2006;16:1508-21
  • Dagher A, Nagano-Saito A. Functional and anatomical magnetic resonance imaging in Parkinson's disease. Mol Imaging Biol 2007;9:234-42
  • Playford ED, Jenkins IH, Passingham RE, Impaired mesial frontal and putamen activation in Parkinson's disease: a positron emission tomography study. Ann Neurol 1992;32:151-61
  • Jahanshahi M, Jenkins IH, Brown RG, Self-initiated versus externally triggered movements. I. An investigation using measurement of regional cerebral blood flow with PET and movement-related potentials in normal and Parkinson's disease subjects. Brain 1995;118:913-33
  • Samuel M, Ceballos-Baumann AO, Blin J, Evidence for lateral premotor and parietal overactivity in Parkinson's disease during sequential and bimanual movements. A PET study. Brain 1997;120:963-76
  • Sabatini U, Boulanouar K, Fabre N, Cortical motor reorganization in akinetic patients with Parkinson's disease: a functional MRI study. Brain 2000;123:394-403
  • Haslinger B, Erhard P, Kampfe N, Event-related functional magnetic resonance imaging in Parkinson's disease before and after levodopa. Brain 2001;124:558-70
  • Buhmann C, Glauche V, Sturenburg HJ, Pharmacologically modulated fMRI-cortical responsiveness to levodopa in drug-naive hemiparkinsonian patients. Brain 2003;126:451-61
  • Mentis MJ, Dhawan V, Nakamura T, Enhancement of brain activation during trial-and-error sequence learning in early PD. Neurology 2003;60:612-19
  • Cerasa A, Hagberg GE, Peppe A, Functional changes in the activity of cerebellum and frontostriatal regions during externally and internally timed movement in Parkinson's disease. Brain Res Bull 2006;71:259-69
  • Yu H, Sternad D, Corcos DM, Vaillancourt DE. Role of hyperactive cerebellum and motor cortex in Parkinson's disease. Neuroimage 2007;35:222-33
  • Buhmann C, Binkofski F, Klein C, Motor reorganization in asymptomatic carriers of a single mutant Parkin allele: a human model for presymptomatic parkinsonism. Brain 2005;128:2281-90
  • Jenkins IH, Fernandez W, Playford ED, Impaired activation of the supplementary motor area in Parkinson's disease is reversed when akinesia is treated with apomorphine. Ann Neurol 1992;32:749-57
  • Rascol O, Sabatini U, Chollet F, Supplementary and primary sensory motor area activity in Parkinson's disease. Regional cerebral blood flow changes during finger movements and effects of apomorphine. Arch Neurol 1992;49:144-8
  • Grafton ST, Waters C, Sutton J, Pallidotomy increases activity of motor association cortex in Parkinson's disease: a positron emission tomographic study. Ann Neurol 1995;37:776-83
  • Limousin P, Greene J, Pollak P, Changes in cerebral activity pattern due to subthalamic nucleus or internal pallidum stimulation in Parkinson's disease. Ann Neurol 1997;42:283-91
  • Samuel M, Ceballos-Baumann AO, Turjanski N, Pallidotomy in Parkinson's disease increases supplementary motor area and prefrontal activation during performance of volitional movements An H2O PET study. Brain 1997;120:1301-13
  • Ceballos-Baumann AO, Boecker H, Bartenstein P, A positron emission tomographic study of subthalamic nucleus stimulation in Parkinson disease: enhanced movement-related activity of motor-association cortex and decreased motor cortex resting activity. Arch Neurol 1999;56:997-1003
  • Peters S, Suchan B, Rusin J, Apomorphine reduces BOLD signal in fMRI during voluntary movement in Parkinsonian patients. Neuroreport 2003;14:809-12
  • Owen AM, Doyon J, Dagher A, Abnormal basal ganglia outflow in Parkinson's disease identified with PET. Implications for higher cortical functions. Brain 1998;121:949-65
  • Dagher A, Owen AM, Boecker H, Brooks DJ. Mapping the network for planning: a correlational PET activation study with the Tower of London task. Brain 1999;122:1973-87
  • Lewis SJ, Dove A, Robbins TW, Cognitive impairments in early Parkinson's disease are accompanied by reductions in activity in frontostriatal neural circuitry. J Neurosci 2003;23:6351-6
  • Marie RM, Barre L, Dupuy B, Relationships between striatal dopamine denervation and frontal executive tests in Parkinson's disease. Neurosci Lett 1999;260:77-80
  • Bruck A, Portin R, Lindell A, Positron emission tomography shows that impaired frontal lobe functioning in Parkinson's disease is related to dopaminergic hypofunction in the caudate nucleus. Neurosci Lett 2001;311:81-4
  • Dagher A, Owen AM, Boecker H, Brooks DJ. The role of the striatum and hippocampus in planning: a PET activation study in Parkinson's disease. Brain 2001;124:1020-32
  • Cools R, Stefanova E, Barker RA, Dopaminergic modulation of high-level cognition in Parkinson's disease: the role of the prefrontal cortex revealed by PET. Brain 2002;125:584-94
  • Mattay VS, Tessitore A, Callicott JH, Dopaminergic modulation of cortical function in patients with Parkinson's disease. Ann Neurol 2002;51:156-64
  • Monchi O, Petrides M, Doyon J, Neural bases of set-shifting deficits in Parkinson's disease. J Neurosci 2004;24:702-10
  • Monchi O, Petrides M, Mejia-Constain B, Strafella AP. Cortical activity in Parkinson's disease during executive processing depends on striatal involvement. Brain 2007;130:233-44
  • Cools R, Lewis SJ, Clark L, L-DOPA disrupts activity in the nucleus accumbens during reversal learning in Parkinson's disease. Neuropsychopharmacology 2007;32:180-9
  • Swainson R, Rogers RD, Sahakian BJ, Probabilistic learning and reversal deficits in patients with Parkinson's disease or frontal or temporal lobe lesions: possible adverse effects of dopaminergic medication. Neuropsychologia 2000;38:596-612
  • Cools R, Barker RA, Sahakian BJ, Robbins TW. Enhanced or impaired cognitive function in Parkinson's disease as a function of dopaminergic medication and task demands. Cereb Cortex 2001;11:1136-43
  • Mehta MA, Swainson R, Ogilvie AD, Improved short-term spatial memory but impaired reversal learning following the dopamine D2 agonist bromocriptine in human volunteers. Psychopharmacology (Berl) 2001;159:10-20
  • Cools R. Dopaminergic modulation of cognitive function-implications for L-DOPA treatment in Parkinson's disease. Neurosci Biobehav Rev 2006;30:1-23
  • Palmer S, Ng B, Abugharbieh R, Motor reserve and novel area recruitment: amplitude and spatial characteristics of compensation in Parkinson's. Eur J Neurosci 2009;29:2187-96
  • Wu T, Chan P, Hallett M. Effective connectivity of neural networks in automatic movements in Parkinson's disease. Neuroimage 2009;49:2581-7
  • Palmer SJ, Li J, Wang ZJ, McKeown MJ. Joint amplitude and connectivity compensatory mechanisms in Parkinson's disease. Neuroscience 2010;166:1110-18
  • Ng B, Palmer S, Abugharbieh R, McKeown MJ. Focusing effects of L-dopa in Parkinson's disease. Hum Brain Mapp 2010;31:88-97
  • Harper R, Reeves B. Reporting of precision of estimates for diagnostic accuracy: a review. BMJ 1999;318:1322-3
  • Knudsen GM, Karlsborg M, Thomsen G, Imaging of dopamine transporters and D2 receptors in patients with Parkinson's disease and multiple system atrophy. Eur J Nucl Med Mol Imaging 2004;31:1631-8
  • Catafau AM, Tolosa E.; DaTSCAN Clinically Uncertain Parkinsonian Syndromes Study Group. Impact of dopamine transporter SPECT using 123I-Ioflupane on diagnosis and management of patients with clinically uncertain Parkinsonian syndromes. Mov Disord 2004;19:1175-82
  • Reid MC, Lachs MS, Feinstein AR. Use of methodological standards in diagnostic test research. Getting better but still not good. JAMA 1995;274:645-51
  • Bossuyt PM, Reitsma JB, Bruns DE, The STARD statement for reporting studies of diagnostic accuracy: explanation and elaboration. Ann Intern Med 2003;138:W1-12
  • Whiting P, Rutjes AW, Reitsma JB, The development of QUADAS: a tool for the quality assessment of studies of diagnostic accuracy included in systematic reviews. BMC Med Res Methodol 2003;3:25
  • Marshall VL, Patterson J, Hadley DM, Two-year follow-up in 150 consecutive cases with normal dopamine transporter imaging. Nucl Med Commun 2006;27:933-7
  • Eckert T, Feigin A, Lewis DE, Regional metabolic changes in parkinsonian patients with normal dopaminergic imaging. Mov Disord 2007;22:167-73
  • Schneider SA, Edwards MJ, Mir P, Patients with adult-onset dystonic tremor resembling parkinsonian tremor have scans without evidence of dopaminergic deficit (SWEDDs). Mov Disord 2007;22:2210-15
  • Jagust W, Reed B, Mungas D, What does fluorodeoxyglucose PET imaging add to a clinical diagnosis of dementia? Neurology 2007;69:871-7
  • de la Fuente-Fernandez R, Lim AS, Sossi V, Age and severity of nigrostriatal damage at onset of Parkinson's disease. Synapse 2003;47:152-8
  • Nandhagopal R, Kuramoto L, Schulzer M, Longitudinal progression of sporadic Parkinson's disease: a multi-tracer positron emission tomography study. Brain 2009;132:2970-9
  • Vander Borght T, Kilbourn M, Desmond T, The vesicular monoamine transporter is not regulated by dopaminergic drug treatments. Eur J Pharmacol 1995;294:577-83
  • Wilson JM, Kish SJ. The vesicular monoamine transporter, in contrast to the dopamine transporter, is not altered by chronic cocaine self-administration in the rat. J Neurosci 1996;16:3507-10

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.