167
Views
2
CrossRef citations to date
0
Altmetric
Reviews

New and emerging treatments of Guillain–Barré syndrome

, &

Bibliography

  • Emilia-Romagna Study Group on Clinical and Epidemiological Problems in Neurology. A prospective study on the incidence and prognosis of Guillain-Barre syndrome in Emilia-Romagna region, Italy (1992-1993). Neurology 1997;48:214-21
  • Hughes RA, Rees JH. Clinical and epidemiologic features of Guillain-Barre syndrome. J Infect Dis 1997;176:S92-8
  • Rees JH, Thompson RD, Smeeton NC, Hughes RA. Epidemiological study of Guillain-Barre syndrome in south east England. J Neurol Neurosurg Psychiatry 1998;64:74-7
  • Yuki N, Hartung HP. Guillain-Barré syndrome. N Engl J Med 2012;366:2294-304
  • Hughes RA, Cornblath DR. Guillain-Barre syndrome. Lancet 2005;366:1653-66
  • The Guillain-Barre syndrome Study Group. Plasmapheresis and acute Guillain-Barre syndrome. Neurology 1985;35:1096-104
  • The French Cooperative Group on Plasma Exchange in Guillain-Barré Syndrome. Appropriate number of plasma exchanges in Guillain-Barré syndrome. Ann Neurol 1997;41:298-306
  • Plasma Exchange/Sandoglobulin Guillain-Barré Syndrome Trial Group. Randomised trial of plasma exchange, intravenous immunoglobulin, and combined treatments in Guillain-Barré syndrome. Lancet 1997;349:225-30
  • Sheikh KA, Zhang G. An update on pathobiologic roles of anti-glycan antibodies in Guillain-Barré syndrome. F1000 Biol Rep 2010;2; doi:10/3410/B2-21
  • Shahrizaila N, Yuki N. Antiganglioside antibodies in Guillain-Barre syndrome and its related conditions. Expert Rev Neurother 2011;11:1305-13
  • Chavada G, Willison HJ. Autoantibodies in immune-mediated neuropathies. Curr Opin Neurol 2012;25:550-5
  • Lunn MP, Willison HJ. Diagnosis and treatment in inflammatory neuropathies. J Neurol Neurosurg Psychiatry 2009;80:249-58
  • Press R, Mata S, Lolli F, et al. Temporal profile of anti-ganglioside antibodies and their relation to clinical parameters and treatment in Guillain-Barre syndrome. J Neurol Sci 2001;190:41-7
  • Islam Z, Jacobs B, van Belkum A, et al. Axonal variant of Guillain-Barre syndrome associated with Campylobacter infection in Bangladesh. Neurology 2010;74:581-7
  • Yuki N, Yamada M, Sato S, et al. Association of IgG anti-GD1a antibody with severe Guillain-Barre syndrome. Muscle Nerve 1993;16:642-7
  • Zhang G, Lehmann HC, Manoharan S, et al. Anti-ganglioside antibody-mediated activation of RhoA induces inhibition of neurite outgrowth. J Neurosci 2011;31:1664-75
  • Lopez PH, Zhang G, Zhang J, et al. Passive transfer of IgG anti-GM1 antibodies impairs peripheral nerve repair. J Neurosci 2010;30:9533-41
  • Lehmann HC, Lopez PH, Zhang G, et al. Passive immunization with anti-ganglioside antibodies directly inhibits axon regeneration in an animal model. J Neurosci 2007;27:27-34
  • Susuki K, Yuki N, Schafer DP, et al. Dysfunction of nodes of Ranvier: a mechanism for anti-ganglioside antibody-mediated neuropathies. Exp Neurol 2011;233:534-42
  • Susuki K, Rasband MN, Tohyama K, et al. Anti-GM1 antibodies cause complement-mediated disruption of sodium channel clusters in peripheral motor nerve fibers. J Neurosci 2007;27:3956-67
  • Buchwald B, Zhang G, Vogt-Eisele AK, et al. Anti-ganglioside antibodies alter presynaptic release and calcium influx. Neurobiol Dis 2007;28:113-21
  • Zhang G, Lopez PH, Li CY, et al. Anti-ganglioside antibody-mediated neuronal cytotoxicity and its protection by intravenous immunoglobulin: implications for immune neuropathies. Brain 2004;127:1085-100
  • McGonigal R, Rowan EG, Greenshields KN, et al. Anti-GD1a antibodies activate complement and calpain to injure distal motor nodes of Ranvier in mice. Brain 2010;133:1944-60
  • Zhang G, Bogdanova N, Gao T, et al. Fcgamma receptor-mediated inflammation inhibits axon regeneration. PLoS One 2014;9:e88703
  • Willison HJ, Yuki N. Peripheral neuropathies and anti-glycolipid antibodies. Brain 2002;125:2591-25
  • Ogawara K, Kuwabara S, Mori M, et al. Axonal Guillain-Barre syndrome: relation to anti-ganglioside antibodies and Campylobacter jejuni infection in Japan. Ann Neurol 2000;48:624-31
  • Ho TW, Willison HJ, Nachamkin I, et al. Anti-GD1a antibody is associated with axonal but not demyelinating forms of Guillain-Barre syndrome. Ann Neurol 1999;45:168-73
  • Yuki N, Ho TW, Tagawa Y, et al. Autoantibodies to GM1b and GalNAc-GD1a: relationship to Campylobacter jejuni infection and acute motor axonal neuropathy in China. J Neurol Sci 1999;164:134-8
  • Yuki N, Ang CW, Koga M, et al. Clinical features and response to treatment in Guillain-Barre syndrome associated with antibodies to GM1b ganglioside. Ann Neurol 2000;47:314-21
  • Ang CW, Yuki N, Jacobs BC, et al. Rapidly progressive, predominantly motor Guillain-Barre syndrome with anti-GalNAc-GD1a antibodies. Neurology 1999;53:2122-7
  • Willison HJ, Veitch J, Paterson G, et al. Miller Fisher syndrome is associated with serum antibodies to GQ1b ganglioside. J Neurol Neurosurg Psychiatry 1993;56:204-6
  • Quarles RH, Ilyas AA, Willison HJ. Antibodies to gangliosides and myelin proteins in Guillain-Barre syndrome. Ann Neurol 1990;27(Suppl):S48-52
  • Ilyas AA, Willison HJ, Quarles RH, et al. Serum antibodies to gangliosides in Guillain-Barre syndrome. Ann Neurol 1988;23:440-7
  • Rinaldi S, Brennan KM, Kalna G, et al. Antibodies to heteromeric glycolipid complexes in guillain-barré syndrome. PLoS One 2013;8:e82337
  • Gregson NA, Koblar S, Hughes RA. Antibodies to gangliosides in Guillain-Barre syndrome: specificity and relationship to clinical features. Q J Med 1993;86:111-17
  • Kuwabara S, Yuki N, Koga M, et al. IgG anti-GM1 antibody is associated with reversible conduction failure and axonal degeneration in Guillain-Barre syndrome. Ann Neurol 1998;44:202-8
  • Kuwabara S, Asahina M, Koga M, et al. Two patterns of clinical recovery in Guillain-Barre syndrome with IgG anti-GM1 antibody. Neurology 1998;51:1656-60
  • Bech E, Orntoft TF, Andersen LP, et al. IgM anti-GM1 antibodies in the Guillain-Barré syndrome: a serological predictor of the clinical course. J Neuroimmunol 1997;72:59-66
  • Annunziata P, Figura N, Galli R, et al. Association of anti-GM1 antibodies but not of anti-cytomegalovirus, Campylobacter jejuni and Helicobacter pylori IgG, with a poor outcome in Guillain-Barré syndrome. J Neurol Sci 2003;213:55-60
  • Kaida K, Morita D, Kanzaki M, et al. Anti-ganglioside complex antibodies associated with severe disability in GBS. J Neuroimmunol 2007;182:212-18
  • Koga M, Yuki N, Hirata K, et al. Anti-GM1 antibody IgG subclass: a clinical recovery predictor in Guillain-Barre syndrome. Neurology 2003;60:1514-18
  • Willison HJ, Veitch J. Immunoglobulin subclass distribution and binding characteristics of anti-GQ1b antibodies in Miller Fisher syndrome. J Neuroimmunol 1994;50:159-65
  • Ilyas AA, Chen ZW, Cook SD, et al. Immunoglobulin G subclass distribution of autoantibodies to gangliosides in patients with Guillain-Barre syndrome. Res Commun Mol Pathol Pharmacol 2001;109:115-23
  • Ogino M, Orazio N, Latov N. IgG anti-GM1 antibodies from patients with acute motor neuropathy are predominantly of the IgG1 and IgG3 subclasses. J Neuroimmunol 1995;58:77-80
  • Plomp JJ, Molenaar PC, O’Hanlon GM, et al. Miller Fisher anti-GQ1b antibodies: alpha-latrotoxin-like effects on motor end plates. Ann Neurol 1999;45:189-99
  • Buchwald B, Toyka KV, Zielasek J, et al. Neuromuscular blockade by IgG antibodies from patients with Guillain-Barre syndrome: a macro-patch-clamp study. Ann Neurol 1998;44:913-22
  • Goodyear CS, O’Hanlon GM, Plomp JJ, et al. Monoclonal antibodies raised against Guillain-Barre syndrome-associated Campylobacter jejuni lipopolysaccharides react with neuronal gangliosides and paralyze muscle-nerve preparations. J Clin Invest 1999;104:697-708
  • Yuki N, Yamada M, Koga M, et al. Animal model of axonal Guillain-Barre syndrome induced by sensitization with GM1 ganglioside. Ann Neurol 2001;49:712-20
  • Sheikh KA, Zhang G, Gong Y, et al. An anti-ganglioside antibody-secreting hybridoma induces neuropathy in mice. Ann Neurol 2004;56:228-39
  • Yuki N, Susuki K, Koga M, et al. Carbohydrate mimicry between human ganglioside GM1 and Campylobacter jejuni lipooligosaccharide causes Guillain-Barre syndrome. Proc Natl Acad Sci USA 2004;101:11404-9
  • Sheikh KA, Griffin JW. Variants of the Guillain Barre syndrome: progress toward fulfilling “Koch’s postulates”. Ann Neurol 2001;49:694-6
  • Simister NE, Mostov KE. An Fc receptor structurally related to MHC class I antigens. Nature 1989;337:184-7
  • Simister NE, Mostov KE. Cloning and expression of the neonatal rat intestinal Fc receptor, a major histocompatibility complex class I antigen homolog. Cold Spring Harb Symp Quant Biol 1989;54:571580
  • Simister NE, Rees AR. Isolation and characterization of an Fc receptor from neonatal rat small intestine. Eur J Immunol 1985;15:733-8
  • Huber AH, Kelley RF, Gastinel LN, et al. Crystallization and stoichiometry of binding of a complex between a rat intestinal Fc receptor and Fc. J Mol Biol 1993;230:1077-83
  • Raghavan M, Gastinel LN, Bjorkman PJ. The class I major histocompatibility complex related Fc receptor shows pH-dependent stability differences correlating with immunoglobulin binding and release. Biochemistry 1993;32:8654-60
  • Raghavan M, Chen MY, Gastinel LN, et al. Investigation of the interaction between the class I MHC-related Fc receptor and its immunoglobulin G ligand. Immunity 1994;1:303-15
  • Kim JK, Firan M, Radu CG, et al. Mapping the site on human IgG for binding of the MHC class I-related receptor, FcRn. Eur J Immunol 1999;29:2819-25
  • Medesan C, Matesoi D, Radu C, et al. Delineation of the amino acid residues involved in transcytosis and catabolism of mouse IgG1. J Immunol 1997;158:2211-17
  • Ober RJ, Radu CG, Ghetie V, et al. Differences in promiscuity for antibody-FcRn interactions across species: implications for therapeutic antibodies. Int Immunol 2001;13:1551-9
  • Montoyo HP, Vaccaro C, Hafner M, et al. Conditional deletion of the MHC class I-related receptor FcRn reveals the sites of IgG homeostasis in mice. Proc Natl Acad Sci USA 2009;106:2788-93
  • Vaccaro C, Zhou J, Ober RJ, et al. Engineering the Fc region of immunoglobulin G to modulate in vivo antibody levels. Nat Biotechnol 2005;23:1283-8
  • Patel DA, Puig-Canto A, et al. Neonatal Fc receptor blockade by Fc engineering ameliorates arthritis in a murine model. J Immunol 2011;187:1015-22
  • Zhang G, Song JJ, Liu W, et al. Neonatal Fc receptor: a therapeutic target for treating autoantibodies-mediated nerve injury. Ann Neurol 2013;74:S18
  • Zhang G, Song JJ, Liu W, et al. Modulation of FcRn as a strategy to prevent autoantibody-mediated nerve injury. J Periph Nerv Syst 2013;18:130
  • Mollnes TE, Kirschfink M. Strategies of therapeutic complement inhibition. Mol Immunol 2006;43:107-21
  • Mizuno M, Cole DS. Novel C5a regulators in inflammatory disease. Expert Opin Investig Drugs 2005;14:807-21
  • Halstead SK, Humphreys PD, Goodfellow JA, et al. Complement inhibition abrogates nerve terminal injury in Miller Fisher syndrome. Ann Neurol 2005;58:203-10
  • Nyland H, Matre R, Mørk S. Immunological characterization of sural nerve biopsies from patients with Guillain-Barré syndrome. Ann Neurol 1981;9(Suppl):80-6
  • Koski CL, Sanders ME, Swoveland PT, et al. Activation of terminal components of complement in patients with Guillain-Barre syndrome and other demyelinating neuropathies. J Clin Invest 1987;80:1492-7
  • Putzu GA, Figarella-Branger D, Bouvier-Labit C, et al. Immunohistochemical localization of cytokines, C5b-9 and ICAM-1 in peripheral nerve of Guillain-Barre syndrome. J Neurol Sci 2000;174:16-21
  • Wanschitz J, Maier H, Lassmann H, et al. Distinct time pattern of complement activation and cytotoxic T cell response in Guillain-Barré syndrome. Brain 2003;126:2034-42
  • Hafer-Macko CE, Sheikh KA, Li CY, et al. Immune attack on the Schwann cell surface in acute inflammatory demyelinating polyneuropathy. Ann Neurol 1996;39:625-35
  • Hafer-Macko C, Hsieh ST, Li CY, et al. Acute motor axonal neuropathy: an antibody-mediated attack on axolemma. Ann Neurol 1996;40:635-44
  • Hartung HP, Schwenke C, Bitter-Suermann D, et al. Guillain-Barre syndrome: activated complement components C3a and C5a in CSF. Neurology 1987;37:1006-9
  • Sanders ME, Koski CL, Robbins D, et al. Activated terminal complement in cerebrospinal fluid in Guillain-Barre syndrome and multiple sclerosis. J Immunol 1986;136:4456-9
  • Vriesendorp FJ, Flynn RE, Malone MR, et al. Systemic complement depletion reduces inflammation and demyelination in adoptive transfer experimental allergic neuritis. Acta Neuropathol 1998;95:297-1
  • Vriesendorp FJ, Flynn RE, Pappolla MA, et al. Complement depletion affects demyelination and inflammation in experimental allergic neuritis. J Neuroimmunol 1995;58:157-65
  • Feasby TE, Gilbert JJ, Hahn AF, et al. Complement depletion suppresses Lewis rat experimental allergic neuritis. Brain Res 1987;419:97-103
  • Jung S, Toyka KV, Hartung HP. Soluble complement receptor type 1 inhibits experimental autoimmune neuritis in Lewis rats. Neurosci Lett 1995;200:167-70
  • Halstead SK, O’Hanlon GM, Humphreys PD, et al. Anti-disialoside antibodies kill perisynaptic Schwann cells and damage motor nerve terminals via membrane attack complex in a murine model of neuropathy. Brain 2004;127:2109-23
  • O’Hanlon GM, Humphreys PD, Goldman RS, et al. Calpain inhibitors protect against axonal degeneration in a model of anti-ganglioside antibody-mediated motor nerve terminal injury. Brain 2003;126:2497-509
  • Bullens RW, Halstead SK, O’Hanlon GM, et al. Concanavalin a inhibits pathophysiological effects of anti-ganglioside GQ1b antibodies at the mouse neuromuscular synapse. Muscle Nerve 2005;31:751-60
  • Halstead SK, Humphreys PD, Zitman FM, et al. C5 inhibitor rEV576 protects against neural injury in an in vitro mouse model of Miller Fisher syndrome. J Peripher Nerv Syst 2008;13:228-35
  • Lehmann HC, Hartung HP. Complementing the therapeutic armamentarium for Miller Fisher Syndrome and related immune neuropathies. Brain 2008;131:1168-70
  • Hillmen P, Young NS, Schubert J, et al. The complement inhibitor eculizumab in paroxysmal nocturnal hemoglobinuria. N Engl J Med 2006;355:1233-43
  • Rathbone J, Kaltenthaler E, Richards A, et al. A systematic review of eculizumab for atypical haemolytic uraemic syndrome (aHUS). BMJ Open 2013;3:e003573
  • Struijk GH, Bouts AH, Rijkers GT, et al. Meningococcal sepsis complicating eculizumab treatment despite prior vaccination. Am J Transplant 2013;13:819-20
  • Charneski L, Patel PN. Eculizumab in paroxysmal nocturnal haemoglobinuria. Drugs 2008;68:1341-6
  • Halstead SK, Zitman FM, Humphreys PD, et al. Eculizumab prevents anti-ganglioside antibody-mediated neuropathy in a murine model. Brain 2008;131:1197-208
  • Willison HJ, James O, Cameron M, et al. Eculizumab in the treatment of multifocal motor neuropathy: a single centre pilot study. J Neuroimmunol 2010;228:S1
  • van Sorge NM, van der Pol WL, Jansen MD, et al. Severity of Guillain-Barre syndrome is associated with Fc gamma receptor III polymorphisms. J Neuroimmunol 2005;162:157-64
  • van der Pol WL, van den Berg LH, Scheepers RH, et al. IgG receptor IIa alleles determine susceptibility and severity of Guillain-Barre syndrome. Neurology 2000;54:1661-5
  • Sinha S, Prasad KN, Jain D, et al. Immunoglobulin IgG Fc-receptor polymorphisms and HLA class II molecules in Guillain-Barré syndrome. Acta Neurol Scand 2010;122:21-6
  • Wu LY, Zhou Y, Qin C, et al. The effect of TNF-alpha, FcγR and CD1 polymorphisms on Guillain-Barré syndrome risk: evidences from a meta-analysis. J Neuroimmunol 2012;243:18-24
  • Stork AC, Notermans NC, van den Berg LH, et al. Fcgamma receptor IIIA genotype is associated with rituximab response in antimyelin-associated glycoprotein neuropathy. J Neurol Neurosurg Psychiatry 2014; In press
  • Nimmerjahn F, Ravetch JV. Fcgamma receptors as regulators of immune responses. Nat Rev Immunol 2008;8:34-47
  • Hogarth PM. Fc receptors are major mediators of antibody based inflammation in autoimmunity. Curr Opin Immunol 2002;14:798-802
  • Huber R, Deisenhofer J, Colman PM, et al. Crystallographic structure studies of an IgG molecule and an Fc fragment. Nature 1976;264:415-20
  • Franklin EC. Structure and function of immunoglobulins. Acta Endocrinol Suppl (Copenh) 1975;194:77-95
  • Nimmerjahn F, Ravetch JV. Antibody-mediated modulation of immune responses. Immunol Rev 2010;236:265-75
  • Nimmerjahn F, Ravetch JV. Fc-receptors as regulators of immunity. Adv Immunol 2007;96:179-204
  • Nimmerjahn F, Ravetch JV. FcgammaRs in health and disease. Curr Top Microbiol Immunol 2011;350:105-25
  • Schwab I, Nimmerjahn F. Intravenous immunoglobulin therapy: how does IgG modulate the immune system? Nat Rev Immunol 2013;13:176-89
  • Dalakas MC. Mechanisms of action of IVIg and therapeutic considerations in the treatment of acute and chronic demyelinating neuropathies. Neurology 2002;59:S13-21
  • Lehmann HC, Hartung HP. Plasma exchange and intravenous immunoglobulins: mechanism of action in immune-mediated neuropathies. J Neuroimmunol 2011;231:61-9
  • Anthony RM, Wermeling F, Ravetch JV. Novel roles for the IgG Fc glycan. Ann NY Acad Sci 2012;1253:170-80
  • Kaneko Y, Nimmerjahn F, Ravetch JV. Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. Science 2006;313:670-3
  • Anthony RM, Nimmerjahn F, Ashline DJ, et al. Recapitulation of IVIG anti-inflammatory activity with a recombinant IgG Fc. Science 2008;320:373-6
  • Anthony RM, Kobayashi T, Wermeling F, et al. Intravenous gammaglobulin suppresses inflammation through a novel T(H)2 pathway. Nature 2011;475:110-13
  • Anthony RM, Wermeling F, Karlsson MC, et al. Identification of a receptor required for the anti-inflammatory activity of IVIG. Proc Natl Acad Sci USA 2008;105:19571-8
  • Leontyev D, Katsman Y, Ma XZ, et al. Sialylation-independent mechanism involved in the amelioration of murine immune thrombocytopenia using intravenous gammaglobulin. Transfusion 2012;52:1799-05
  • Guhr T, Bloem J, Derksen NI, et al. Enrichment of sialylated IgG by lectin fractionation does not enhance the efficacy of immunoglobulin G in a murine model of immune thrombocytopenia. PLoS One 2011;6:e21246
  • Tackenberg B, Nimmerjahn F, Lünemann J. Mechanisms of IVIG efficacy in chronic inflammatory demyelinating polyneuropathy. J Clin Immunol 2010;30(Suppl 1):S65-9
  • Tackenberg B, Jelcic I, Baerenwaldt A, et al. Impaired inhibitory Fcgamma receptor IIB expression on B cells in chronic inflammatory demyelinating polyneuropathy. Proc Natl Acad Sci USA 2009;106:4788-92
  • Massaad CA, Pillai L, Liu W, et al. Aialic acid-enriched ivig fractions are efficacious in an antibody-induced preclinical model of GBS. J Peripher Nerv Syst 2013;18:69
  • Thiruppathi M, Sheng JR, Li L, et al. Recombinant IgG2a Fc (M045) multimers effectively suppress experimental autoimmune myasthenia gravis. J Autoimmun 2014; pii: S0896-8411(13)00161-3. doi: 10.1016/j.jaut.2013.12.014. [Epub ahead of print]
  • Jain A, Olsen HS, Vyzasatya R, et al. Fully recombinant IgG2a Fc multimers (stradomers) effectively treat collagen-induced arthritis and prevent idiopathic thrombocytopenic purpura in mice. Arthritis Res Ther 2012;14:R192
  • Niknami M, Wang MX, Nguyen T, et al. Beneficial effect of a multimerized immunoglobulin Fc in an animal model of inflammatory neuropathy (experimental autoimmune neuritis). J Peripher Nerv Syst 2013;18:141-52
  • Boyd JG, Gordon T. Neurotrophic factors and their receptors in axonal regeneration and functional recovery after peripheral nerve injury. Mol Neurobiol 2003;27:277-324
  • Gordon T, Sulaiman O, Boyd JG. Experimental strategies to promote functional recovery after peripheral nerve injuries. J Peripher Nerv Syst 2003;8:236-50
  • Brines M, Ghezzi P, Keenan S, et al. Erythropoietin crosses the blood-brain barrier to protect against experimental brain injury. Proc Natl Acad Sci USA 2000;97:10526-31
  • Wang Y, Zhang Z, Rhodes K, et al. Post-ischemic treatment with erythropoietin or carbamylated erythropoietin reduces infarction and improves neurological outcome in a rat model of focal cerebral ischemia. Br J Pharmacol 2007;151:1377-84
  • Sadamoto Y, Igase K, Sakanaka M, et al. Erythropoietin prevents place navigation disability and cortical infarction in rats with permanent occlusion of the middle cerebral artery. Biochem Biophys Res Commun 1998;253:26-32
  • Vitellaro-Zuccarello L, Mazzetti S, Madaschi L, et al. Erythropoietin-mediated preservation of the white matter in rat spinal cord injury. Neuroscience 2007;144:865-77
  • Li W, Maeda Y, Yuan R, et al. Beneficial effect of erythropoietin on experimental allergic encephalomyelitis. Ann Neurol 2004;56:767-77
  • Keswani SC, Buldanlioglu U, Fischer A, et al. A novel endogenous erythropoietin mediated pathway prevents axonal degeneration. Ann Neurol 2004;56:815-26
  • Campana W, Myers R. Exogenous erythropoietin protects against dorsal root ganglion apoptosis and pain following peripheral nerve injury. Eur J Neurosci 2003;18:1497-06
  • Ehrenreich H, Fischer B, Norra C, et al. Exploring recombinant human erythropoietin in chronic progressive multiple sclerosis. Brain 2007;130:2577-88
  • Sühs KW, Hein K, Sättler MB, et al. A randomized, double-blind, phase 2 study of erythropoietin in optic neuritis. Ann Neurol 2012;72:199-210
  • Keswani S, Leitz G, Hoke A. Erythropoietin is neuroprotective in models of HIV sensory neuropathy. Neurosci Lett 2004;371:102-5
  • Sättler M, Merkler D, Maier K, et al. Neuroprotective effects and intracellular signaling pathways of erythropoietin in a rat model of multiple sclerosis. Cell Death Differ 2004;11(Suppl 2):S181-92
  • Mausberg AK, Meyer Zu Hörste G, Dehmel T, et al. Erythropoietin ameliorates rat experimental autoimmune neuritis by inducing transforming growth factor-beta in macrophages. PLoS One 2011;6:e26280
  • Zhang G, Lehmann HC, Bogdanova N, et al. Erythropoietin enhances nerve repair in anti-ganglioside antibody-mediated models of immune neuropathy. PLoS One 2011;6:e27067
  • Lehmann HC, Hartung HP. Plasma exchange and intravenous immunoglobulins: mechanism of action in immune-mediated neuropathies. J Neuroimmunol 2011;231:61-9
  • Ohi H, Tamano M, Sudo S, et al. Recombinant EPO therapy increases erythrocyte expression of complement regulatory proteins. Am J Kidney Dis 2003;41:179-85
  • Hebert LA, Birmingham DJ, Dillon JJ, et al. Erythropoietin therapy in humans increases erythrocyte expression of complement receptor type 1 (CD35). J Am Soc Nephrol 1994;4:1786-91
  • Yatsiv I, Grigoriadis N, Simeonidou C, et al. Erythropoietin is neuroprotective, improves functional recovery, and reduces neuronal apoptosis and inflammation in a rodent model of experimental closed head injury. FASEB J 2005;19:1701-3
  • Schmidt R, Green K, Feng D, et al. Erythropoietin and its carbamylated derivative prevent the development of experimental diabetic autonomic neuropathy in STZ-induced diabetic NOD-SCID mice. Exp Neurol 2008;209:161-70
  • Toth C, Martinez J, Liu W, et al. Local erythropoietin signaling enhances regeneration in peripheral axons. Neuroscience 2008;154:767-83
  • Bianchi R, Gilardini A, Rodriguez-Menendez V, et al. Cisplatin-induced peripheral neuropathy: neuroprotection by erythropoietin without affecting tumour growth. Eur J Cancer 2007;43:710-17
  • Sytkowski AJ. Does erythropoietin have a dark side? Epo signaling and cancer cells. Sci STKE 2007;2007:pe38
  • Leist M, Ghezzi P, Grasso G, et al. Derivatives of erythropoietin that are tissue protective but not erythropoietic. Science 2004;305:239-42
  • van Koningsveld R, Steyerberg EW, Hughes RA, et al. A clinical prognostic scoring system for Guillain-Barré syndrome. Lancet Neurol 2007;6:589-94
  • Available from: http://www.gbsstudies.org
  • Mathys C, Aissa J, Zu Hörste GM, et al. Peripheral neuropathy: assessment of proximal nerve integrity by diffusion tensor imaging. Muscle Nerve 2013;48:889-96
  • Zhou Y, Kumaravel M, Patel VS, et al. Diffusion tensor imaging of forearm nerves in humans. J Magn Reson Imaging 2012;36:920-7
  • Lehmann HC, Zhang J, Mori S, et al. Diffusion tensor imaging to assess axonal regeneration in peripheral nerves. Exp Neurol 2010;223:238-44
  • Sheikh KA. Non-invasive imaging of nerve regeneration. Exp Neurol 2010;223:72-6
  • Zhou Y, Narayana PA, Kumaravel M, et al. High resolution diffusion tensor imaging of human nerves in forearm. J Magn Reson Imaging 2014;39:1374-83

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.