86
Views
4
CrossRef citations to date
0
Altmetric
Reviews

An overview of current and future treatment options for chondrosarcoma

, & , PhD

Bibliography

  • Kaste SC. Imaging pediatric bone sarcomas. Radiol Clin North Am 2011;49(4):749-65; vi-vii
  • Gelderblom H, Hogendoorn PC, Dijkstra SD, et al. The clinical approach towards chondrosarcoma. Oncologist 2008;13(3):320-9
  • Douis H, Saifuddin A. The imaging of cartilaginous bone tumours. II. Chondrosarcoma. Skeletal Radiol 2013;42(5):611-26
  • Clark JC, Dass CR, Choong PF. Development of chondrosarcoma animal models for assessment of adjuvant therapy. ANZ J Surg 2009;79(5):327-36
  • Baek HJ, Lee SJ, Cho KH, et al. Subungual tumors: clinicopathologic correlation with US and MR imaging findings. Radiographics 2010;30(6):1621-36
  • Douis H, Saifuddin A. The imaging of cartilaginous bone tumours. I. Benign lesions. Skeletal Radiol 2012;41(10):1195-212
  • Ho YY, Choueka J. Synovial chondromatosis of the upper extremity. J Hand Surg Am 2013;38(4):804-10
  • Pansuriya TC, Kroon HM, Bovee JV. Enchondromatosis: insights on the different subtypes. Int J Clin Exp Pathol 2010;3(6):557-69
  • Ho L, Stojanovski A, Whetstone H, et al. Gli2 and p53 cooperate to regulate IGFBP-3- mediated chondrocyte apoptosis in the progression from benign to malignant cartilage tumors. Cancer Cell 2009;16(2):126-36
  • Schmale GA, Hawkins DS, Rutledge J, et al. Malignant progression in two children with multiple osteochondromas. Sarcoma 2010;2010:417105
  • Rosenberg AE. WHO classification of soft tissue and bone, 4th edition, summary and commentary. Curr Opin Oncol 2013;25(5):571-3
  • Hameed M, Dorfman H. Primary malignant bone tumors–recent developments. Semin Diagn Pathol 2011;28(1):86-101
  • Unni KK, Dahlin DC. Dahlin's bone tumors: general aspects and data on 11,087 cases. 5th edition. Lippincott-Raven, Philadelphia; 1996. p. 463
  • Chow WA. Update on chondrosarcomas. Curr Opin Oncol 2007;19(4):371-6
  • Murphey MD, Walker EA, Wilson AJ, et al. From the archives of the AFIP: imaging of primary chondrosarcoma: radiologic-pathologic correlation. Radiographics 2003;23(5):1245-78
  • Wootton-Gorges SL. MR imaging of primary bone tumors and tumor-like conditions in children. Magn Reson Imaging Clin N Am 2009;17(3):469-87, vi
  • Daänert W. Radiology review manual. 7th edition. Wolters Kluwer Health/Lippincott Williams Wilkins, Philadelphia; 2011. p. 1227; xxix
  • Soldatos T, McCarthy EF, Attar S, et al. Imaging features of chondrosarcoma. J Comput Assist Tomogr 2011;35(4):504-11
  • Pritchard DJ, Lunke RJ, Taylor WF, et al. Chondrosarcoma: a clinicopathologic and statistical analysis. Cancer 1980;45(1):149-57
  • Littrell LA, Wenger DE, Wold LE, et al. Radiographic, CT, and MR imaging features of dedifferentiated chondrosarcomas: a retrospective review of 174 de novo cases. Radiographics 2004;24(5):1397-409
  • Grimer RJ, Gosheger G, Taminiau A, et al. Dedifferentiated chondrosarcoma: prognostic factors and outcome from a European group. Eur J Cancer 2007;43(14):2060-5
  • Unni KK, Dahlin DC, Beabout JW, et al. Chondrosarcoma: clear-cell variant. A report of sixteen cases. J Bone Joint Surg Am 1976;58(5):676-83
  • Collins MS, Koyama T, Swee RG, et al. Clear cell chondrosarcoma: radiographic, computed tomographic, and magnetic resonance findings in 34 patients with pathologic correlation. Skeletal Radiol 2003;32(12):687-94
  • Itala A, Leerapun T, Inwards C, et al. An institutional review of clear cell chondrosarcoma. Clin Orthop Relat Res 2005;440:209-12
  • Lightenstein L, Bernstein D. Unusual benign and malignant chondroid tumors of bone. A survey of some mesenchymal cartilage tumors and malignant chondroblastic tumors, including a few multicentric ones, as well as many atypical benign chondroblastomas and chondromyxoid fibromas. Cancer 1959;12:1142-57
  • Wehrli BM, Huang W, De Crombrugghe B, et al. Sox9, a master regulator of chondrogenesis, distinguishes mesenchymal chondrosarcoma from other small blue round cell tumors. Hum Pathol 2003;34(3):263-9
  • Vencio EF, Reeve CM, Unni KK, et al. Mesenchymal chondrosarcoma of the jaw bones: clinicopathologic study of 19 cases. Cancer 1998;82(12):2350-5
  • Damron TA, Ward WG, Stewart A. Osteosarcoma, chondrosarcoma, and Ewing's sarcoma: national Cancer Data Base Report. Clin Orthop Relat Res 2007;459:40-7
  • Bloch OG, Jian BJ, Yang I, et al. A systematic review of intracranial chondrosarcoma and survival. J Clin Neurosci 2009;16(12):1547-51
  • Chen KY, Yao CH. Repair of bone defects with gelatin-based composites: a review. Biomedicine 2011;1(1):29-32
  • Hsu SC, Chung JG. Anticancer potential of emodin. Biomedicine 2012;2(3):108-16
  • Kobayashi T, Chung UI, Schipani E, et al. PTHrP and Indian hedgehog control differentiation of growth plate chondrocytes at multiple steps. Development 2002;129(12):2977-86
  • Tiet TD, Hopyan S, Nadesan P, et al. Constitutive hedgehog signaling in chondrosarcoma up-regulates tumor cell proliferation. Am J Pathol 2006;168(1):321-30
  • Ng JM, Curran T. The Hedgehog's tale: developing strategies for targeting cancer. Nat Rev Cancer 2011;11(7):493-501
  • Lorusso PM, Jimeno A, Dy G, et al. Pharmacokinetic dose-scheduling study of hedgehog pathway inhibitor vismodegib (GDC-0449) in patients with locally advanced or metastatic solid tumors. Clin Cancer Res 2011;17(17):5774-82
  • Sandhiya S, Melvin G, Kumar SS, et al. The dawn of hedgehog inhibitors: vismodegib. J Pharmacol Pharmacother 2013;4(1):4-7
  • Babacan T, Sarici F, Altundag K. Vismodegib in advanced basal-cell carcinoma. N Engl J Med 2012;367(10):969-70; author reply 970
  • Hopyan S, Nadesan P, Yu C, et al. Dysregulation of hedgehog signalling predisposes to synovial chondromatosis. J Pathol 2005;206(2):143-50
  • Rozeman LB, Hameetman L, Cleton-Jansen AM, et al. Absence of IHH and retention of PTHrP signalling in enchondromas and central chondrosarcomas. J Pathol 2005;205(4):476-82
  • van Oosterwijk JG, Meijer D, van Ruler MA, et al. Screening for potential targets for therapy in mesenchymal, clear cell, and dedifferentiated chondrosarcoma reveals Bcl-2 family members and TGFbeta as potential targets. Am J Pathol 2013;182(4):1347-56
  • Zhang YX, van Oosterwijk JG, Sicinska E, et al. Functional profiling of receptor tyrosine kinases and downstream signaling in human chondrosarcomas identifies pathways for rational targeted therapy. Clin Cancer Res 2013;19(14):3796-807
  • van Oosterwijk J.G, van Ruler MA, Briaire-de Bruijn IH, et al. Src kinases in chondrosarcoma chemoresistance and migration: dasatinib sensitises to doxorubicin in TP53 mutant cells. Br J Cancer 2013;109(5):1214-22
  • Schrage YM, Briaire-de Bruijn IH, de Miranda NF, et al. Kinome profiling of chondrosarcoma reveals SRC-pathway activity and dasatinib as option for treatment. Cancer Res 2009;69(15):6216-22
  • El Rashedy AA, Aboul-Enein HY. Benzimidazole derivatives as potential anticancer agents. Mini Rev Med Chem 2013;13(3):399-407
  • Liu JF, Huang YL, Yang WH, et al. 1-Benzyl-2-Phenylbenzimidazole (BPB), a Benzimidazole Derivative, Induces Cell Apoptosis in Human Chondrosarcoma through Intrinsic and Extrinsic Pathways. Int J Mol Sci 2012;13(12):16472-88
  • Grutter MG. Caspases: key players in programmed cell death. Curr Opin Struct Biol 2000;10(6):649-55
  • Liu JF, Chang CS, Fong YC, et al. FPipTB, a benzimidazole derivative, induces chondrosarcoma cell apoptosis via endoplasmic reticulum stress and apoptosis signal-regulating kinase 1. Mol Carcinog 2011, doi:10.1002/mc.20787
  • Feldman DE, Chauhan V, Koong AC. The unfolded protein response: a novel component of the hypoxic stress response in tumors. Mol Cancer Res 2005;3(11):597-605
  • Moenner M, Pluquet O, Bouchecareilh M, et al. Integrated endoplasmic reticulum stress responses in cancer. Cancer Res 2007;67(22):10631-4
  • Li TM, Lin TY, Hsu SF, et al. The novel benzimidazole derivative, MPTB, induces cell apoptosis in human chondrosarcoma cells. Mol Carcinog 2011;50(10):791-803
  • Alnemri ES, Livingston DJ, Nicholson DW, et al. Human ICE/CED-3 protease nomenclature. Cell 1996;87(2):171
  • Brenner D, Mak TW. Mitochondrial cell death effectors. Curr Opin Cell Biol 2009;21(6):871-7
  • Zhang Y, Luo M, Zu Y, et al. Dryofragin, a phloroglucinol derivative, induces apoptosis in human breast cancer MCF-7 cells through ROS-mediated mitochondrial pathway. Chem Biol Interact 2012;199(2):129-36
  • Ito H, Muranaka T, Mori K, et al. Ichthyotoxic phloroglucinol derivatives from Dryopteris fragrans and their anti-tumor promoting activity. Chem Pharm Bull (Tokyo) 2000;48(8):1190-5
  • Liu JF, Yang WH, Fong YC, et al. BFPP, a phloroglucinol derivative, induces cell apoptosis in human chondrosarcoma cells through endoplasmic reticulum stress. Biochem Pharmacol 2010;79(10):1410-17
  • Bradbury DA, Simmons TD, Slater KJ, et al. Measurement of the ADP:ATP ratio in human leukaemic cell lines can be used as an indicator of cell viability, necrosis and apoptosis. J Immunol Methods 2000;240(1-2):79-92
  • Feig DI, Reid TM, Loeb LA. Reactive oxygen species in tumorigenesis. Cancer Res 1994;54(7 Suppl):1890s-4s
  • Schumacker PT. Reactive oxygen species in cancer cells: live by the sword, die by the sword. Cancer Cell 2006;10(3):175-6
  • Chen SY, Zhang CL, Chen YZ, et al. Trichodermin (4beta-acet-oxy-12,13-epoxy-trichothec-9-ene). Acta Crystallogr Sect E Struct Rep Online 2008;64(Pt 4):o702
  • Wang LW, Xu BG, Wang JY, et al. Bioactive metabolites from Phoma species, an endophytic fungus from the Chinese medicinal plant Arisaema erubescens. Appl Microbiol Biotechnol 2012;93(3):1231-9
  • Xu X, Cheng J, Zhou Y, et al. Synthesis and antifungal activities of trichodermin derivatives as fungicides on rice. Chem Biodivers 2013;10(4):600-11
  • Tijerino A, Hermosa R, Cardoza RE, et al. Overexpression of the Trichoderma brevicompactum tri5 gene: effect on the expression of the trichodermin biosynthetic genes and on tomato seedlings. Toxins (Basel) 2011;3(9):1220-32
  • Kralj A, Gurgui M, Konig GM, et al. Trichothecenes induce accumulation of glucosylceramide in neural cells by interfering with lactosylceramide synthase activity. Toxicol Appl Pharmacol 2007;225(1):113-22
  • Su CM, Wang SW, Lee TH, et al. Trichodermin induces cell apoptosis through mitochondrial dysfunction and endoplasmic reticulum stress in human chondrosarcoma cells. Toxicol Appl Pharmacol 2013;272(2):335-44
  • Fujiki H. Green tea: health benefits as cancer preventive for humans. Chem Rec 2005;5(3):119-32
  • Shimizu M, Weinstein IB. Modulation of signal transduction by tea catechins and related phytochemicals. Mutat Res 2005;591(1-2):147-60
  • Islam S, Islam N, Kermode T, et al. Involvement of caspase-3 in epigallocatechin-3-gallate-mediated apoptosis of human chondrosarcoma cells. Biochem Biophys Res Commun 2000;270(3):793-7
  • Tang GQ, Yan TQ, Guo W, et al. (-)-Epigallocatechin-3-gallate induces apoptosis and suppresses proliferation by inhibiting the human Indian Hedgehog pathway in human chondrosarcoma cells. J Cancer Res Clin Oncol 2010;136(8):1179-85
  • Yang WH, Fong YC, Lee CY, et al. Epigallocatechin-3-gallate induces cell apoptosis of human chondrosarcoma cells through apoptosis signal-regulating kinase 1 pathway. J Cell Biochem 2011;112(6):1601-11
  • Zhang Q, Cai L, Zhong G, et al. Simultaneous determination of jatrorrhizine, palmatine, berberine, and obacunone in Phellodendri Amurensis Cortex by RP-HPLC. Zhongguo Zhong Yao Za Zhi 2010;35(16):2061-4
  • Tillhon M, Guaman Ortiz LM, Lombardi P, et al. Berberine: new perspectives for old remedies. Biochem Pharmacol 2012;84(10):1260-7
  • Singh T, Vaid M, Katiyar N, et al. Berberine, an isoquinoline alkaloid, inhibits melanoma cancer cell migration by reducing the expressions of cyclooxygenase-2, prostaglandin E(2) and prostaglandin E(2) receptors. Carcinogenesis 2011;32(1):86-92
  • Wu CM, Li TM, Tan TW, et al. Berberine reduces the metastasis of chondrosarcoma by modulating the alpha v beta 3 integrin and the PKC delta, c-Src, and AP-1 signaling pathways. Evid Based Complement Alternat Med 2013;2013:423164
  • Stupack DG. The biology of integrins. Oncology (Williston Park) 2007;21(9 Suppl 3):6-12
  • Missan DS, DiPersio M. Integrin control of tumor invasion. Crit Rev Eukaryot Gene Expr 2012;22(4):309-24
  • Chattopadhyay I, Bandyopadhyay U, Biswas K, et al. Indomethacin inactivates gastric peroxidase to induce reactive-oxygen-mediated gastric mucosal injury and curcumin protects it by preventing peroxidase inactivation and scavenging reactive oxygen. Free Radic Biol Med 2006;40(8):1397-408
  • Aggarwal BB, Sundaram C, Malani N, et al. Curcumin: the Indian solid gold. Adv Exp Med Biol 2007;595:1-75
  • Wilken R, Veena MS, Wang MB, et al. Curcumin: a review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Mol Cancer 2011;10:12
  • Lin HJ, Su CC, Lu HF, et al. Curcumin blocks migration and invasion of mouse-rat hybrid retina ganglion cells (N18) through the inhibition of MMP-2, -9, FAK, Rho A and Rock-1 gene expression. Oncol Rep 2010;23(3):665-70
  • Lin SS, Lai KC, Hsu SC, et al. Curcumin inhibits the migration and invasion of human A549 lung cancer cells through the inhibition of matrix metalloproteinase-2 and -9 and Vascular Endothelial Growth Factor (VEGF). Cancer Lett 2009;285(2):127-33
  • Yallapu MM, Maher DM, Sundram V, et al. Curcumin induces chemo/radio-sensitization in ovarian cancer cells and curcumin nanoparticles inhibit ovarian cancer cell growth. J Ovarian Res 2010;3:11
  • Shehzad A, Lee J, Lee YS. Curcumin in various cancers. Biofactors 2013;39(1):56-68
  • Lee HP, Li TM, Tsao JY, et al. Curcumin induces cell apoptosis in human chondrosarcoma through extrinsic death receptor pathway. Int Immunopharmacol 2012;13(2):163-9
  • Bovee JV, Hogendoorn PC, Wunder JS, et al. Cartilage tumours and bone development: molecular pathology and possible therapeutic targets. Nat Rev Cancer 2010;10(7):481-8
  • Oda Y, Tsuneyoshi M. Extrarenal rhabdoid tumors of soft tissue: clinicopathological and molecular genetic review and distinction from other soft-tissue sarcomas with rhabdoid features. Pathol Int 2006;56(6):287-95
  • Lin C, Meitner PA, Terek RM. PTEN mutation is rare in chondrosarcoma. Diagn Mol Pathol 2002;11(1):22-6
  • Rozeman LB, Szuhai K, Schrage YM, et al. Array-comparative genomic hybridization of central chondrosarcoma: identification of ribosomal protein S6 and cyclin-dependent kinase 4 as candidate target genes for genomic aberrations. Cancer 2006;107(2):380-8
  • Terek RM, Healey JH, Garin-Chesa P, et al. p53 mutations in chondrosarcoma. Diagn Mol Pathol 1998;7(1):51-6
  • Schrage YM, Lam S, Jochemsen AG, et al. Central chondrosarcoma progression is associated with pRb pathway alterations: CDK4 down-regulation and p16 overexpression inhibit cell growth in vitro. J Cell Mol Med 2009;13(9A):2843-52
  • van Beerendonk HM, Rozeman LB, Taminiau AH, et al. Molecular analysis of the INK4A/INK4A-ARF gene locus in conventional (central) chondrosarcomas and enchondromas: indication of an important gene for tumour progression. J Pathol 2004;202(3):359-66
  • Asp J, Sangiorgi L, Inerot SE, et al. Changes of the p16 gene but not the p53 gene in human chondrosarcoma tissues. Int J Cancer 2000;85(6):782-6
  • Larramendy ML, Tarkkanen M, Valle J, et al. Gains, losses, and amplifications of DNA sequences evaluated by comparative genomic hybridization in chondrosarcomas. Am J Pathol 1997;150(2):685-91
  • Bovee JV, Sciot R, Dal Cin P, et al. Chromosome 9 alterations and trisomy 22 in central chondrosarcoma: a cytogenetic and DNA flow cytometric analysis of chondrosarcoma subtypes. Diagn Mol Pathol 2001;10(4):228-35
  • Amary MF, Bacsi K, Maggiani F, et al. IDH1 and IDH2 mutations are frequent events in central chondrosarcoma and central and periosteal chondromas but not in other mesenchymal tumours. J Pathol 2011;224(3):334-43
  • Corpas FJ, Barroso JB, Sandalio LM, et al. Peroxisomal NADP-dependent isocitrate dehydrogenase. Characterization and activity regulation during natural senescence. Plant Physiol 1999;121(3):921-8
  • Losman JA, Kaelin WG Jr. What a difference a hydroxyl makes: mutant IDH, (R)-2-hydroxyglutarate, and cancer. Genes Dev 2013;27(8):836-52
  • Yan H, Parsons DW, Jin G, et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med 2009;360(8):765-73
  • Sasaki M, Knobbe CB, Itsumi M, et al. D-2-hydroxyglutarate produced by mutant IDH1 perturbs collagen maturation and basement membrane function. Genes Dev 2012;26(18):2038-49
  • Pansuriya TC, van Eijk R, d'Adamo P, et al. Somatic mosaic IDH1 and IDH2 mutations are associated with enchondroma and spindle cell hemangioma in Ollier disease and Maffucci syndrome. Nat Genet 2011;43(12):1256-61
  • Rohle D, Popovici-Muller J, Palaskas N, et al. An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells. Science 2013;340(6132):626-30
  • Wang F, Travins J, DeLaBarre B, et al. Targeted inhibition of mutant IDH2 in leukemia cells induces cellular differentiation. Science 2013;340(6132):622-6
  • Lu C, Ward PS, Kapoor GS, et al. IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature 2012;483(7390):474-8
  • Kerr DA, Lopez HU, Deshpande V, et al. Molecular distinction of chondrosarcoma from chondroblastic osteosarcoma through IDH1/2 mutations. Am J Surg Pathol 2013;37(6):787-95
  • Thiery JP, Acloque H, Huang RY, et al. Epithelial-mesenchymal transitions in development and disease. Cell 2009;139(5):871-90
  • van Oosterwijk JG, Anninga JK, Gelderblom H, et al. Update on targets and novel treatment options for high-grade osteosarcoma and chondrosarcoma. Hematol Oncol Clin North Am 2013;27(5):1021-48
  • Guo Y, Zi X, Koontz Z, et al. Blocking Wnt/LRP5 signaling by a soluble receptor modulates the epithelial to mesenchymal transition and suppresses met and metalloproteinases in osteosarcoma Saos-2 cells. J Orthop Res 2007;25(7):964-71
  • Shang Y, Li Z, Li H, et al. TIM-3 expression in human osteosarcoma: correlation with the expression of epithelial-mesenchymal transition-specific biomarkers. Oncol Lett 2013;6(2):490-4
  • Shi Y, Lan F, Matson C, et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 2004;119(7):941-53
  • Hayami S, Kelly JD, Cho HS, et al. Overexpression of LSD1 contributes to human carcinogenesis through chromatin regulation in various cancers. Int J Cancer 2011;128(3):574-86
  • Bennani-Baiti IM, Machado I, Llombart-Bosch A, et al. Lysine-specific demethylase 1 (LSD1/KDM1A/AOF2/BHC110) is expressed and is an epigenetic drug target in chondrosarcoma, Ewing's sarcoma, osteosarcoma, and rhabdomyosarcoma. Hum Pathol 2012;43(8):1300-7
  • Dai X, Ma W, He X, et al. Review of therapeutic strategies for osteosarcoma, chondrosarcoma, and Ewing's sarcoma. Med Sci Monit 2011;17(8):RA177-90
  • Yuan XW, Zhu XF, Huang XF, et al. Interferon-alpha enhances sensitivity of human osteosarcoma U2OS cells to doxorubicin by p53-dependent apoptosis. Acta Pharmacol Sin 2007;28(11):1835-41
  • Verhoef C, de Wilt JH, Grunhagen DJ, et al. Isolated limb perfusion with melphalan and TNF-alpha in the treatment of extremity sarcoma. Curr Treat Options Oncol 2007;8(6):417-27
  • Wang Y, Mandal D, Wang S, et al. Platelet-derived growth factor receptor beta inhibition increases tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) sensitivity: imatinib and TRAIL dual therapy. Cancer 2010;116(16):3892-902
  • Pollack SM, Li Y, Blaisdell MJ, et al. NYESO-1/LAGE-1s and PRAME are targets for antigen specific T cells in chondrosarcoma following treatment with 5-aza-2-deoxycitabine. PLoS One 2012;7(2):e32165
  • Schwab JH, Boland PJ, Agaram NP, et al. Chordoma and chondrosarcoma gene profile: implications for immunotherapy. Cancer Immunol Immunother 2009;58(3):339-49
  • Radons J, Falk W, Schubert TE. Interleukin-10 does not affect IL-1-induced interleukin-6 and metalloproteinase production in human chondrosarcoma cells, SW1353. Int J Mol Med 2006;17(2):377-83
  • Pedersen BK, Febbraio MA. Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev 2008;88(4):1379-406
  • Rose-John S, Scheller J, Elson G, et al. Interleukin-6 biology is coordinated by membrane-bound and soluble receptors: role in inflammation and cancer. J Leukoc Biol 2006;80(2):227-36
  • Culig Z, Steiner H, Bartsch G, et al. Interleukin-6 regulation of prostate cancer cell growth. J Cell Biochem 2005;95(3):497-505
  • Tzeng HE, Tsai CH, Chang ZL, et al. Interleukin-6 induces vascular endothelial growth factor expression and promotes angiogenesis through apoptosis signal-regulating kinase 1 in human osteosarcoma. Biochem Pharmacol 2013;85(4):531-40
  • Tan TW, Yang WH, Lin YT, et al. Cyr61 increases migration and MMP-13 expression via alphavbeta3 integrin, FAK, ERK and AP-1-dependent pathway in human chondrosarcoma cells. Carcinogenesis 2009;30(2):258-68
  • Hou CH, Hsiao YC, Fong YC, et al. Bone morphogenetic protein-2 enhances the motility of chondrosarcoma cells via activation of matrix metalloproteinase-13. Bone 2009;44(2):233-42
  • Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2002;2(3):161-74
  • Kerkela E, Saarialho-Kere U. Matrix metalloproteinases in tumor progression: focus on basal and squamous cell skin cancer. Exp Dermatol 2003;12(2):109-25
  • Tang CH, Chen CF, Chen WM, et al. IL-6 increases MMP-13 expression and motility in human chondrosarcoma cells. J Biol Chem 2011;286(13):11056-66
  • Wu MH, Huang CY, Lin JA, et al. Endothelin-1 promotes vascular endothelial growth factor-dependent angiogenesis in human chondrosarcoma cells. Oncogene 2013, doi:10.1038/onc.2013.109

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.