151
Views
51
CrossRef citations to date
0
Altmetric
Reviews

Biomarkers in IgA nephropathy: relationship to pathogenetic hits

, , , , , , , & , MD show all
Pages 615-627 | Published online: 31 Oct 2013

Bibliography

  • D'Amico G. The commonest glomerulonephritis in the world: igA nephropathy. Q J Med 1987;64:709-27
  • Hastings MC, Delos Santos NM, Wyatt RJ. Renal survival in pediatric patients with IgA nephropathy. Pediatr Nephrol 2007;22:317-18
  • Wyatt RJ, Julian BA. IgA nephropathy. N Engl J Med 2013;368:2402-14
  • Wyatt RJ, Julian BA, Bhathena DB, et al. IgA nephropathy: presentation, clinical course, and prognosis in children and adults. Am J Kidney Dis 1984;4:192-200
  • Reich HN, Troyanov S, Scholey JW, et al. Remission of proteinuria improves prognosis in IgA nephropathy. J Am Soc Nephrol 2007;18:3177-83
  • D'Amico G, Minetti L, Ponticelli C, et al. Prognostic indicators in idiopathic IgA mesangial nephropathy. Q J Med 1986;59:363-78
  • Radford MG, Donadio JV, Bergstralh EJ, Grande JP. Predicting renal outcome in IgA nephropathy. J Am Soc Nephrol 1997;8:199-207
  • Cattran DC, Coppo R, Cook HT, et al. The Oxford classification of IgA nephropathy: rationale, clinicopathological correlations, and classification. Kidney Int 2009;76:534-45
  • Berthoux F, Mohey H, Laurent B, et al. Predicting the risk for dialysis or death in IgA nephropathy. J Am Soc Nephrol 2011;22:752-61
  • Suzuki H, Kiryluk K, Novak J, et al. The pathophysiology of IgA nephropathy. J Am Soc Nephrol 2011;22:1795-803
  • Tomana M, Novak J, Julian BA, et al. Circulating immune complexes in IgA nephropathy consist of IgA1 with galactose-deficient hinge region and antiglycan antibodies. J Clin Invest 1999;104:73-81
  • Suzuki H, Moldoveanu Z, Hall S, et al. IgA1-secreting cell lines from patients with IgA nephropathy produce aberrantly glycosylated IgA1. J Clin Invest 2008;118:629-39
  • Suzuki H, Fan R, Zhang Z, et al. Aberrantly glycosylated IgA1 in IgA nephropathy patients is recognized by IgG antibodies with restricted heterogeneity. J Clin Invest 2009;119:1668-77
  • Novak J, Tomana M, Matousovic K, et al. IgA1-containing immune complexes in IgA nephropathy differentially affect proliferation of mesangial cells. Kidney Int 2005;67:504-13
  • Mestecky J, Moro I, Kerr MA, Woof JM. Mucosal immunoglobulins. In: Mestecky J, Bienenstock J, Lamm ME, Mayer L, McGhee JR, Strober W, editors. Mucosal Immunology. 3rd edition. Amsterdam: Elsevier Academic Press; 2005. 153-81
  • Frangione B, Wolfenstein-Todel C. Partial duplication in the "hinge" region of IgA1 myeloma proteins. Proc Natl Acad Sci USA 1972;69:3673-6
  • Putnam FW. Structure of the human IgA subslasses and allotypes. Protides Biol Fluids 1989;36:27-37
  • Baenziger J, Kornfeld S. Structure of the carbohydrate units of IgA1 immunoglobulin. II. Structure of the O-glycosidically linked oligosaccharide units. J Biol Chem 1974;249:7270-81
  • Field MC, Dwek RA, Edge CJ, Rademacher TW. O-linked oligosaccharides from human serum immunoglobulin A1. Biochem Soc Trans 1989;17:1034-5
  • Mattu TS, Pleass RJ, Willis AC, et al. The glycosylation and structure of human serum IgA1, Fab, and Fc regions and the role of N-glycosylation on Fcα receptor interactions. J Biol Chem 1998;273:2260-72
  • Tomana M, Niedermeier W, Mestecky J, Hammack WJ. The carbohydrate composition of human myeloma IgA. Immunochemistry 1972;9:933-40
  • Tomana M, Niedermeier W, Mestecky J, Skvaril F. The differences in carbohydrate composition between the subclasses of IgA immunoglobulins. Immunochemistry 1976;13:325-8
  • Tomana M, Niedermeier W, Spivey C. Microdetermination of monosaccharide in glycoproteins. Anal Biochem 1978;89:110-18
  • Renfrow MB, Cooper HJ, Tomana M, et al. Determination of aberrant O-glycosylation in the IgA1 hinge region by electron capture dissociation Fourier transform-ion cyclotron resonance mass spectrometry. J Biol Chem 2005;280:19136-45
  • Allen AC, Harper SJ, Feehally J. Galactosylation of N- and O-linked carbohydrate moieties of IgA1 and IgG in IgA nephropathy. Clin Exp Immunol 1995;100:470-4
  • Andre PM, Le Pogamp P, Chevet D. Impairment of jacalin binding to serum IgA in IgA nephropathy. J Clin Lab Anal 1990;4:115-19
  • Mestecky J, Tomana M, Crowley-Nowick PA, et al. Defective galactosylation and clearance of IgA1 molecules as a possible etiopathogenic factor in IgA nephropathy. Contrib Nephrol 1993;104:172-82
  • Moldoveanu Z, Wyatt RJ, Lee J, et al. Patients with IgA nephropathy have increased serum galactose-deficient IgA1 levels. Kidney Int 2007;71:1148-54
  • Tomana M, Matousovic K, Julian BA, et al. Galactose-deficient IgA1 in sera of IgA nephropathy patients is present in complexes with IgG. Kidney Int 1997;52:509-16
  • Smith AC, de Wolff JF, Molyneux K, et al. O-Glycosylation of serum IgD in IgA nephropathy. J Am Soc Nephrol 2006;17:1192-9
  • Suzuki H, Fan R, Zhang Z, et al. Aberrantly glycosylated IgA1 in IgA nephropathy patients is recognized by IgG antibodies with restricted heterogeneity. J Clin Invest 2009;119:1668-77
  • Camilla R, Suzuki H, Daprà V, et al. Oxidative stress and galactose-deficient IgA1 as markers of progression in IgA nephropathy. Clin J Am Soc Nephrol 2011;6:1903-11
  • Berthoux F, Suzuki H, Thibaudin L, et al. Autoantibodies targeting galactose-deficient IgA1 associate with progression of IgA nephropathy. J Am Soc Nephrol 2012;23:1579-87
  • Shimozato S, Hiki Y, Odani H, et al. Serum under-galactosylated IgA1 is increased in Japanese patients with IgA nephropathy. Nephrol Dial Transplant 2008;23:1931-9
  • Lin X, Ding J, Zhu L, et al. Aberrant galactosylation of IgA1 is involved in the genetic susceptibility of Chinese patients with IgA nephropathy. Nephrol Dial Transplant 2009;24:3372-5
  • Zhao N, Hou P, Lv J, et al. The level of galactose-deficient IgA1 in the sera of patients with IgA nephropathy is associated with disease progression. Kidney Int 2012;82:790-6
  • Hastings MC, Moldoveanu Z, Julian BA, et al. Galactose-deficient IgA1 in African Americans with IgA nephropathy: serum levels and heritability. Clin J Am Soc Nephrol 2010;5:2069-74
  • Lau KK, Wyatt RJ, Moldoveanu Z, et al. Serum levels of galactose-deficient IgA in children with IgA nephropathy and Henoch-Schönlein purpura. Pediatr Nephrol 2007;22:2067-72
  • Dickinson SJ, Mendichovzsky I, Molyneux K, et al. O-galactosylation patterns of serum IgA1 in patients with IgA nephropathy remain constant over long periods of time. J Am Soc Nephrol 2008;19:659A
  • Olson SW, Novak J, Suzuki H, et al. Evaluation of chronic serum galactose-deficient IgA1 levels prior to diagnosis of IgA nephropathy. J Am Soc Nephrol 2009;20:149A
  • Hastings MC, Sanders JT, Moldoveanu Z, et al. Serial measurement of galactose-deficient IgA1 (Gd-IgA1) in children. J Am Soc Nephrol 2010;21:635A
  • Gharavi AG, Moldoveanu Z, Wyatt RJ, et al. Aberrant IgA1 glycosylation is inherited in familial and sporadic IgA nephropathy. J Am Soc Nephrol 2008;19:1008-14
  • Kiryluk K, Moldoveanu Z, Sanders JT, et al. Aberrant glycosylation of IgA1 is inherited in both pediatric IgA nephropathy and Henoch-Schönlein purpura nephritis. Kidney Int 2011;80:79-87
  • Sanders JT, Moldoveanu Z, Wen-Qiang H, et al. Galactose-deficient IgA1 in normal pediatric subjects. American Pediatric Society/Society for Pediatric Research. 2010. Available from: http://www.abstracts2view.com/pasall/search
  • Renfrow MB, Mackay CL, Chalmers MJ, et al. Analysis of O-glycan heterogeneity in IgA1 myeloma proteins by Fourier transform ion cyclotron resonance mass spectrometry: implications for IgA nephropathy. Anal Bioanal Chem 2007;389:1397-407
  • Takahashi K, Smith AD, Poulsen K, et al. Naturally occurring structural isomers in serum IgA1 o-glycosylation. J Proteome Res 2012;11:692-702
  • Takahashi K, Suzuki H, Koshi Y, et al. Molecular characterization of IgA1 secreted by IgA1-producing cell lines from patients with IgA nephropathy. J Am Soc Nephrol 2012;23:853A
  • Hastings MC, Afshan S, Sanders JT, et al. Serum galactose-deficient IgA1 level is not associated with proteinuria in children with IgA nephropathy. Int J Nephrol 2012;2012:315467
  • Xu LX, Zhao MH. Aberrantly glycosylated serum IgA1 are closely associated with pathologic phenotypes of IgA nephropathy. Kidney Int 2005;68:167-72
  • Moore JS, Kulhavy R, Tomana M, et al. Reactivities of N-acetylgalactosamine-specific lectins with human IgA1 proteins. Mol Immunol 2007;44:2598-604
  • Czerkinsky C, Koopman WJ, Jackson S, et al. Circulating immune complexes and immunoglobulin A rheumatoid factor in patients with mesangial immunoglobulin A nephropathies. J Clin Invest 1986;77:1931-8
  • Schena FP, Pastore A, Ludovico N, et al. Increased serum levels of IgA1-IgG immune complexes and anti-F(ab')2 antibodies in patients with primary IgA nephropathy. Clin Exp Immunol 1989;77:15-20
  • Takahashi M, Takahashi S, Hirose S. Solubilization of antigen-antibody complexes: a new function of complement as a regulator of immune reactions. Prog Allergy 1980;27:134-66
  • Roos A, Rastaldi MP, Calvaresi N, et al. Glomerular activation of the lectin pathway of complement in IgA nephropathy is associated with more severe renal disease. J Am Soc Nephrol 2006;17:1724-34
  • Gharavi AG, Kiryluk K, Choi M, et al. Genome-wide association study identifies susceptibility loci for IgA nephropathy. Nat Genet 2011;43:321-7
  • Kiryluk K, Li Y, Sanna-Cherchi S, et al. Geographic differences in genetic susceptibility to IgA nephropathy: GWAS replication study and geospatial risk analysis. PLoS Genet 2012;8:e1002765
  • Wyatt RJ, Forristal J, Davis CA, et al. Control of serum C3 levels by beta 1H and C3b inactivator. J Lab Clin Med 1980;95:905-17
  • Julian BA, Wyatt RJ, McMorrow RG, Galla JH. Serum complement proteins in IgA nephropathy. Clin Nephrol 1983;20:251-8
  • Kim SJ, Koo HM, Lim BJ, et al. Decreased circulating C3 levels and mesangial c3 deposition predict renal outcome in patients with IgA nephropathy. PLoS ONE 2012;7:e40495
  • Suzuki H, Ohsawa I, Kodama F, et al. Fluctuation of serum C3 levels reflects disease activity and metabolic background in patients with IgA nephropathy. J Nephrol 2013;26:708-15
  • Tomino Y, Suzuki S, Imai H, et al. Measurement of serum IgA and C3 may predict the diagnosis of patients with IgA nephropathy prior to renal biopsy. J Clin Lab Anal 2000;14:220-3
  • Ishiguro C, Yaguchi Y, Funabiki K, et al. Serum IgA/C3 ratio may predict diagnosis and prognostic grading in patients with IgA nephropathy. Nephron 2002;91:755-8
  • Zhang J, Wang C, Tang Y, et al. Serum immunoglobulin A/C3 ratio predicts progression of immunoglobulin A nephropathy. Nephrology (Carlton) 2013;18:125-31
  • Maeda A, Gohda T, Funabiki K, et al. Significance of serum IgA levels and serum IgA/C3 ratio in diagnostic analysis of patients with IgA nephropathy. J Clin Lab Anal 2003;17:73-6
  • Wyatt RJ, Kanayama Y, Julian BA, et al. Complement activation in IgA nephropathy. Kidney Int 1987;31:1019-23
  • Wyatt RJ, Julian BA. Activation of complement in IgA nephropathy. Am J Kidney Dis 1988;12:437-42
  • Zwirner J, Burg M, Schulze M, et al. Activated complement C3: a potentially novel predictor of progressive IgA nephropathy. Kidney Int 1997;51:1257-64
  • Lagrue G, Branellec A, Intrator L, et al. [Measurements of serum C3d in primitive chronic glomerular nephropathies (author's transl)]. Nouv Presse Med 1979;8:1153-6
  • Sølling J. Circulating immune complexes and complement breakdown product C3d in glomerulonephritis and kidney transplantation. Acta Pathol Microbiol Immunol Scand C 1984;92:213-20
  • Janssen U, Bahlmann F, Köhl J, et al. Activation of the acute phase response and complement C3 in patients with IgA nephropathy. Am J Kidney Dis 2000;35:21-8
  • Zhang JJ, Jiang L, Liu G, et al. Levels of urinary complement factor H in patients with IgA nephropathy are closely associated with disease activity. Scand J Immunol 2009;69:457-64
  • Sogabe A, Uto H, Kanmura S, et al. Correlation of serum levels of complement C4a desArg with pathologically estimated severity of glomerular lesions and mesangial hypercellularity scores in patients with IgA nephropathy. Int J Mol Med 2013
  • Liu LL, Jiang Y, Wang LN, Liu N. Urinary mannose-binding lectin is a biomarker for predicting the progression of immunoglobulin (Ig)A nephropathy. Clin Exp Immunol 2012;169:148-55
  • Launay P, Grossetête B, Arcos-Fajardo M, et al. Fcalpha receptor (CD89) mediates the development of immunoglobulin A (IgA) nephropathy (Berger's disease). Evidence for pathogenic soluble receptor-IgA complexes in patients and CD89 transgenic mice. J Exp Med 2000;191:1999-2009
  • Berthelot L, Papista C, Maciel TT, et al. Transglutaminase is essential for IgA nephropathy development acting through IgA receptors. J Exp Med 2012;209:793-806
  • van der Boog PJ, De Fijter JW, Van Kooten C, et al. Complexes of IgA with FcalphaRI/CD89 are not specific for primary IgA nephropathy. Kidney Int 2003;63:514-21
  • Vuong MT, Hahn-Zoric M, Lundberg S, et al. Association of soluble CD89 levels with disease progression but not susceptibility in IgA nephropathy. Kidney Int 2010;78:1281-7
  • Julian BA, Wittke S, Novak J, et al. Electrophoretic methods for analysis of urinary polypeptides in IgA-associated renal diseases. Electrophoresis 2007;28:4469-83
  • Julian BA, Wittke S, Haubitz M, et al. Urinary biomarkers of IgA nephropathy and other IgA-associated renal diseases. World J Urol 2007;25:467-76
  • Candiano G, Musante L, Bruschi M, et al. Repetitive fragmentation products of albumin and alpha1-antitrypsin in glomerular diseases associated with nephrotic syndrome. J Am Soc Nephrol 2006;17:3139-48
  • Haubitz M, Wittke S, Weissinger EM, et al. Urine protein patterns can serve as diagnostic tools in patients with IgA nephropathy. Kidney Int 2005;67:2313-20
  • Mischak H, Coon JJ, Novak J, et al. Capillary electrophoresis-mass spectrometry as a powerful tool in biomarker discovery and clinical diagnosis: an update of recent developments. Mass Spectrom Rev 2009;28:703-24
  • Good DM, Zurbig P, Argiles A, et al. Naturally occurring human urinary peptides for use in diagnosis of chronic kidney disease. Mol Cell Proteomics 2010;9:2424-37
  • Mischak H, Kolch W, Aivaliotis M, et al. Comprehensive human urine standards for comparability and standardization in clinical proteome analysis. Proteomics Clin Appl 2010;4:464-78
  • Mischak H, Ioannidis JP, Argiles A, et al. Implementation of proteomic biomarkers: making it work. Eur J Clin Invest 2012;42:1027-36
  • Mischak H, Allmaier G, Apweiler R, et al. Recommendations for biomarker identification and qualification in clinical proteomics. Sci Transl Med 2010;2:46ps2
  • Wu J, Wang N, Wang J, et al. Identification of a uromodulin fragment for diagnosis of IgA nephropathy. Rapid Commun Mass Spectrom 2010;24:1971-8
  • Graterol F, Navarro-Muñoz M, Ibernon M, et al. Poor histological lesions in IgA nephropathy may be reflected in blood and urine peptide profiling. BMC Nephrol 2013;14:82
  • Rocchetti MT. Papale M, d'Apollo AM, et al. Association of urinary laminin g-like 3 and free k light chains with disease activity and histological injury in IgA nephropathy. Clin J Am Soc Nephrol 2013;8:1115-25
  • Torres DD, Rossini M, Manno C, et al. The ratio of epidermal growth factor to monocyte chemotactic peptide-1 in the urine predicts renal prognosis in IgA nephropathy. Kidney Int 2008;73:327-33
  • Peters HP, Waanders F, Meijer E, et al. High urinary excretion of kidney injury molecule-1 is an independent predictor of end-stage renal disease in patients with IgA nephropathy. Nephrol Dial Transplant 2011;26:3581-8
  • Asao R, Asanuma K, Kodama F, et al. Relationships between levels of urinary podocalyxin, number of urinary podocytes, and histologic injury in adult patients with IgA nephropathy. Clin J Am Soc Nephrol 2012;7(9):1385-93
  • Shi B, Ni Z, Cao L, et al. Serum IL-18 is closely associated with renal tubulointerstitial injury and predicts renal prognosis in IgA nephropathy. Mediators Inflamm 2012;2012:728417
  • Fotis L, Giannakopoulos D, Stamogiannou L, Xatzipsalti M. Intercellular cell adhesion molecule-1 and vascular cell adhesion molecule-1 in children. Do they play a role in the progression of atherosclerosis? Hormones (Athens) 2012;11:140-6
  • Zhu L, Shi S, Liu L, et al. Increased plasma sVCAM-1 is associated with severity in IgA nephropathy. BMC Nephrol 2013;14:21
  • Larsson T, Nisbeth U, Ljunggren O, et al. Circulating concentration of FGF-23 increases as renal function declines in patients with chronic kidney disease, but does not change in response to variation in phosphate intake in healthy volunteers. Kidney Int 2003;64:2272-9
  • Isakova T, Wahl P, Vargas GS, et al. Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease. Kidney Int 2011;79:1370-8
  • Olauson H, Qureshi AR, Miyamoto T, et al. Relation between serum fibroblast growth factor-23 level and mortality in incident dialysis patients: are gender and cardiovascular disease confounding the relationship? Nephrol Dial Transplant 2010;25:3033-8
  • Wolf M, Molnar MZ, Amaral AP, et al. Elevated fibroblast growth factor 23 is a risk factor for kidney transplant loss and mortality. J Am Soc Nephrol 2011;22:956-66
  • Lundberg S, Qureshi AR, Olivecrona S, et al. FGF23, albuminuria, and disease progression in patients with chronic IgA nephropathy. Clin J Am Soc Nephrol 2012;7:727-34

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.